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ABSTRACT We propose a robust task learning method based on nonlinear regression model with mixtures
of t-distributions. The model can adaptively reduce the effects of complex noises and accurately learn the
nonlinear structure of targets. By introducing latent variables, the model is expressed into a hierarchical
structure, which helps explain the advantage of flexibility compared to the traditional Gaussian based
learning model. We develop a two-stage efficient estimation procedure to obtain penalized likelihood
estimator of the parameters combined an expectation-maximization algorithm with Lagrange multiplier
method. The learning performances of the model are investigated through experiments on both synthetic
and real data sets.

INDEX TERMS Task learning, robust nonlinear regression, outlier, EM algorithm, kernel method.

I. INTRODUCTION
Statistical regression is one of the important methods in task
learning. Traditional regression models are established under
the assumption of normality. However, the Gaussian regres-
sion models are insufficient when the noises deviate from
the normal distribution. Moreover, the statistical inference of
Gaussian regression is sensitive to outliers. The finite mix-
ture model based on mixture distributions can alleviate the
problem caused by misspecification of distribution to some
extent. For example, the mixture of Gaussians (MoG) [1]–[3]
has been proposed for the purposes of regression, clustering,
denoising, segmentation, recognition, learning and predic-
tion [4]–[10]. In order to enhance the robustness, the mix-
ture of t-distributions (MoT) has been developed in [11],
and extensively studied from various perspectives (see in
[12]–[14], among others). The t-distribution is a kind of
heavy-tailed distribution, which can adaptively reduce the
influence of outliers to achieve desired robust inference. Also,
the t-distribution can be viewed as an important member of
the distribution family called scalemixtures of normal (SMN)
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distribution [15]. Recently, SMNdistributions have been used
in various regression models [16]–[19], which extending the
theory of Gaussian models from the framework of distribu-
tion family.

In this paper, we introduce a robust learning method for
both single task and multi-tasks within the MoT framework.
The complex noises in the tasks are adaptively described by
MoT. Since the noises in the tasks may come from multiple
sources and the data may contain outliers or local varia-
tion, the MoT models will be able to take full advantage of
adaptability and robustness. How to accurately estimate the
unknown nonlinear regression functions in task learning is
usually very challenging. To address the problem, we propose
a strategy by decomposing the MoT model into a hierar-
chical structure with three layers. In the bottom layer, the
t-distribution is expressed as a SMN distribution by a latent
scale variable. Through the latent scale variable, the heavy-
tailed feature is created and the weights of outliers in the
parameter estimation are reduced automatically. In themiddle
layer, the mixture distribution is generated by latent labels,
which can adaptively allocate different patterns in tasks to
prevent overfitting. In the top layer, the nonlinear regression
functions in tasks are learned through a kernel method [20],
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which can avoid the computational complexity caused by
high dimensional approximation. When the degrees of free-
dom in MoT tend to infinity, the MoT model will degenerate
into the MoG [21].

Several works onmulti-task learning are devoted to sharing
task information from different perspectives to improve learn-
ing performance [22]–[24]. In regression analysis, this can be
realised via shared parameters and task-specific parameters.
The shared parameters load the information of commonal-
ity while the individual parameters carry the information
of speciality. Our method is a parameter-based multi-task
learning [25] but via a decomposition. In the newMoTmodel,
the distribution parameters and hyper parameters are shared
among tasks which can effectively reduce the risk of over-
fitting. This design is particularly effective when some tasks
have insufficient information or there are outliers in sparse
areas. Through the three-layer hierarchical structure of the
model, we propose to use a two-stage estimation procedure
combined an EMalgorithmwith Lagrangemultipliermethod.
Specifically, the parameters in MoT are updated in the first
stage using EM-type algorithms. The high dimensional map
functions are calculated in the second stage using optimiza-
tion with penalties through Lagrange multiplier method.

The paper is organized as follows. Section II reviews
the task learning regression from likelihood framework.
Section III defines the MoT based regression for both single
task and multi-task learning. The hierarchical structure and
the estimation procedures are also discussed in this section.
Section IV includes the experimental results on both synthetic
data sets and real data sets. Section V concludes the paper
with some discussions.

II. PRELIMINARIES
A. SINGLE TASK REGRESSION
Generally, a nonlinear regression for single-task can be
expressed as

y = f (x)+ ε, (1)

where f (x) is an unknown nonlinear regression function with
d-dimensional covariate x and ε is random noise. Standard
support vector machine (SVM) [26] approximates the regres-
sion by a linear function

f (x) = ϕ>(x)w+ b, (2)

where ϕ(·) is a map function mapping the original input x
into h-dimensional feature space, w ∈ Rh is the regression
coefficient and b ∈ R is the bias.

Usually, the noise term ε is assumed to follow Gaus-
sian distribution. Then, the maximum likelihood estimation
(MLE) with ridge penalty on w coincides with the least
squares SVM (LS-SVM) [27] by minimizing the following
objective function

min
w, b

γ

2
‖ε‖22 +

1
2
‖w‖22,

s.t. y = B>w+ b1n + ε, (3)

where y = (y1, . . . , yn)> ∈ Rn is the output, B =

(ϕ(x1), . . . ,ϕ(xn)) ∈ Rh×n, 1n stands for an n-dimensional
vector with all elements being one, ε = (ε1, . . . , εn)> is the
noise vector consisting of slack variables and γ is a positive
regularized parameter.

However, real world data often have non-Gaussian
noises or there are outliers. The Gaussian distribution based
learning is usually quite sensitive to outliers or distribution
misspecification. To develop a robust and adaptive approach,
we may use a heavy-tailed distribution; i.e., we assume that ε
follows a heavy-tailed distribution with probability distribu-
tion function (pdf) p(ε) and the regression coefficient w has
a prior π (w). Then, a maximum a posteriori (MAP) estimate
of the coefficient can be obtained by

max
w, b

log p(ε)+ logπ (w),

s.t. y = B>w+ b1n + ε. (4)

The idea of MAP is consistent with least squares
approach. The pdfs p(ε) in (4) corresponds to loss functions,
while different prior π (w) is associate with a penalty on w.
Different distributions can be used, for example, Laplace,
Huber, beta distribution [28], MoG [21] and hyperbolic-
secant distribution [29], among others. We propose to use
mixture of t-distributions, or MoT, in this paper since MoT
can enhance the robustness while inherits most of the advan-
tages of Gaussian distribution.

B. MULTI-TASK REGRESSION
Suppose we need to learn m tasks simultaneously. For the
j-th task, we have nj training data {xij, yij}

nj
i=1, where xij ∈ Rd .

The multi-task regression model is given by

yj = B>j wj + bj1nj + εj, j = 1, . . . ,m, (5)

where yj = (yj,1, . . . , yj,nj )
>, Bj = (ϕ(x1,j), . . . ,ϕ(xnj,j)),

wj ∈ Rh, εj = (ε1,j, . . . , εnj,j)
> and εij follows a distribution

with pdf p(εij). Generally, we can solve the regression prob-
lem by minimize the minus penalized likelihood

min
{wj, bj}

−

m∑
j=1

log p(εj)+ λ‖W‖,

s.t. yj = B>j wj + bj1nj + εj, j = 1, . . . ,m, (6)

where W = (w1, . . . ,wm), the specific penalty terms λ‖W‖
can determine the similarity between tasks, the sparsity of
coefficients or the smoothness of nonlinear regression, etc.
Alternatively, we can use prior information to explain penalty
terms from the perspective of Bayesian inference. The per-
formance of multi-task regression (5) depends on both the
efficiency of optimization and the learning ability. We will
show later the optimization algorithm and efficiency of the
MoT-based regression.

Multi task learning focuses on the sharing of informa-
tion or model structure, that is, the model space of each task
is not independent. The correlation between different tasks
can be reflected in many aspects, such as the commonness
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of regression function, the distribution of noises and so on.
However, the noise’s type and intensity of different tasks
may be different, which can not be well described by using
a simple distribution. We are therefore motivated to use a
mixture distribution.

III. MoT BASED TASK REGRESSION
A. MoT BASED SINGLE-TASK REGRESSION (MoT-STR)
We assume the noise term ε in model (1) follows an MoT
distribution with pdf

p(ε) =
K∑
k=1

πk t(ε|0, σ 2
k , ν), (7)

where K is the number of components in the mixture distri-
butions, t(ε|0, σ 2

k , ν) stands for the pdf of t-distribution with
zero mean, scale parameter σ 2

k and degrees of freedom ν, πk
is the mixing proportion under the constraint

∑K
k=1 πk = 1

(πk > 0).
The log-likelihood of training data is

L(ε|2) =
n∑
i=1

log(
K∑
k=1

πk t(εi|0, σ 2
k , ν)), (8)

where2 = {π1, . . . , πK , σ 2
1 , . . . , σ

2
K , ν,w, b} is the param-

eter set. Unfortunately, the calculation of MLE directly
through (8) is intractable. One problem is the optimization
does not have a closed form solution. Another problem comes
from the computation complexity of the high-dimensional
map function.

To address the first problem, we propose to use an EM
algorithm. We introduce a latent component indicator zi =
(zi1, . . . , ziK )> such that

zik =

{
1, if noise εi comes from component k,
0, otherwise.

Then, we have an equivalent hierarchical structure of the
noises as

εi|ui, zik = 1
ind
∼ N(0, σ 2

k /ui),

ui
iid
∼ 0(ν/2, ν/2),

zi
iid
∼ Multinomial(1,π ), i = 1, . . . , n, (9)

whereπ = (π1, . . . , πK )>. The hierarchical structure (9) will
help us to develop an efficient EM algorithm which will be
detailed next.

To address the second problem, we use the Lagrangian
multiplier method in the optimize step through a kernel func-
tion. Since the map function always appears as ϕ(x)>ϕ(x),
we can replace the calculation by a kernel function

K (x, y) = ϕ(x)>ϕ(y). (10)

We therefore don’t have to specify each map function. In this
paper, we employ the popular Gaussian radial basis function
(RBF) kernel K (x, y) = exp(− ‖x−y‖

2

2σ 2
).

The log-likelihood of the complete data Dc =

{εi, ui, zi}ni=1 is given by

l(2|Dc) =
n∑
i=1

K∑
k=1

zik{logπk + log p(ui; ν)

+
1
2
log ui −

1
2
log(2πσ 2

k )−
1

2σ 2
k

uiε2i }, (11)

where p(ui; ν) is the pdf of ui which follows the distribution
0(ν/2, ν/2).
E-step: Let 2(t) be the current estimation of 2 in the t-th

step. We calculate the Q-function by

Q(2|2(t)) =
n∑
i=1

K∑
k=1

γ
(t)
ik [logπk −

1
2
log σ 2

k ]

−

n∑
i=1

K∑
k=1

η
(t)
ik
ε2i

2σ 2
k

, (12)

where

γ
(t)
ik = E(zik |εi,2(t)) =

πk t(εi|0, σ 2
k , ν)∑K

k=1 πk t(εi|0, σ
2
k , ν)

∣∣∣
2(t)
, (13)

and

η
(t)
ik = E(uizik |εi,2(t)) = γ (t)

ik
(ν + 1)σ 2

k

νσ 2
k + ε

2
i

∣∣∣
2(t)
. (14)

M-step: Maximizing Q(2|2(t)) with respect to2, we can
update the estimate2(t+1) by

π
(t+1)
k =

1
n

n∑
i=1

γ
(t)
ik , (15)

σ
2(t+1)
k =

∑n
i=1 η

(t)
ik ε

2(t)
i∑n

i=1 γ
(t)
ik

, k = 1, . . . ,K . (16)

Following the ECME algorithm [30], the degree of free-
dom ν can be updated in 2 alone from its marginal log-
likelihood, i.e.

ν(t+1) = argmax
ν

n∑
i=1

log{
K∑
k=1

π
(t)
k t(ε(t)i |0, σ

2(t)
k , ν)}. (17)

Alternatively, we may update ν together with other parame-
ters in the EM algorithm [11], [12], i.e.

ν(t+1) = argmax
ν

n∑
i=1

E(log p(ui; ν)|εi,2(t)). (18)

The regression coefficientsw and the bias b can be obtained
by minimizing the following objective function

min
w,b

λ

2
‖η � ε‖22 +

1
2
‖w‖22,

s.t. y = B>w+ b1n + ε, (19)

where η = (η1, . . . , ηn)> is weight vector with ηi =√∑K
k=1

ηik
2σ 2k

, � means the Hadamard product.
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Similar to LS-SVM, we employ Lagrange multiplier
method to solve the optimization problem (19). The
Lagrangian function can be expressed as

L(w, b, ε,α) =
λ

2
‖η � ε‖22 +

1
2
‖w‖22

−α>(ε − y+ B>w+ b1n), (20)

where α = (α1, α2, . . . , αn)> ∈ Rn is a vector consisting
of Lagrange multipliers. According to the KKT conditions,
the solution of the problem (19) is determined by solving the
linear equations

∂L
∂w
= 0 H⇒ w = Bα

∂L
∂b
= 0 H⇒ α>1n = 0

∂L
∂ε
= 0 H⇒ diag(ε) = λ−1diag(η)−2diag(α)

∂L
∂α
= 0 H⇒ ε − y+ B>w+ b1n = 0.

(21)

By eliminating w and ε, one can obtain the solution by the
following linear system[

0 1>n
1n H

] [
b
α

]
=

[
0
y

]
, (22)

where H = K + λ−1diag(η)−2, K = B>B is defined by
the kernel function with elements kij = K (xi, xj). Let the
solution of (22) be b∗ and α∗. Then the regression function
is obtained as

f̂ (x) = ϕ(x)>Bα∗ + b∗ =
n∑
j=1

α∗j K (x, xj)+ b∗. (23)

Finally, the residuals ε can be updated by

ε
(t+1)
i = yi − f̂ (xi)

∣∣
2(t) , i = 1, . . . , n. (24)

Algorithm 1 summaries the learning procedure of
MoT-STR.

B. MoT BASED MULTI-TASK REGRESSION (MoT-MTR)
Suppose the error term εij in (5) follows the MoT distri-
bution (7). The hierarchical structure of model (5) can be
expressed as

εij|uij, zijk = 1
ind
∼ N(0, σ 2

k /uij),

uij
iid
∼ 0(ν/2, ν/2),

zij
iid
∼ Multinomial(1,π ),

j = 1, . . . ,m, i = 1, . . . , nj, (25)

where zij = (zij1, . . . , zijK )>.
The log-likelihood of the complete data Dc =

{εij, uij, zij|j = 1, . . . ,m, i = 1, . . . , nj} is given by

l(2|Dc) =
m∑
j=1

n∑
i=1

K∑
k=1

zijk{logπk + log p(uij; ν)

+
1
2
log uij −

1
2
log(2πσ 2

k )−
1

2σ 2
k

uijε2ij}. (26)

Algorithm 1 Learning Procedure of MoT-STR
Training
Input:
1. Training data {xj, yj}nj=1;
2. Number of mixing components K ;
3. Hyperparameters λ, σ 2.
Output:
1. Optimal parameters of MoT ν, πk , σ 2

k (k = 1, . . . ,K );
2. Optimal parameters of STR b, α;
{Step 1} Initialize parameters ν, πk , σ 2

k (k = 1, . . . ,K );
{Step 2} while ‖αnew − αold‖ > threshold do

Calculate γik and ηik by Eq. (13) and (14);
Update πk , σ 2

k by Eq. (15) and (16);
Update ν by Eq. (17) or (18);
Update the solution b, α of Eq. (22);
Update the regression function f (x) by

Eq. (23);
Update the error term ε by Eq. (24).

Testing
Input: x∗, b, α, σ 2.
Output: Calculate y∗ by Eq. (23).

Similar to the derivation process of single-task, we update
the parameters2 by

π
(t+1)
k =

∑m
j=1

∑nj
i=1 γijk∑m

j=1 nj

∣∣∣
2(t)
, (27)

σ
2(t+1)
k =

∑m
j=1

∑nj
i=1 ηijkε

2
ij∑m

j=1
∑nj

i=1 γijk

∣∣∣
2(t)
, (28)

where

γijk = E(zijk |εij) =
πk t(εij|0, σ 2

k , ν)∑K
k=1 πk t(εij|0, σ

2
k , ν)

, (29)

ηijk = E(zijkuij|εij) = γijk
(ν + 1)σ 2

k

νσ 2
k + ε

2
ij

. (30)

The regression coefficients wj’s and the biases bj’s could
be obtained by minimizing the following objective function
with constraints

min
wj,bj

λ

2

m∑
j=1

‖ηj � εj‖
2
2 +

1
2

m∑
j=1

‖wj‖22,

s.t. yj = B>j wj + bj1nj + εj, j = 1, . . . ,m, (31)

where ηj = (η1j, . . . , ηnj,j)
> with ηij =

√∑K
k=1

ηijk

2σ 2k
.

In the objective functions (19) for MoT-STR and (31) for
MoT-MTR, η are the weight of noise ε. From (14) and
(30), η is inversely proportional to the noise under the
t-distribution. Therefore, MoT based learning can adaptively
reduce the influence of outliers.
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The Lagrangian function for the problem (31) is

L({wj}mj=1, {bj}
m
j=1, {εj}

m
j=1, {αj}

m
j=1)

=
λ

2

m∑
j=1

‖ηj � εj‖
2
2 +

1
2

m∑
j=1

‖wj‖22

−

m∑
j=1

α>j (εj − yj + B
>
j wj + bj1nj ), (32)

where αj = (α1j, α2j, . . . , αnj,j)
>’s consist of the Lagrange

multipliers. According to the KKT conditions, we need to
solve the linear equations (j = 1, . . . ,m)

∂L
∂wj
= 0 H⇒ wj = Bjαj

∂L
∂bj
= 0 H⇒ α>j 1nj = 0

∂L
∂εj
= 0 H⇒ diag(εj) = λ−1diag(ηj)

−2diag(αj)

∂L
∂αj
= 0 H⇒ εj − yj + B

>
j wj + bj1nj = 0.

(33)

Eliminating {wj}mj=1 and {εj}
m
j=1, one can deduce the linear

system [
0 A>

A B̃

] [
b̃
α̃

]
=

[
0
y

]
, (34)

where y = (y>1 , . . . , y
>
m)
>, b̃ = (b1, . . . , bm)>, α̃ =

(α>1 , . . . ,α
>
m)
>, A = blockdiag(1n1 , . . . ,1nm ), B̃ =

blockdiag(K1 + λ
−1diag(η1)

−2, . . . ,Km + λ
−1diag(ηm)

−2)
and K j = B>j Bj is defined by the kernel function with
elements ksl,j = K (xsj, xlj).
Let the solution of (34) be b̃∗ and α̃∗. Then the regression

function is obtained as

f̂j(x) = ϕ(x)>Bjα∗j + b
∗
j =

nj∑
i=1

α∗ijK (x, xij)+ b∗j . (35)

Hence, the residuals εj’s can be updated by

ε
(t+1)
ij =yij− f̂j(xij)

∣∣
2(t) , j=1, . . . ,m, i = 1, . . . , nj. (36)

The specific learning procedure of MoT-MTR is similar to
Algorithm 1, but the corresponding updating formulas should
be replaced by the ones above.

IV. EXPERIMENTS
In this section, we study the performance of the MoT-STR
and MoT-MTR using several synthetic data sets and bench-
mark data sets. The regularization parameter λ and the kernel
parameter σ 2 is obtained by grid search from the set {2i|i =
−8,−6, . . . , 0, . . . , 6, 8}. The mean absolute error (MAE)
and the root mean square error (RMSE) are used to evaluate
the effectiveness of all models.

A. SYNTHETIC DATA FOR SINGLE TASK
The first synthetic data is generated from the sinc function

f (x) =
sinπx
πx

, (37)

where 100 training points, together with 100 test points of
x are randomly selected from the interval [−3, 3]. To inves-
tigate the robustness, one tenth of the training data are ran-
domly selected and the response y values aremultiplied by 10.
Those data can be treated as outliers. In the same time,
half of the training data are contaminated by different types
of noises. The descriptions of all types of noises are listed
in Table 1.

TABLE 1. Descriptions of all types of noises on synthetic data for STR.

The test data is outlier-free and noise-free. The SVM,
LS-SVM [27], WLS-SVM [31], MoG-STR [21] and the pro-
posed MoT-STR are employed for comparisons. The MAE
and RMSE on test data are averaged on 5 trails and listed
in Table 2. It shows that the performance of MoT-STR is
significantly better than other models. It can largely improve
the accuracy of estimation in terms of MAE or RMSE.
Figure 1 show estimation curves of the sinc function under
the WLS-SVM, MoG and the proposed model. We find that
the WLS-SVM doesn’t perform well in most of the cases
especially in the areas near the extreme points and the tails.
The MoG performs a bit better, but the MoT improves the
results significantly in all the cases.

To evaluate the robustness of our model under distribu-
tion misspecification, 20, 40, 60, 80 and 100 percent of ran-
domly selected training data are contaminated respectively
in the case 2 noises. We also average the values of MAE
and RMSE under LS-SVM, WLS-SVM, MoG and MoT
on 5 trails. The results are presented in Figure 2. We can
clearly see that as the rate of noises increases, the perfor-
mance of all models is deteriorated as expected, but MoT
performs much better than the others. MoT-STR is therefore
the best choice in the presence of outliers or distribution
misspecification.
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FIGURE 1. The estimated curves of the sinc function under six types of noises.
(a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, (f) case 6.

TABLE 2. Results of STR on synthetic data.

FIGURE 2. The predicted errors of STR on synthetic data with case 2
noises.

B. REAL DATA FOR SINGLE TASK
Next, we use some real data sets for comparison. The data
sets include Waterdynamic, Computer Hardware, Forecast,
Slump from UCI repository, and Bodyfat from Statlib collec-
tion. Descriptions of all data sets are shown in Table 3. For
each data set, the input and target variables are normalized

TABLE 3. Descriptions of all real data sets for STR.

TABLE 4. Results of STR on real data sets.

into the interval [0, 1]. Synthetic outliers are added into the
training set by the same method in Section IV-A. The random
noises of Bodyfatlap are generated by Laplace distribution
LA(0, 0.15), whereas the noises of Bodyfatmix are generated
by the mixtures of LA(0, 0.15) and N(0, 0.152) distributions.
Table 4 lists all the results under different models. SVM

and LS-SVM are clearly ineffective to cope with contami-
nated data. WLS-SVM, MoG and MoT improve the results
significantly, and overall MoT provides the best results.
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C. SYNTHETIC DATA FOR MULTI-TASK
We firstly focus on comparing the performance of MoT and
MoG in multi-task learning. We construct data under two
scenarios. In the first scenario, the inputs of all samples
are randomly selected from the interval [0, 2π ], the corre-
sponding outputs in two tasks come from the following two
functions

f1(x) = sin x + cos x, f2(x) = sin x − cos x. (38)

200 samples are generated for training and 20 samples for
testing. In all tasks, we randomly select one tenth points
and shift their outputs by 50 and contaminate all the points
by mixture noises 4/5 t(0, 0.05; 4) + 1/5 t(0, 0.25; 4). In
the second scenario, the outputs in three tasks come from the
functions

fj(x) = sin x + cos(3x)/3+ τj(x), j = 1, 2, 3, (39)

where τj(x)’s are generated by Gaussian process using covari-
ance kernel

κ(xa, xb) = v exp{−w(xa − xb)2/2}, (40)

with v = 0.04 andw = 1. Each task has 100 samples for train-
ing and 100 samples for testingwhich are randomly generated
from the interval [0, 2π ]. In the 100 training data of each task,
we randomly select two samples as outliers by times their
outputs by 10. We also contaminate 20 samples by mixture
noises 1/3 t(0, 0.16; 4)+ 1/3LA(0, 0.64)+ 1/3N(0, 1).

FIGURE 3. The estimated curves of MTR in Scenario 1. (a) f1(x), (b) f2(x).

FIGURE 4. The estimated curves of MTR in Scenario 2. (a) f1(x), (b) f2(x),
(c) f3(x).

The estimated curves in Scenario 1 and Scenario 2 are
presented in Figures 3 and 4 respectively. Both show that the
estimated curves under MoT are closer to the true curves than
those under MoG. Table 5 show the numerical results on test
data. Compared with MoG, MoT can reduce the estimation
error by about 50% in both scenarios. It shows the robustness
of MoT against outliers and data contamination.

TABLE 5. Results of MTR on synthetic data in Scenario 1 and 2.

One of the major advantages of multi-task learning is its
ability of sharing information across different tasks via the
structural expression of the tasks and the error composition.
We now investigate the performance MoT-MTR in two sce-
narios. In Scenario 3, the inputs of 120 training samples are
selected from the interval [−10, 10], where the corresponding
outputs are computed by the following two functions

f1(x) = sin x + cos(3x)/3,

f2(x) = sin x + cos(3x)/3+ x/3. (41)

To investigate complementary information sharing from other
tasks, 100 points of x for task 1 are randomly selected from
the interval [−10, 0] while the other 20 points from [0, 10];
while the data points for Task 2 are the opposite, i.e. 20 from
[−10, 0] and 100 from [0, 10]. The x of 100 test data are all
randomly selected from [−10, 10]. In Scenario 4, the func-
tions in three tasks are the same as those in Scenario 2. The
training inputs of the tasks are sparsely located in [−1, 9]
except the first one. Specifically, task one have 120 training
samples while task 2 and task 3 each have only 20 training
samples.

TABLE 6. Results of MTR on synthetic data in Scenario 3 and 4.

The estimated curves in Scenario 3 and Scenario 4 are
shown in Figure 5 and Figure 6 respectively, and the numer-
ical results for test data are listed in Table 6. In Scenario
3, the two tasks can borrow information from each other
since the sparse sample locations of the two tasks are com-
plementary. Compared with the MoT-STR (i.e. treat each
task separately), the MoT-MTR can reduce the prediction
error by about 40%. In Scenario 4, the last two tasks can
share information each other and borrow information from
the first task. Consequently, the MoT-MTR can reduce the
prediction error by about 20%. Therefore, the MoT-MTR has
clear advantages over the MoT-STR through communication
among tasks.
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FIGURE 5. The estimated curves of MTR in Scenario 3.

FIGURE 6. The estimated curves of MTR in Scenario 4.

TABLE 7. Descriptions of all real data sets for MTR.

D. REAL-WORLD DATA FOR MULTI-TASK
The real data for multi-task include the Polymer, EDM,
Slump and Traffic data. These data are taken from ftp://ftp.
cis.upenn.edu/pub/ungar/chemdata/, http://mulan.source
forge.net/datasets-mtr.html, UCI repository, and http://tris.
highwaysengland.co.uk respectively. The descriptions of all
data are shown in Table 7. For the convenience of selecting
penalty parameters λ and kernel parameters σ 2, both the input
variables and the target variables are standardised into the
interval [0, 1]. We synthesise outliers for randomly selected
one fifth data points from the training set by increasing their
values of outputs by 10 times. The noises added to the one
tenth of training samples from LA(0, 0.15). The experiment
results are shown in Table 8.

Table 8 shows clearly that the proposed model MoT-MTR
performs much better than MoG-MTR in the presence of
outliers and contaminations for multi-tasking data.

E. COMPUTATIONAL COMPLEXITY AND LEARNING CURVE
For single task regression, the computational complexity of
SVM regression is O(n3), where n stands for the sample
size. The complexity of both MoG-STR and MoT-STR is

TABLE 8. Results of MTR on real data sets.

FIGURE 7. Running time of three regression models under different
training sample sizes.

O(n3+Kn), whereK is the number ofmixed components. The
airfoil data from UCI repository is used in this subsection.
The total sample size is 1500, in which, 1000 of them are used
for training and remaining 500 for testing. Figure 7 shows
the running time of SVM, MOG and MoT under different
training sample sizes. It shows how the running time in each
iteration increase with the sample size. The MoT has no
obvious disadvantage in running time compared with other
models even if the sample size increases to 1000. For multi-
task regression, we suppose that there are m tasks and all
tasks have n samples together. The computational complexity
of SVM regression is O((m + n)3). MoG will increase com-
plexity aboutO(Kn), while MoTwill increase anotherO(Kn).
Because the number of K is far less than m and n, the total
complexity of MoT-MTR is still O((m + n)3). When n or m
is large, Nyström method [32], Krylov method [33] or others
can help to reduce the amount of computation burden.

we now perform a study on convergence speed through
learning curve. The WLS-SVM, MoG and MoT are three
candidates for comparison. Figure 8(a) shows the predic-
tive RMSEs of the three models under different sizes of
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FIGURE 8. Learning curves of three regression models.

training samples. As the size of training samples increases,
the RMSEs of all models decrease as expected. The RMSEs
ofMoT is slightly smaller than those ofMoGunder all sample
sizes. The curves ofWLSSVMand twomixedmodels cross at
about 500, meaning that the mixed models have advantages
in this case when the training sample sizes become larger.
Furthermore, we randomly choose half of the training sam-
ples and contaminate them by mixtures noises 1/2LA(0, 8)+
1/2t(0, 8; 4). Figure 8(b) shows the learning curves for the
contaminated data. Under all sample sizes, the RMSEs of
WLS-SVM is clearly larger than those of the two mixed
model, and MoT has the smallest RMSEs among all the
candidates. Overall, MoT is very competitive particularly for
contaminated data.

V. CONCLUSION AND FUTURE WORK
Finite mixture distributions or models are particularly effec-
tive in modeling multi-structures or complex noises data.
In this paper, we established a loss function (via likelihood)
based on the mixture of t-distributions, and developed esti-
mation procedures using EM algorithms, for both single
and multi task learning. The robustness of the regression
models are greatly improved due to the heavy-tailed feature
of t-distribution and the flexibility of the mixture structure.
Although only the regression problem on task learning is
discussed, the classification problem could be studied from
a similar perspective.

We need to select the number of components in mix-
ture models. In our work, it was handled by model selec-
tion criteria under the framework of likelihood. A penalized
method [34] was proposed to simultaneously select the num-
ber of mixing components and estimate the mixing propor-
tions with other unknown parameters of mixture regression
model. Future work on relevant research in the field of task
learning needs to be considered.

For statistical learning based on t-distribution, the robust-
ness is related to the degree of freedom ν. Generally speaking,
the robustness of the model and the corresponding inferences
could be increased gradually as ν decreases. For real data,
we need to find the appropriate value of ν to keep the balance
between the goodness of fit and robustness. In our model,
the degree ν can be updated with other parameters in each
iteration step, or be estimated through marginal likelihood.

Based on our experience, the estimate of the degree of free-
dom ν may be unreliable in three ways: ν̂ is very small, ν̂ is
large, or ν̂ is unstable. Possible reasons for these three cases
are respectively, (1) the data has extreme outliers, (2) the data
has a near normal distribution, and (3) the sample size is not
sufficiently large. For the cases (1) and (3), we may pre-fixed
the values of ν (e.g. ν = 4) [35], and choose it by BIC,
cross validation or other criteria; for the case (2), when the
estimation of ν is quite large, say larger than 100, the accuracy
of ν is no longer important, since the underline distribution is
very close to the normal distribution. In order to reduce the
computational burden, we can limit the value of ν in a certain
range, e.g., [2, 100] in practice. The parameter of interest in
task learning isw, and ν is a nuisance parameter. The accuracy
of the nuisance parameters’ estimation has limited influence
to the whole learning procedure based on our experience.

For mixture model and other models with latent variables,
the EM algorithm is popular on the calculation of the MLE
since conditional likelihood or distribution can be simplified
via the hierarchical structures of the models. When the con-
ditional distribution of latent variables is complex, we may
use Bayesian approach through Markov chain Monte Carlo
(MCMC). However, MCMC usually converges slowly and is
very time consuming. The hierarchical likelihood [36] and
variational inference [37] could be explored on task learning,
which respectively, estimates the latent variables directly and
approximates the posterior densities through optimization.
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