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ABSTRACT This article analyzes the serum electrolyte disturbances of patients through deep learning
algorithms. Among the 104 patients with electrolyte disturbances, 6 cases of serum potassium, sodium,
chloride, calcium, phosphorus, and magnesium electrolyte disturbances have occurred, the proportion of
occurrence The order is sodium > chlorine > calcium > potassium > phosphorus > magnesium. This paper
proposes a deep learning algorithm for serum electrolyte disorder, and analyzes and implements the functions
at various levels according to the characteristics of the Hadoop framework. The system includes electronic
medical records shared storage, distributed realization of definite learning algorithms, classification and
recognition of myocardial ischemia by deep learning, and Web system assisting doctor diagnosis, which
lays the foundation for the construction of serum electrolyte disorder scientific research data center. In order
to explore this relationship, without artificially extracting features, a deep learning model of convolution and
long-term and short-term memory circulation neural network cascade was proposed to determine the positive
or negative myocardial ischemia by classifying serum disorders. Conduct clinical experiments, including
patients with suspected coronary heart disease and coronary angiography as the research object, taking
coronary angiography results as the detection standard. Experimental results show that the model has an
accuracy of 89.0% for detecting myocardial ischemia, a sensitivity of 91.7%, and a specificity of 81.5%.
A linear combination model of CNN and LSTM is proposed to classify and recognize serum electrolyte
disorders. Determine the learning theory to dynamically model the ST-T segment in the ECG to obtain serum
electrolyte disturbance, which more vividly shows the changes in electrical information under myocardial
ischemia. In order to reveal the relationship between serum electrolyte disturbance and myocardial ischemia,
this paper builds a neural network model to learn and train serum electrolyte disturbance data to realize
the classification of positive or negative myocardial ischemia. Tests on serum electrolyte disturbance data
collected in clinical experiments show that this model can better achieve early detection of myocardial
ischemia.

INDEX TERMS Deep learning, serum, electrolyte disturbance, clinical analysis.

I. INTRODUCTION

Sodium, potassium, chlorine, calcium, phosphorus, magne-
sium and other electrolytes are mainly present in various
tissues of the human body in the form of ions [1]-[5].
Together with proteins, they maintain the osmotic pressure
of tissue cells and play an important role in the movement
and retention of body fluids [6]. Sodium participates in the
formation of various secretions of the human body and plays
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an important role in maintaining the normal function of
nerves and muscles [8]. Potassium not only participates in
the metabolism of proteins and sugars in the cell, but also
maintains the excitability of nerves and muscles together with
calcium and chlorine, and coordinates the contraction and
relaxation of normal myocardium [9]. Chloride ions mainly
from hydrochloric acid with hydrogen ions, promote the
absorption of iron in the body, and active amylase, inhibit the
growth of bacteria in the stomach [10]. Calcium in the blood
plays an important role in maintaining the content of bone
salt in the bones, blood clotting process and neuromuscular
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excitability [11]. Calcium in the cell fluid acts as a second
messenger and plays many important physiological roles in
signal transduction. Muscle calcium in can start the con-
traction of skeletal muscle and cardiologist [12]. In addition
to constituting bone salt components and participating in
bone formation, phosphorus is also a component of impor-
tant biological molecules such as nucleic acids, nucleotides,
phospholipids, and coenzymes. Many biochemical reactions
and metabolic adjustment processes require the participation
of phosphate. More than half of magnesium are deposited
in bone and have a sedative effect on nerve and muscle
excitability. It is a cofactor for various enzymes [13]-[16].
It participates in all biochemical reactions that require ATP.
It also has the maintenance of the stability of the DNA double
helix, participation in the activation of amino acids. The
important role of ribosome circulation transit peptide and
ribosome translocation. Various electrolytes play an impor-
tant role in maintaining the relative stability of the body’s
environment and maintaining the body’s normal life activities
[17]-[21]. When the electrolyte is disturbed, the body will
have various clinical reactions. Clinical observation found
that patients with liver cirrhosis have a variety of electrolyte
disorders, and is closely related to their complications and
prognosis [22]-[26].

The natriuretic peptide family is a family of structurally
related peptides, including atrial natriuretic peptide, B-type
natriuretic peptide and C-type natriuretic peptide [27]-[29].
It is a type of biomarker that is secreted as the myocar-
dial wall tension increases to counteract the effects of the
renin-angiotensin-aldosterone system and the sympathetic
nerve [30]. ANP has the effect of dilating blood vessels
and diuretics [31]. Nishi et al. found that most of BNP is
secreted by ventricular myocytes [32]. The precursor of BNP
is composed of 108 amino acid peptides. When the pressure
increases or the volume of the ventricle increases, it changes
with the change of the ventricular wall tension [33]. Pro-
mote the production of BNP with 32 amino acids from the
C-terminus and B-type natriuretic peptide of 76 amino acids
at the N-terminus [34], [35]. Natriuretic peptides mediate
physiological effects through natriuretic peptide receptors,
including increasing glomerular filtration, reducing sodium
water reabsorption, reducing myocardial oxygen consump-
tion, dilating blood vessels, and inhibiting myocardial weight
antagonism through collagen synthesis and cell hypertrophy
Structure [36]. BNP and NT-proBNP levels in patients with
HF are elevated [37]. In the early stages of chronic heart
failure, elevated BNP and NT-proBNP levels may play an
important role in maintaining water and sodium balance
and maintaining hemodynamic stability. As the disease pro-
gresses, the beneficial effects of BNP and NT-proBNP dimin-
ish, leading to water and sodium retention and adversely
affecting the heart. Therefore, the increased levels of BNP
and NT-proBNP can reflect the severity of left ventricular
dysfunction, which increases as the disease progresses [38].
The decision tree algorithm is a machine learning algorithm.
The generation algorithm mainly includes CART, ID3, Ran-
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dom Frost, C4.5, C5.0, and others. It is mainly used for
classification and prediction, and is based on actual data.
Different decision trees are used the method is also different
[39]. Compared with other classification algorithms, deci-
sion trees are more intuitive and easier to understand. This
algorithm can process and classify fuzzy data to generate
a prediction model [40]. In recent years, the decision tree
algorithm has been widely used in the predictive diagnosis
and treatment of diseases in the field of biomedicine. In
predicting the incidence of stroke, K-nearest neighbor and
C4.5 decision tree has played a role [41], The diagnosis and
prediction model of type I diabetes was developed to solve the
problem of young people who missed using insulin to lose
weight [42]. Some researchers also use multi-layer percep-
tion decision tree algorithm to assist clinicians in diagnosis
and treatment, and decide the method of treatment of breast
cancer [43].

Li et al. proposed a heartbeat classification method based
on 1D convolutional deep neural network. It first divided
heartbeats into 5 categories, and the overall classification
accuracy of the 5 categories reached 98.8%. Then it is further
divided into two major categories, VEB and SVEB, and the
recognition accuracy of the two categories is 99.0% and
97.6%, respectively [44]. Knier ef al. also analyzed the two
major categories of VEB and SVEB, using stack noise reduc-
tion automatic coding network and artificial correction of
uncertain heart beats, and achieved a recognition accuracy of
99.7% [45]. The accuracy has been improved. Although vari-
ous heartbeat classification algorithms have been developed,
the impact of high noise and complex variability of heartbeat
morphology on the stability of the algorithm has not been well
resolved [46]-[52].

The decision tree algorithm is a relatively complete data
mining algorithm. In the clinic, the hospital’s electronic sys-
tem can intuitively reflect the changes of the patient’s clinical
indicators, and it also implies other information, such as the
risk factors of the disease and the interconnection between the
diseases [53]. Now, more and more intelligent technologies
have been used in medicine [54]-[63].

In summary, the changes in serum sodium, chloride, and
potassium levels have played an important role in the occur-
rence and development of heart failure caused by various
causes, but whether it is closely related to different types of
HF is unclear. Due to the particularity of HF patients, subtle
changes in serum iron levels may play a more important
role in patients with heart failure. The disadvantage is that
the influence of high noise and complex variability of heart
beat shape on the stability of the algorithm has not been
well solved. At present, the determination of serum ions is
relatively simple, and accurate results can be obtained in
different levels of hospitals. How to use serum iron levels
to simplify the determination of the severity and prognosis
of HF patients has high clinical value. Therefore, by analyz-
ing the relationship between natriuretic peptides, serum ions
and HF and different types of HF patients, we established
a standard for serum ions to predict the prognosis of heart
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TABLE 1. Electrolyte disorders.

Category K Na Cl
Number of cases (n) Rise Reduce Rise Reduce Rise Reduce
1 30 2 48 8 39
Percent Age (%) 0.6 17.96 1.2 28.74 4.79 23.35
A 0 5 1 1 0 0
B 0 14 1 19 6 17
C 1 11 0 28 2 22
Category Ca P Mg
Number of cases (n) Rise Reduce Rise Reduce Rise Reduce
0 40 5 5 1 5
Percent Age (%) 0 23.95 2.99 2.99 0.60 2.99
A 0 2 0 0 0 0
B 0 19 3 3 0 3
C 1 19 2 2 1 2

failure, and provided a theoretical basis for the diagnosis and
treatment of HF patients.

Il. DEEP LEARNING MODEL OF SERUM ELECTROLYTE
DISTURBANCE

A. DATA SOURCES

A total of 169 patients with heart failure from May 2018
to June 2019 were selected as the heart failure group [45].
The heart failure group is divided into heart failure according
to the classification criteria of ejection fraction and heart
failure. It is divided into heart failure with reduced ejection
fraction (HFrEF), heart failure with median ejection fraction
(HFmrEF), and heart failure preserved heart failure (HFpEF).
The three groups were labeled A. B, and C in sequence,
and 49 non-heart failure patients who was hospitalized in the
geriatrics department at the same time was selected as the
non-heart failure group.

In this study, a total of 167 patients with cirrhosis in
our hospital were collected. The patients were 20-76 years
old, with an average age (50.93 + 11.05) years. 125 male
patients (74.90%), aged 20-76 years old, average age
(50.20 £ 10.86) years old, 42 female patients (25.10%), aged
26-74 years old, average age (53.12 £ 11.44) years old,
male and female patients Ratio 2.98: 1. Among 167 cirrhotic
patients, 136 patients (81.43%) had post-hepatitis B cirrhosis,
5 patients (2.99%) had cirrhosis after viral hepatitis C, and
14 had alcoholic cirrhosis (8.38%), 6 patients with cirrhosis
after autoimmune hepatitis (3.59%), 1 patient with cirrhosis
after hepatolenticular degeneration (0.60%), and 5 patients
with unexplained cirrhosis (2.99%). Of the 167 patients, 19
(11.38%) had hepatic encephalopathy, 25 (14.97%) had upper
gastrointestinal hemorrhage, and 4 (2.40%) had hepatic kid-
ney syndrome (spontaneous bacterial). There were 2 cases
(1.20%) of peritonitis and 37 cases (22.16%) with primary
liver cancer. The mean value of the Child-Pugh classification
score of 167 patients with liver cirrhosis was 8.59 2.089,
including 27 patients with grade A (16.17%), 86 patients with
grade B (51.50%), and 54 patients with grade C (32.33%). As
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showing in Table 1. Of the 20 patients in this group, 7 (35%)
had varying degrees of consciousness disturbance, 10 (50%)
had limb weakness, 13 (65%) had varying degrees of speech
impairment, and 8 (40%) had swallowing Difficulties, silence
in 6 cases (30%), brusqueness in 5 cases (25%), limb tremor
in 2 cases (10%), hand-foot movement in 1 case (5%), and
urine in 3 cases (15%) Dyspepsia, 4 patients (20%) had
abnormal mental behavior, 2 patients (10%) had seizures, and
1 patient (5%) had unstable walking. Physical examination
revealed that 12 patients (60%) had increased limb muscle
tone and 5 patients (25%) had positive pathological reflexes.

Of the 20 patients in this group, 16 patients (80%) had
serum electrolyte disturbances. Among them, there were
13 cases of hyponatremia (65%), 11 cases of hypokalemia
(55%), 2 cases of hypernatremia (10%), and 1 case of
hypochloremia (5%). Electrolyte status of 2 patients (10%)
was unknown. 2 patients (10%) had normal serum elec-
trolytes. 1 patient with long-term use of indapamide to con-
trol blood pressure developed hyponatremia, hypokalemia,
and hypochloremia. The serum electrolytes in the exter-
nal hospital were as low as: potassium: 2.97mmol / L,
sodium: 99mmol /L, chlorine: 55mmol / L. Among them,
2 cases (10%) were rapid increase in blood sodium concen-
tration, and serum sodium concentration increased more than
10mmol / L within 24 hours of rehydration [36], 2 cases
(10%) were rapid decrease in blood sodium concentration,
1 patient within 1 day Reduced blood sodium concentration
by 15 mol / L, 1 patient reduced blood sodium concentration
by 11 mol / L in 1 day, 9 patients (45%) had an unknown
fluid replacement rate (history of sodium supplementation
and potassium supplementation in other hospitals), 3 patients
(15%) Sodium supplementation at normal speed (the blood
sodium concentration does not exceed 10 mol / L within
24 hours of fluid replacement).

B. DEEP LEARNING ALGORITHM MODEL
As showed in Figure 1, the LRCN model directly connects the
cyclic sequence model to the convolutional network model
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FIGURE 1. Conv-LSTM model network structure diagram.

for joint training to achieve object detection and motion
recognition in video images. This is a spatial and tempo-
ral depth of the two models [46]. Fusion, this end-to-end
model training is flexible enough to handle various visual
tasks involving timing sequence. First, the input video image
is intercepted frame by frame to obtain the image frame
sequence, and then passed into the LRCN model. CNN per-
forms a convolution operation on each image in the image
frame sequence to extract the features of the image [47].
These features are based on the original frame sequence.
Arranged in sequence to form time series data, and then input
these time series data into the LSTM model for training,
each LSTM unit will output the corresponding classification
results, and finally use a comparison strategy to analyze
the classification results and draw conclusions. The model
makes full use of CNN’s good image processing advantages
and LSTM’s long-term memory of the dependency between
adjacent data of time series data. It has a good effect on the
behavior detection and description of video images. It is a
combination of CNN and LSTM a good attempt to build a
complex network structure.

The Conv-LSTM model is proposed to solve the classifica-
tion problem of human behavior data collected by multi-axis
sensors. It is a deep neural network composed of multiple
CNN layers and LSTM layers. First, the multi-dimensional
time series data collected by the sensor generate more abstract
features after CNN operation. These convolutional layers are
only processed in the time direction, so the dimension of the
input data does not decrease after convolution, and the con-
volution kernel is along each the data of the channel is convo-
luted. The convolution model is also a typical design method,
including several convolutional layers and pooling layers,
and uses ReLU nonlinear function as the activation function.
Then these features can be obtained after the LSTM network
training, and the time dynamic features can be obtained [48].
The activation function uses the trash function, and finally
the classification results are obtained through the Softmax
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layer. The number of CNN layers and LSTM layers selected
by this model is obtained based on actual experience, but
generally speaking, Conv-LSTM first performs convolution
processing on the entire time series data, and then enters the
feature map sequence into the LSTM network to capture the
dynamics in time Feature, the model fully exploits the long-
term dependence features of time series data, and provides
us with good ideas by linearly combining CNN and LSTM.
The data between multiple channels of sensors often do not
interfere with each other, and the three values of CDG at
each time point determine the spatial position, so it is not
necessary to use one-dimensional convolution operations to
move along the time axis. Shortening the sequence length can
increase the dimension, and can extract more abstract features
[49]. Then enter the LSTM network to extract these sequence
feature data, and finally obtain the probability distribution
through the Softmax layer to determine whether the patient
has myocardial ischemic disease. Therefore, combining the
above two models, the Conv-LSTM model is slightly adjusted
to propose the network structure used in this paper.

RBF neural network is a radial basis function neural net-
work. It is an efficient feed-forward neural network. It has the
best approximation performance and global optimal charac-
teristics that other feed-forward networks do not have. It has
a simple structure and fast training speed. At the same time,
it is also a neural network model that can be widely used
in the fields of pattern recognition and nonlinear function
approximation.

N
kan(x) =Y wisi(x) = WTS(x) e
i=1

H = [hi,hy, ..., hy)" e RV )

The radial basis transformation function is a non-negative
non-linear function that is radially symmetric to the center
point and decay. In this paper, Gauss (Gauss) function is used
as the hidden layer activation function of the RBF neural
network. It has the advantages of simple expression, good
smoothness, good resolution, etc. It is the most widely used
activation function, as follows:

—Ilx — &2
n;
L inl” )

Gi(llx—€i||)=exp[ j|,i=1,2,...,N 3)

4=, Lo, ..

When a radial basis neural network with a sufficient num-
ber of nodes N and an appropriate center point and width is
selected so that the neurons are evenly distributed, an arbi-
trary continuous function defined above can be approximated
with arbitrary accuracy:

b(x) = WTS(x) +e(x), Vi€ Qy (5)
Mt is the ideal constant RBF neural network weight vector,
and S is the approximation accuracy of the neural network.
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Assuming existence, for any such that it is the minimum, the
following formula (6):

M* = argmin { sup |b(x) — WT S(x) 6)
XEQy

RBF neural network is widely used in system identification
and modeling of nonlinear systems due to its ability to learn
complex input and output mapping and excellent approxima-
tion ability, especially based on Lyapunov stability theory, it
is widely used in adaptive control And pattern recognition,
but a large number of references are only based on the stabil-
ity analysis of the system, to ensure that the state tracking
trajectory and the weights of the neural network converge
within the specified range, and there is no guarantee that
the weights learned by the neural network will approximate
the dynamics of the actual system. Research in the field of
system identification has found that when the Persistence of
Excitation (PE) is satisfied, the parameters in the estimated
dynamic system model converge to the real system. However,
the PE condition of the nonlinear system is difficult to verify
in advance, and its definition is as follows:

to+7To
aJ < / SOSOTdr <, ¥y >0 (7)
1

0

to+To
s [ odar o vezo ®
fo

According to the above definition, a more general equiv-
alent definition is given to satisfy the identification of con-
tinuous and discrete RBF networks. Let be a Boreal measure,
given a uniformly bounded piecewise continuous vector func-
tion, if there is a normal number, as follows:

N to+To r 2
o1 llell” < S (v)c| dv(z)
fo
<dlcl*. V¥,=0 cer )

Consider all periodic (regressive) trajectories x (t) with
arbitrary period To, if x (t) exists: [0, co)+ 2CR is a contin-
uous map, and x (t) remains in the compact set 2CR”” Then,
for the RBF neural network Wi S (x), if the center points
of the neurons are evenly distributed in the compact set S
region, the regression sub-vector S <(x) along the trajectory
X (t) can satisfy the PE condition and determine the learning
The theory generalizes and relaxes the e-neighborhood must
be less than the center distance of two neurons as:

¢ > Vqhyq/2" min [¢;—¢;] >0 (10)
i#f
De(x(1) = [s (|x@®) — €1 ])] (11)

It is determined that the learning theory relaxes the restric-
tion that the signal must pass through the small neighborhood
of each neuron, so that the neurons along most trajectories or
quasi-period trajectories along the trajectory can meet the PE
condition, so as to achieve local accurate construction of the
dynamic system.
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C. ANALYSIS AND DESIGN OF DEEP LEARNING SYSTEM
FOR SERUM ELECTROLYTE DISTURBANCE

Clinical research is inseparable from data collection. When
initially applying the definite learning theory to the early
diagnosis of myocardial ischemia, it is necessary to go to the
partner hospital to collect ECG data and manually enter the
medical record. Patients cause a lot of inconvenience. Subse-
quently, based on the B / S architecture, a remote myocardial
ischemia workstation system was developed to facilitate doc-
tors to quickly analyze and diagnose ECG data and medical
records files, but it is also necessary to obtain data through
doctors and institutional personnel, and then manually ana-
lyze and organize medical records files and enter the system
[50]. A lot of manpower and material resources were wasted.
However, with the further promotion of clinical trials in multi-
center hospitals to verify the effectiveness of diagnosis, the
traditional data collection method obviously cannot meet the
requirements. Clinical datum has the characteristics of retro-
spective research and needs to accumulate and improve med-
ical record information for a long time. Its main sources are
the hospital’s Electronic Medical Record (EMR) and medical
image archiving and communication system (PACS). There
are paper medical records and Excel documents that doctors
usually save. Clinicians often hope to solve the statistical
analysis of data with the least amount of time, so that the
diagnostic system can quickly calculate to meet the scientific
research requirements of clinicians.

This paper focuses on the current informatization construc-
tion in the central hospitals with electronic medical records as
the core, integrates various heterogeneous data in the Hospital
Information System (HIS) and data collected by on-site ECG
acquisition equipment, and uses definite learning theory to
extract myocardium The features related to ischemia are then
designed to be classified for doctors to use, and a medical
system centered on the auxiliary diagnosis of myocardial
ischemia is designed, including the data layer, the calculation
layer and the application layer. Atlas analysis and big data
analysis data mining and other tasks, the system architecture
is shown in Figure 2.

The data layer does not change the existing hospital infor-
mation system, transmits the single-node medical raw data
in the HIS through the network and distributed storage to
the Hadoop-based data center, the structure and unstructured
data in various heterogeneous databases. It is saved on Linux
cluster nodes through file partitioning; the computing layer
is to perform resource scheduling and calculation allocation
through Yarn to realize the distributed calculation of learning
ECG data, and then store the results in HDFS by building
Mahout and Tensor flow. Can perform effective data analysis
on the data in the data center and provide decision information
for the application layer. Application layer users can use
the browser’s operation interface to call the business API
interface to view the auxiliary diagnostic results and data
statistical analysis results, and control the calculation through
interface interaction. The layer implements data analysis and
data layer access to data.
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FIGURE 2. Architecture diagram of deep learning system for serum
electrolyte disorder.
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FIGURE 3. Flowchart of generating CDG from ECG distributed computing
based on Hadoop stream.

Hadoop Stream will use the class to block the input file and
process the block content by line at the same time. The key is
the beginning of the line and the offset of the entire file, and
the value is the content of the line. However, the 12 leads of
ECG data are an inseparable whole. ECG data is often stored
in files in columns, so you need to customize the class file and
a class file to determine the end line of the file and record the
complete record of each block. The content is then passed into
the Mapper program for processing. Figure 3 is a flow chart
of generating CDG from ECG distributed computing based
on Hadoop Stream.

The definite learning algorithm of the computing layer
in myocardial ischemia diagnostic system interacts with the
application layer through a Python script program. The appli-
cation layer background program provides an interface to
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TABLE 2. Diagnostic criteria for framingham heart failure.

Main diagnostic criteria
Paroxysmal dyspnea at

Secondary diagnostic criteria

night Cough at night
Lung chirp Ankle edema
Jugular vein dilation Hepatomegaly
Enlarged heart Difficulty b_re_athmg after
activity

Pleural effusion
Tachycardia (> 120 beats /
min)

Reduced vital capacity to 1/3
of maximum vital capacity

Acute pulmonary edema

Increased venous pressure

Third heart sound

control the calculation layer algorithm execution. The com-
puting layer uses Python scripts to call the Linux Shell to
control the execution of Hadoop cluster tasks in this way,
the application layer is focused on business development,
and the calculation layer is focused on algorithm design
and calculation, which achieves a good decoupling between
the two. It should be noted that the HDFS output folder of
Hadoop must remain unique, otherwise the calculation will
fail. In order to ensure concurrent access to the system, the
combination of thread number and UUID can ensure that the
output folder name is unique, so that even if the data are
placed in different folders, the same data double calculation
problem can be avoided.

D. RESEARCH ON CLINICAL ANALYSIS STANDARDS

The diagnosis of heart failure needs to meet 2 major criteria
or 1 major criterion plus 2 minor criteria, as detailed in
Table 2 below.

Acute coronary syndrome within 30 days; heart failure
patients with severe hepatic and renal insufficiency; benign
or malignant tumors and hematological diseases; chronic
obstructive pulmonary disease; patients with acute stroke and
heart disease within 3 months Surgical patients. SPSS26.0
statistical software for descriptive statistical analysis and cor-
relation analysis. The measurement data conforming to the
normal distribution are expressed by x & s, and the non-
normal distribution is described by M (Q1-Q3); the count data
are expressed by percentage. One-way analysis of variance
was used to compare the measurement data that satisfy the
normal distribution among multiple groups. Compared with
the t-test method using independent samples between the two
groups, a non-parametric test was adopted for disobeying the
normal distribution. P <0.05 indicates that the difference is
statistically significant.

Effectiveness indicators: The main outcome indicators
include the total clinical effectiveness (total effective = sig-
nificant efficiency + effectiveness). Significant effect: heart
function is improved by more than two levels, and symptoms
and signs are significantly improved; effective: heart function
is improved by one level, but insufficient at both levels, symp-
toms and signs have improved; ineffective: the heart function

124651



IEEE Access

J. Wang et al.: Application of Deep Learning Algorithm in Clinical Analysis of Patients

is not improved by one level or the condition is aggravated
or died. The efficacy of TCM syndromes is the same as the
study. BNP, LVEF and 6MWT are an index for evaluating
exercise endurance of CHF patients. It requires patients to
walk as fast as possible in a straight corridor, measuring the
6-minute walking distance. 6BMWT <150 m is severe cardiac
insufficiency, 150 ~ 425 m is moderate, 426 ~ 550 m is mild.
Effective: 6MWT increased by 1 grade; ineffective: 6MWT
was not significantly improved; worsened: heart failure wors-
ened or even died.

They mainly collected electrocardiograms of patients
with normal ECG and suspected myocardial ischemia and
recorded complete medical records of patients. The patient’s
ECG is collected before the patient undergoes coronary
angiography, and coronary angiography results are used as
training labels for supervised learning and the accuracy
of model classification is calculated. The patient’s medical
record data is obtained by the hospital’s HIS system, and
the XML file is directly output by the electrocardiograph.
The image data is obtained by the hospital’s imaging depart-
ment and the corresponding image file is obtained. Stored in
HDFS, CDG data is finally obtained through calculation at
the computing layer. In order to further reveal the relationship
between CDG and myocardial ischemia, the clinical trials
strictly controlled the selected cases, excluding many patients
with unrelated causes of myocardial ischemia, experimen-
tal collection equipment and instruments. After filtering to
remove various noise, ECG data is then subjected to ST-T
segment interception and converted into ST-T vector loops.
After determining the features to learn and extract the CDG,
these calculation processes are quickly completed in batches
on the Hadoop platform, greatly reducing the generation time
of training data. In this experiment, 1714 complete medi-
cal records and CDG data were collected. These patients
were diagnosed with myocardial ischemia after coronary
angiography. 1236 of them were diagnosed with myocardial
ischemia, that is, coronary stenosis exceeded 50%, while 478
subjects were healthy and normal. CDG data of all subjects
are normalized by the maximum and minimum method. The
CDG data length is 2000. After training by neural network,
it is compared with the label of the data itself. Generally
speaking, as the number of training increases, the verification
and test results of the neural network oscillate around a
fixed value. After 6000 iterations, the model’s fitting degree
has basically stabilized. The experiment uses the sensitivity
and specificity commonly used in medicine to evaluate the
effect of combining CNN and LSTM to detect negative and
positive myocardial ischemia. Sensitivity is the percentage
of specific disease that is actually classified by the model
and actually identified by the model. Specificity) refers to
the percentage of healthy and disease-free models that are
correctly identified as disease-free. Accuracy refers to the
percentage of all data correctly classified by the model. The
calculation formula is as follows:

A= ™ (12
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FIGURE 4. Deep learning model detects myocardial ischemia.
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TN means true negative, refers to the number of non-
myocardial ischemia detected by non-patients; TP means true
positive, refers to the number of patients diagnosed with
myocardial ischemia by this model; FN indicates false nega-
tive, refers to patients diagnosed with myocardial ischemia Is
the number of non-patients; FP means false positive, which
refers to the number of non-myocardial ischemic patients
diagnosed as myocardial ischemic patients.

Ill. RESULTS ANALYSIS
A. THE RESULTS OF DEEP LEARNING MODEL TO DETECT
MYOCARDIAL ISCHEMIA
After the training of the neural network model, CDG data
of all subjects were compared with the results of coronary
angiography diagnosis. The average value was obtained after
multiple experiments. The experimental results are shown in
Figure 4. In CDG data of all patients, the accuracy rate of the
neural network model for detecting myocardial ischemia is
89.0%, the sensitivity is 91.7%, and the specificity is 81.5%.
However, because the collected data are not very balanced,
the probability that the neural network determines that the
myocardial ischemia is positive is higher than that of the
negative, and the resulting sensitivity is significantly higher.
In the early stage, the accuracy of detection of 421 patients
with suspected coronary heart disease with roughly normal
ECG by extracting two indexes of temporal heterogeneity and
spatial heterogeneity was 84.6%. The model proposed in this
paper improves the accuracy rate. In the future, the clinical
trials will be further promoted, and more complete myocar-
dial ischemia data will be collected from more subjects. The
combination of CNN and LSTM for CDG classification and
identification will be an effective way to detect positive or
negative myocardial ischemia.

Each loop in the CDG loop corresponds to the ST-T
segment. The healthier the heart, the higher the degree of
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FIGURE 5. Comparison of baseline data between heart failure group and
non-heart failure group.

coincidence between the loops, but it is not completely coin-
cident. This change is recorded by CDG. CDG loops of
healthy people are obviously coincident, and the trajectory is
relatively clear, showing a ring shape. However, CDG loops
of myocardial ischemia patients are clearly separated, and
the trajectory is relatively scattered. These morphological
differences can be found by qualitative analysis. Morphology
of CDG is related to myocardial ischemia. This system does
not require manual design of the classifier or feature extrac-
tion or selection according to the CDG morphology. Using
neural networks to automatically extract intrinsic features for
classification can obtain a model with high accuracy. As the
amount of data increases, further research in more hospitals
and different data sets can achieve better system performance.
Further, we propose a new method of automatically diag-
nosing myocardial ischemia. By modeling the original ECG
signals to generate CDG signals, and then learning the CDG
signals through the system model, we can finally perform
early diagnosis of myocardial ischemia.

In the comparison between the heart failure group and the
non-heart failure group, the P values of age, NT-proBNP,
LVEF, Na +, ClI-, LDL, AST, ALT, ALB, TC, TG were
all <0.05, and the difference was statistically significant.
According to correlation analysis, the P values of age, EF,
NT-proBNP, AST, TC, TG, ALB, LDL, Na +, CI- are all less
than 0.05, indicating that their correlation with heart failure
is shown in Figure 5.

As showed in Figure 6, the correlation analysis of various
indexes of serum electrolyte disturbance.

Sodium ions (Na +) are essential nutrients for the human
body. They are the most important extracellular cations out-
side the body, generating osmotic pressure and maintaining
the balance of water inside and outside the cell. Patients with
heart failure often have sodium in disorders due to decreased
renal perfusion and excessive activation of neurohumoral fac-
tors, which is also an important reason for choosing sodium
ions as clinical research indicators.

This study found that there is a significant difference in
sodium ion levels between elderly heart failure and non-heart
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FIGURE 6. Correlation analysis of various indicators of serum electrolyte
disturbance.

failure patients. In patients with heart failure, sodium ion
levels are significantly reduced. Therefore, this study intro-
duces sodium ions as a risk factor for heart failure. In this
study, the decision tree algorithm was used to find that when
Na + <139mmol / L. Heart failure is more likely to occur.
Therefore, when Na + <139mmol / L, heart failure is more
likely to occur. The results obtained in this study suggest
that in elderly patients with heart failure or suspicious heart
failure, monitoring sodium ion levels, 139mmol / L may be
a valuable node for joint judgment of elderly heart failure.
Therefore, in the clinic, even if the patient’s serum sodium ion
level is in the low normal range, the risk of heart failure may
increase. Therefore, in the clinical management of elderly
patients, sodium cannot be strictly limited. How to judge
the time to supplement sodium in an appropriate amount
for elderly patients to avoid blood sodium at a low normal
value or below the normal value can reduce the risk of heart
failure. This study found that there is a difference in Cl- levels
between elderly heart failure and elderly non-heart failure
patients. Cl- is negatively correlated with the occurrence of
heart failure. That is, Cl- levels are reduced, and the risk of
heart failure may be greater. In the heart failure prediction
model established by random forest, it can also be seen that
ClI- also plays a role in predicting the occurrence of heart
failure. Cl- is indeed an influencing factor of heart failure, and
it has a certain auxiliary diagnosis for our clinical the role.

B. ANALYSIS OF AUTOMATIC RECOGNITION OF SERUM
ELECTROLYTE DISTURBANCE

In the experiment, we constructed 33,950 heartbeats from
different people. Among them, 22350 heartbeats are used
as training set, which includes 8000 N, 5500 LBB, 4200
RBB, 1320 PVC, 1030 AP and 2300 P. Another 11600
heartbeats were used as the test set, which included 3600
N, 2400 LBB, 2400 RBB, 1150 PVC, 850 AP and 1200 P.
For the superimposition of all six types of heartbeat data
in the test set, it can be seen from the figure that although
it is the same type of heartbeat data, there are also large
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FIGURE 7. Results of automatic recognition of serum electrolyte
disturbance.

differences in morphology (such as b and d subgraphs), and
the similarity of the same type of heartbeat itself The main
reason for the unstable heartbeat automatic recognition algo-
rithm. N and P heartbeats have good consistency in shape.
The matching matrix of the six types of heartbeats is shown
in Figure 7. The row represents the algorithm to obtain the
classification results of six types of heartbeats, the columns
represent the actual heartbeat classification results, and the
data on the diagonal are the number of correctly detected
heartbeats in each type of heartbeat. It can be seen from the
data in the table that there are more misjudgments between
the N heartbeat and the AP heartbeat. The N heartbeat is
easily recognized as an AP heartbeat, and the AP heartbeat
is also easily recognized as an N heartbeat. The main reason
is that the N heart beat and the AP heart beat are similar
in shape, and the significant difference is that the P wave
shape changes in the heart beat, and the P wave is a wave
with a small amplitude in the heart beat, and the amplitude
change of the P wave is different in different individuals,
so it is easy Confusion between N and AP heartbeats. The
LBB and PVC heartbeats themselves have various morpho-
logical changes, and there are certain similarities between the
two types of heartbeats, both of which are reflected in the
changes in the QRS complex and ST segment morphology,
S0 it is easy to cause misjudgment between the two. RBB
heartbeats are also similar in shape to PVC heartbeats, and
can also cause false recognition. The P heartbeat itself has
a good form consistent and is quite different from other
heartbeats, so the recognition rate of the P heartbeat is the
highest.

The statistical results of S and P of the six heart beats are
shown in Table 2-4. From the data in the table, it can be
concluded that the sensitivity of the P heart beat is the highest,
which is 100%. Prediction of RBB heart beat is the highest
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FIGURE 9. Unrecognized SCD signal form.

at 99.87%. The average predictability of the six heart beats
is slightly higher than the average sensitivity. P and S have
good stability for 6 types of heart beats, and are less affected
by changes in heart beat patterns. As showing in Figure 8.

The connection spectrum radius of the reserve pool, the
input scaling ratio and the leakage rate are the main parame-
ters of the ESN network. Value selection has a great influence
on the SCD recognition results. Figure 9 shows the SCD
recognition results when the three parameters are changed.
S) and predictability (P) as measurement indicators. From
the data in the figure, it can be seen that as the connection
spectrum radius of the reserve pool decreases, its sensitivity
and predictability increase, and the change is more obvious
when it decreases from 0.1 to 0.01. When decreasing, S and
P no longer increase, but on the contrary there is a significant
decrease, so the final setting is 0.001. The input scaling ratio
controls the scaling of the input weight matrix.

Too large a scaling ratio will obviously reduce the recog-
nition ability of the network, and too small a scaling will
obviously reduce the recognition sensitivity. Finally, 0.1 is
selected. The leakage rate in the formula (6) controls the
speed of the dynamic update of the reserve pool. As the value
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of increases, the accuracy of SCD identification gradually
improves until its value is close to 1, after continuous testing,
it is finally set to 0.99.

Figure 9 shows the unrecognized ECG signal form in the
SCD test data set. Figure (a) has a relatively sharp QRS
wave group, and the amplitude of the upper and lower peaks
is similar. Figures (b) and (c) have more intense the mor-
phology or RR interval changes, the graph (d) and the CHF
signal has a certain similarity. Through statistical analysis of
unrecognized SCD signals, it is found that ECG signals with
large unrecognized SCD ratios often have strong dynamic
characteristics, and there will always be dramatic changes
in the shape or period of the signal, accompanied by large
amplitude noise.

The purpose of this study is to establish an effective cardio-
vascular disease monitoring mechanism, use deep learning
algorithms to mine hidden cardiovascular diseases in ECG
signals and related medical images, and carry out timely inter-
vention and treatment. For high-risk groups, establish a real-
time dynamic monitoring and risk warning system to effec-
tively reduce the death rate due to cardiovascular disease. At
the same time, it reduces the workload of doctors 'repeated
work and reduces the difference of doctors’ diagnosis results
in different regions.

After SCDHD and NSRD data verification, the signal
recognition accuracy 5 minutes before the sudden death
reaches 90.88%, and it has a high sensitivity. Knier et al. [46]
directly analyzed ECG time series signals. By extracting
features from wavelet decomposition signals and neural net-
work classification, the average recognition accuracy of SCD
signals and normal signals 5 minutes before sudden death
reached 95.80%. The analysis method based on the ECG time
series signal is relative to the analysis of the HRV signal, and
the analysis can be performed directly without knowing the
position of the R characteristic wave. The analysis method
based on HRV must first accurately extract the position of
the R characteristic wave, and then obtain the HRV signal.
Before sudden death occurs, the ECG signal shape has a
large variability. Accurate extraction of R feature waves is
a difficult task. Accuracy of R feature wave extraction will
also affect the final recognition effect. In this paper, starting
from the ECG timing signal, the deep ESN network is used
to classify the 4-second ECG signal without the need to
extract the HRV signal, nor the feature extraction and feature
screening. Three database data to SCDHD, NSRD and CHFD
were used to verify the algorithm, and SCD signal recognition
accuracy 5 minutes before the sudden death was 88.90%.
The malignant heart failure signal contained in the CHFD
database is morphologically closer to the SCD signal, making
it more difficult to identify. When we remove CHFD data
from non-SCD signals, the test sensitivity reaches 96.64%.
As showed in Figure 10, it is a comparison with the experi-
mental results of existing methods.

This chapter mainly studies the SCD intelligent predic-
tion method based on the echo state network, and discusses
the difficulties of the SCD intelligent prediction and related
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research methods in detail. Accurate prediction of SCD
is achieved by constructing an echo state network with a
10-layer series structure. The specific implementation pro-
cess of the algorithm in this article is introduced in detail,
especially the process of data construction. In the experimen-
tal results, the experimental results obtained by the algorithm
in this paper are given in detail, and the characteristics of
the failure to accurately identify the signal are analyzed. The
signals within 1-5 minutes before sudden death are analyzed,
and the respective prediction accuracy within 1-5 minutes
is given. Finally, detailed experimental comparison results
are given and detailed discussions are conducted to prove
the effectiveness and innovation of the algorithm in this
paper.

In this study, some patients with liver cirrhosis devel-
oped serum potassium, chloride, magnesium, and pancreatic
disorder. The possible mechanism of blood potassium dis-
order: reduced food intake and gastrointestinal absorption
in patients with liver cirrhosis, coupled with impaired liver
function, reduced potassium in the body, if there is vomit-
ing, abdominal contamination, clock loss increases. Patients
with liver cirrhosis have increased secondary acid sterner,
and long-term use of immunosuppressant’s can reduce the
serum potassium concentration. When enzyme dysfunction
occurs on the cell membrane, it will affect the transport of
potassium ions, which in turn will affect blood potassium.
Patients with liver cirrhosis combined with acidosis, oliguria,
gastrointestinal bleeding, use of potassium-sparing diuretics,
it can make blood potassium high. Blood Chlorine Distur-
bance: Patients with liver cirrhosis due to portal hypertension,
gastric varices, in order to protect the gastric point mem-
brane and prevent bleeding, taking receptor antagonists and
proton fruit inhibitors to reduce gastric acid secretion can
lead to lower serum chloride; patients with anions in the
body Keeping balance with cations, when the concentration
of positive ions such as sodium, potassium, and magnesium
changes, negative ions such as chloride ions also change
accordingly. The occurrence of blood magnesium disorder is
not only related to the patient’s low food intake, poor gas-
trointestinal absorption, vomiting, and increased loss caused
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by abdominal bay, but also to the application of diuretics,
secondary aldosterone, and long-term use of magnesium-
free solutions. Serum ions and serum Korean ions have a
mutual treatment relationship with physiological functions.
The disorder of blood phosphatidylcholine is related to the
disorder of blood scalp. In addition, the possible mechanisms
of occurrence are: digestive dysfunction in patients with
liver cirrhosis, stomach Decreased, long-term good appetite,
inadequate ingestion and absorption disorders, resulting in a
decrease in blood. Severe necrosis of liver cells or increased
permeability, acidic acid overflow, decreased enzyme activity
in the liver, especially decreased permeability, and acidi-
fication disorder leads to increased blood pressure. When
teratogenic syndrome is oliguria, the excretion of pity is poor,
causing an increase in blood levels.

C. EXTRACTION ANALYSES OF CORRELATION OF SERUM
ELECTROLYTE DISTURBANCE

In the experiment, we divided the images into five groups
according to the characteristics of the algorithm, namely
normal, blurred border, stent, thrombus and plaque group.
In the normal group, the layered structure of the image is
obvious, and there are continuous highlight areas outside
the boundary of the intima; the boundary blur group mainly
includes the layered structure is not obvious, the gray value
between layers is similar, and the boundary is extremely
blurred or the boundary is close to the image Marginal; the
stent group contains the stent structure; the thrombus group
is the presence of obvious thrombus or residual blood in the
lumen of the blood vessel; the plaque group is the presence
of various types of plaque outside the vascular intima. Each
group selects 20 groups of images for analysis.

Figure 11 shows the results of endometrial extraction of
five typical images. From top to bottom, they are normal,
blurred border, stent, and thrombus and plaque group. From
left to right are the original OCT image, the gold standard
map (manually segmented), and the algorithm automatically
extracts the map. It can be seen from the figure that the
algorithm of this paper can accurately locate the boundary
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position of the intima for five typical images, and has a good
agreement with the intima in the gold standard image. In
order to more accurately evaluate the effect of the algorithm’s
intima extraction, we statistically analyzed the average sieve
coefficient (D), Jaccard coefficient (J), Hausdorff distance
(H), and accuracy of 20 images in each group. And the recall
rate (R) and the corresponding mean square deviation. The
statistical results are shown in Figure 12. At the same time,
the change curves of different images D, J, P and R in the five
groups of images are given, as shown in Figure 12, where
the red line is D, the blue line is J, the green line is P, and
the black line is R. From this we can see that the algorithm
of this paper have the best effect on extracting the intima of
the normal group of images, and several evaluation indicators
have better stability for different images. The main reason is
that the normal group of images is relatively simple, and the
images have a high degree of similarity, so they have high
accuracy and stability. For other groups of images, due to
the more complex image conditions, the differences in the
images themselves make the D. J, P, and R curves changes
significantly, and the average accuracy is slightly lower than
that of the normal group.

From the overall goal, a lot of work needs to be perfected.
First, due to the difficulty of data collection, the existing haz-
ard warning algorithms are mainly trained and tested through
public data sets, and the actual collected data needs to be
used to further verify and optimize the algorithm; second, due
to the limitation of research time, in medical In the imaging
research, only the automatic extraction and 3D modeling of
vascular intima contours were studied. The automatic identi-
fication of plaques and vulnerable plaques did not establish a
mapping model between plaques and certain cardiovascular
diseases in combination with clinical practice.

To guide clinical diagnosis and treatment, it can be used as
the focus of the next research work; again, ECG signals and
medical images can reflect the health of the heart and diag-
nose related cardiovascular diseases. But these two are signals
of different technical levels. If the existing deep learning algo-
rithm can be used to mine the internal relationship between
the two and establish the correspondence between the two,
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the medical cost will be greatly reduced. Can be explored
and verified in future research. Finally, if a fusion analysis
model of ECG signals and medical images can be established
for a certain type or type of cardiovascular disease, so that
the two have complementary advantages and disadvantages,
it will be very beneficial to the accurate diagnosis and early
prevention of cardiovascular disease, and can be effective
Reduce the mortality of cardiovascular disease. Restricted
by the existing technical conditions, this work has not been
carried out at present, and can be used as the next research
work.

In order to more accurately evaluate the similarity between
the algorithm and the gold standard model in this paper, we
give the D, J, P and R change curves and their average statis-
tics after the optimization of the algorithm and parameters in
this paper. It can be seen that the algorithm of this paper can
guarantee the accuracy of intima extraction in most cases, but
in some cases, the automatically set parameters may prevent
the algorithm from accurately positioning the boundary of
the intima, and the parameters need to be revised. After the
individual image parameters were revised, the large error
points disappeared, and the established model is closer to the
gold standard model as showed in Figure 13.

This paper mainly studies the intelligent analysis method
of high-risk cardiovascular disease, makes full use of the
portable and long-term acquisition characteristics of dynamic
electrocardiogram, and studies the arrhythmia and SCD intel-
ligent prediction algorithm on the level of the ECG signal.
Constructed a sparse automatic coding deep neural network
with a 4-layer stack structure to automatically extract the deep
features of arrhythmia heartbeats, and realized the automatic
recognition of 6 types of heartbeats through the surtax classi-
fier. The in-depth feature can describe the input signal more
accurately, and discuss and analyze the key parameters in
the network. Taking full advantage of the ability of the echo
state network to recognize time-domain signals, the accurate
identification of sudden cardiac death signals was achieved
by designing an ESN network with a multi-layer series struc-
ture. Using the signal 5 minutes before the occurrence of
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sudden death, accurate predictions were 93.04%, 95.36%,
94.20%, 94.20% and 94.78%. Taking full advantage of the
high-precision and high-resolution characteristics of medical
images, the linear label maximum flow algorithm is used to
automatically extract the contour of the vascular intima in
the coronary OCT image, for more accurate assessment of
vascular stenosis and analysis of intravascular blood flow The
academic characteristics provide a guarantee. According to
the different tissue information contained in different OCT
images, which have different gray distribution characteristics,
the automatic selection method of gray label values based on
the gray distribution characteristics of the image is studied to
ensure the stability of the algorithm when extracting the inner
film of different OCT images. And verify the effect of the
algorithm under different interference of the inner membrane
extraction. Make full use of the self-learning ability of the
stack sparse automatic coding network for unlabeled data,
and perform in-depth modeling and analysis of A-line in
OCT images to achieve accurate identification of fibrosis,
fibrosis-calcification, and fibrosis-lipid A-line, And based on
the automatic generation algorithm of plaque area, the auto-
matic extraction of plaque area was realized. On this basis,
by analyzing the thickness of the fiber cap, the automatic
identification of vulnerable plaques of thin fiber caps was
realized.

IV. CONCLUSION

In this paper, CNN and LSTM deep learning models are pro-
posed to classify and recognize serum electrolyte disorders.
Determine the learning theory to dynamically model the ST-T
segment in the ECG to obtain the serum electrolyte disorder.
It reflects cardiac repolarization activity in three-dimensional
space and more vividly the changes in electrical information
under myocardial ischemia. In order to reveal the relation-
ship between serum electrolyte disturbance and myocardial
ischemia, this paper builds a neural network model to carry
out end-to-end learning and training on serum electrolyte
disturbance data to achieve positive or negative classification
of myocardial ischemia, by testing serum electrolyte distur-
bance data collected in clinical experiments It shows that the
model can achieve early detection of myocardial ischemia.
To build a deep learning model to classify serum electrolyte
disorders requires a lot of training data, but because a series
of clinical trials has just begun, there is not much labeled data.
Although data can be directly extracted through the hospital’s
information system, these data cannot be used immediately.
Deep learning is currently superior to past methods in many
fields, such as computer vision analysis, image classification
and recognition, natural language processing, speech recog-
nition and synthesis, and IoT sequence data classification, but
there are still some problems that need further research, such
as models Theoretical analysis, label-free data classification
and model generalization ability and adaptive technology. In
general, deep learning has opportunities and challenges in the
field of medical disease diagnosis, and other methods need
to be integrated to obtain higher accuracy. In addition, the

124657



IEEE Access

J. Wang et al.: Application of Deep Learning Algorithm in Clinical Analysis of Patients

research object of this experiment is mainly concentrated in
the population with high incidence of heart disease, such as
inpatients, and it is not extended to the general population,
resulting in more experimental data in the experimental data
than negative medical data. With the continuous improvement
of the data set, not only can the neural network model be
further improved, but also the degree of serum electrolyte
disturbance can be classified to achieve multi-classification
to further verify the effect of electrocardiogram in the early
detection of serum electrolyte disturbance.
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