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ABSTRACT A variety of reinforcement learning (RL) methods are developed to achieve the motion control
for the robotic systems, which has been a hot issue. However, the performance of the conventional RL
methods often encounters a bottleneck, because the robots have difficulty in choosing an appropriate action
in the control task due to the exploration-exploitation dilemma. To address this problem and improve the
learning performance, this work introduces an experience aggregative reinforcement learning method with a
Multi-Attribute Decision-Making (MADM) to achieve the real-time obstacle avoidance of wheeled mobile
robot (WMR). The proposed method employs an experience aggregation method to cluster experiential
samples and it can achieve more effective experience storage. Moreover, to achieve the effective action
selection using the prior experience, an action selection policy based on a Multi-Attribute Decision-Making
is proposed. Inspired by the hierarchical decision-making, this work decomposes the original obstacle
avoidance task into two sub-tasks using a divide-and-conquer approach. Each sub-task is trained individually
by a double Q-learning using a simple reward function. Each sub-task learns an action policy, which enables
the sub-task to selects an appropriate action to achieve a single goal. The standardized rewards of sub-
tasks are calculated when fusing these sub-tasks to eliminate differences in rewards for sub-tasks. Then,
the proposed method integrates the prior experience of three trained sub-tasks via an action policy based
on a MADM to complete the source task. Simulation results show that the proposed method outperforms
competitors.

INDEX TERMS Reinforcement learning, experience aggregation, multi-attribute decision-making, obstacle
avoidance, wheeled mobile robot.

I. INTRODUCTION
A. WHEELED MOBILE ROBOTS
Wheeled mobile robots are widely used in the complex tasks
for civil or industrial occasions due to its flexibility and the
capacity of faster motion than traditional industrial robots [1],
[2]. Obstacle avoidance is an important issue for the practical
use of wheeled mobile robots [3], [4]. Obstacle avoidance
behavior allows a WMR to move between its current and
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target positions without any collision within the task environ-
ment, an effective motion planning method is a treatment. An
obstacle avoidance scheme generates a collision-free path to
achieve a defined robotic task, such as navigation.

B. REINFORCEMENT LEARNING FOR ROBOTICS
Reinforcement learning is a type of machine learning method
for intelligent robots, which allows the robots to automati-
cally discover the environment via a trial-and-error approach
[5]. In the learning process, the robot constantly interacts with
the task environment to get the optimal policy that maximizes
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the long-term reward. Receiving feedback from the environ-
ment is a key approach to acquire learning experience that
optimizes the strategy when performing a task. The strategy,
also known as the action policy, chooses an appropriate action
based on the current state perceived by the learning agent.

Based on the Markov feature of the physical environ-
ment, the definition of reinforcement learning can be framed
in an infinite Markov Decision Process (MDP). In the RL
domain, three means are commonly used to handle complex
tasks. A dynamic programming approach is developed to
address the task by driving the robot to learn the relevant
MDP model [6]. These methods are called model-based
approaches. Another approach is the model-free method,
such as the Q-learning, which uses the value function or
policy function to generate the actions. The last approach
is the Dyna method, which combines the advantages of the
former two methods [7].

C. THE EXPLORATION-EXPLOITATION DILEMMA
IN OBSTACLE AVOIDANCE TASK
It is well known that the RL based robotic systems inevitably
encounter the inherent exploration-exploitation dilemma of
reinforcement learning [8], [9]. Robots explore the unknown
environment via an exploration strategy that guides it to col-
lect new learning experiences. To get the greatest discounted
cumulative reward, an appropriate method is needed to deter-
mine an action that balances the opportunity to exploit prior
experience and to collect brand-new experience samples. It is
inefficient that the robots explore for a long period and even
the experience samples are not well collected. Moreover, it is
crucial to improve the storage efficiency of the experience
samples in the high-dimensional spaces. Experience aggre-
gation is a good solution [10]. Especially, high computational
complexity is a choking problem when robots utilizing expe-
rience samples in a continuous large-scale space.

Previous researchers working in the obstacle avoidance
tasks utilize the probabilistic exploration method to balance
the exploration-exploitation, such as the epsilon-greedy [11].
A robot is guided by the epsilon-greedy strategy to finish the
exploration with the fixed probability of ε and to achieve the
exploitation with the prior experience in other 1−ε. However,
the training time for the epsilon-greedy strategy is propor-
tional to the scale of state space and action space [12], [13].
Another common method for exploration-exploitation is the
Boltzmann exploration strategy [14]–[16]. The Boltzmann
exploration strategy guides a robot to select an action with
a probability depending on the value function and a tempera-
ture function restrains the confusion of action selection. With
the increase of the temperature, the uniformity of the selection
of action is also increasing. Conversely, when the temperature
is low, the action with the maximum value function is almost
one selected.

Recently, exploration guided by an intrinsic motivation
for RL based robot task has extensively investigated by
researchers [17]. Jiahui Zhang et.al proposed an exploration
strategy using curiosity to achieve obstacle avoidance and

end-to-end navigation in an unfamiliar environment [18]. The
intrinsic motivation strategy does not require accurate sensors
to construct a map of the environment. In fact, not only
the intrinsic motivation, Thompson sampling, and parameter
space exploration have been used as a mechanism by scholars
to achieve obstacle avoidance [19], [20]. An effective trade-
off between exploration-exploitation is an important way to
improve the control performance of robots.

D. MULTI-ATTRIBUTE DECISION-MAKING
It is a common issue in real life that decision-makers make
a wise decision when faced with multiple factors and it is a
case of multi-attribute decision-making [21]. These factors
can be regarded as evaluation criteria to evaluate a scheme
and the decision-makers usually adopt the best scheme with
the highest evaluation. Considering the numerical values of
the related factors, the decision-makers need to rank multiple
attributes to get a decision-making result using the prior expe-
rience [22]. For the multi-attribute decision-making problem,
a common and effective method is the ordered weighted
averaging (OWA) operator [23]. Previous works employ a
MADMmethod to improve the performance of reinforcement
learning systems [24]. In practice, the learned policy of mul-
tiple learners serves as the prior experience and the action
space acts as the scheme set. A potential solution provided by
the MADM for the obstacle avoidance tasks to use the prior
experience gathered from multiple learners.

E. RESEARCH GAPS
In the obstacle avoidance tasks, for the dilemma of explo-
ration and exploitation, previous works develop a variety of
exploration strategies without considering the structure of
a task [25], [26]. For a specific task, conventional meth-
ods show weakness in the efficiency of collecting learn-
ing experience compared with the parallel training method
with multi-learners, such as Asynchronous Advantage Actor-
Critic method [27], [28]. Prior experience can be utilized
to inform the robot to conduct effective exploitation that
selects an appropriate action in scenarios. Therefore, it is
important to investigate how to determine an approach to the
exploration-exploitation dilemma, in terms of the efficiency
of the collection and utilization of prior knowledge.

In the process of exploration and exploitation, for the
challenge of storing the collected experience samples, con-
ventional methods are inefficient in high-dimensional space.
Even, most previous works have not focused on how to store
prior experience efficiently, so it is very difficult to utilize a
large number of prior experiences.Meanwhile, efficient expe-
rience storage can also improve the efficiency of exploitation.

F. RESEARCH METHODS
In this study, to fill the gaps mentioned above for exploration-
exploitation in obstacle avoidance tasks, three ways are used
as follows. Expanding prior experience for exploitation using
a divide-conquer approach, storing the prior experience using
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experience aggregation, and developing an action policy uti-
lizing the prior experience of trained sub-tasks.

Firstly, to achieve the first way, this study introduces an
effective approach to exploration and this method collects
experience samples in a divide-conquer way. The original
task is decomposed into several sub-tasks and these sub-
tasks are trained by a double Q-learning [29]. The source
of prior experience is expanded by multi-learner parallel
learning, but the original method does not. Secondly, an expe-
rience aggregation method is employed to store the learning
experience instead of the tabular method. The experience
aggregationmethod classifies similar experience samples and
simultaneously builds a decision-tree structure [30] to store
the experience of these sub-tasks. Thirdly, to achieve the
third way, this study developed an action policy using the
MADMand experience aggregation, which regards the action
space as the scheme set and regards the value functions from
trained sub-tasks as attributes for these schemes. TheMADM
method is utilized to compute the evaluation value for each
scheme, instantaneously. Then, the robot selects the action
corresponding to a maximum evaluation value. In the fusion
process of these sub-tasks, the standardization method for
rewards of sub-tasks is proposed and the average value for
standardized rewards is used to act as the current reward
for the original task.

G. CONTRIBUTIONS IN THIS WORK
The main contributions are as follows.

1) For the original obstacle avoidance task, a divide-and-
conquer approach is employed to decompose the source
task into several sub-tasks. Then, a double Q-learning is
used to train these sub-tasks respectively. Multi-learner
parallel training can expand the source of prior experi-
ence for exploration.

2) An experience aggregation method is developed to store
prior experience using a decision-tree. This method can
cluster experiential samples depending on the similarity.

3) To address the exploration-exploitation in the obstacle
avoidance task, this work proposes an action policy
with experience aggregation and a MADM. This action
policy determines an action depending on the learned
experience of these sub-tasks.

H. ARTICLE STRUCTURE
The organization of this work is as follows. Section II presents
the background and describes the classical Q-learning,
the epsilon-greedy strategy, and Multi-Attribute Decision-
Making. Section III presents a reinforcement learning model
for obstacle avoidance and a training method for sub-
tasks using a double Q-learning. Section IV presents an
experience aggregation method and an action policy with
Multi-Attribute Decision-Making. A standardized method
for rewards obtained by each learner is introduced in this
section. Section V presents the whole framework for the
proposed method. Experiments are conducted to demonstrate

FIGURE 1. The framework for reinforcement learning.

the effectiveness of the proposed methods in Section VI. The
experiment includes three different simulations. Conclusions
are drawn in the last section.

II. BACKGROUND
A. Q-LEARNING
Reinforcement learning is suitable for a type of robot con-
trol problem in the statistical and control field, and it can
learn how to complete a complex behavior by the feedback
via repeated attempts [31]. An MDP quaternions model is
combined with the Bellman equation to calculate the value
function V (st) to achieve the optimization strategy for the
discrete control problem. The framework for reinforcement
learning is shown in Fig.1.
In Fig.1, the learning agent selects an action at in the state

st , and the current state is transited to the state st+1. Then,
a reward rt is got. The updating law for value function is given
by,

V (st ) = (1−α)V (st )+α (rt+γV (st+1)) . (1)

where α is the learning rate, α ∈ (0, 1], and γ is a discount
factor.

Q-Learning is one of themost popular reinforcement learn-
ing algorithms [32]. Q-Learning uses state-action pair as
the component of the value function. The updating law for
Q-learning is given by,

Q (st , at) = (1−α)Q (st , at)+α [rt+γ maxQ (st+1, at+1)] .

(2)

B. ORDERED WEIGHTED AVERAGING OPERATOR
In real life, a decision scheme often involves multiple
attributes, and these attributes directly affect the quality of
decision results. Therefore, the evaluation values for schemes
are calculated via an aggregation operator derived from the
multi-attribute decision-making theory and the reasonable
measure of attributes improves the scientificity and effective-
ness of a decision-making result. Orderedweighted averaging
(OWA) operator determines the weights for each attribute
according to their importance, which is an effective and easy
to develop among all aggregation operators.
C = (c1, c2, . . . , cn) is a set of original data and Ĉ =

(ĉ1, ĉ2, . . . , ĉn) is the ordered sequence of sequence C sorted
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from large to small. Eq.(3) gives the definition for the OWA
operator.

OOWA(c1, c2, . . . , cn) =
n∑
j=1

ĉjωj (3)

where the weight vector for each attribute is ω =

(ω1, ω2, . . . , ωn) and it satisfies
n∑
j=1
ωj = 1, ωj ∈ [0, 1].

C. THE EPSILON-GREEDY STRATEGY
Exploration gathers the learning experience from the environ-
ment and Exploitation selects the actionwith themost reward.
The RL agent often encounters the exploration-exploitation
dilemma. A renowned strategy in RL systems is epsilon-
greedy, which ensures convergence to an optimal policy in
the limit. For the epsilon-greedy strategy, the robot chooses
available actions greedily with probability 1-ε and chooses
actions randomly with probability ε. The action policy using
epsilon-greedy is shown in Eq.(4).

at =

{
Select action with MaxQ, random() ≥ ε
Randomly select action, random() < ε

(4)

where ε ∈ (0, 1) is a fixed value which is determined with
probability distribution in the actual task.

III. THE TRAINING METHOD FOR SUB-TASKS
USING THE DOUBLE Q-LEARNING
In the training process, sub-tasks are trained by a double
Q-learning separately. A double Q-learning is used to tackle
the problem of traditional over-estimation in reinforcement
learning systems involving the maximization operation and
it is often suggested that this algorithm outperforms the tra-
ditional RL methods [33]. For each sub-task using a double
Q-learning, an alternative double estimator is used to calcu-
late the estimate for the maximum value function and a limit
double Q-learning can converge to the optimal policy.

A. OBSTACLE DETECTION
Firstly, this work introduces a method to achieve the obstacle
detection. To avoid obstacles, we need to calculate the posi-
tion of obstacles in the field of the RGB-D camera’s field of
view. The WMR chooses an appropriate action according to
the perceived position of obstacles to avoid obstacles. In this
work, the bottom center point of the obstacle is selected as
the feature point for the obstacle and a WMR perceives a
time-varying horizontal position of the feature point if the
WMR continues to move. In Fig.2, point A is the center of
the camera and the distance between the RGB-D camera and
the obstacle is represented by AB. β1 is the robot’s field of
vision starting from the horizontal line AB. The point C is
the feature point for the obstacle. The angle between line AB
and line AC is β. Then, we need to calculate the ratio δ of
point C to the height of the image.

FIGURE 2. The positional relation for a WMR and the obstacle.

According to the geometric relationship, the ratio δ can be
calculated by Eq.(5).

δ =
1
2

(
AB tan (β1)+AB tan (β)

AB tan (β1)

)
=

1
2

(
tan (β)
tan (β1)

+1
)

(5)

where the ratio δ is determined in an actual environment.

B. THE RL MODEL FOR OBSTACLE AVOIDANCE OF
WHEELED MOBILE ROBOT
In the work, a double Q-learning stores twoQ functions. State
space and action space for the obstacle avoidance task are
shown in below.

State space includes three parts. The first is the distance
between the MWR and the target, which is discretized into
ND states. The second is the position of the feature for an
obstacle in the image, which is discretized intoNO states. The
third is the angle between the moving direction of the WMR
and the line connecting the obstacle and the WMR, which is
discretized into NA states.
Action space includes five actions, which are forward,

backward, stop, left forward, and right forward.
We focus on two factors to define the reward function,

the distance D from the WMR to the target and the angle
Rad between the moving direction of the WMR and the line
connecting the obstacle and the WMR. Three sub-tasks are
designed for the obstacle avoidance task, which is reaching
the target position faster, not hitting any obstacles, and not
losing the target. Three simple reward functions are defined
for this task.
Sub-Task 1:Reaching the target position faster. The reward

signal for sub-task 1 is shown in Eq.(6).

r = −
(
k×D+

∑N

i=1

|n−p|×Cn
p

−Cnoise

)
(6)

where n is the number of sensors. Cn is the output of the
sensor n. The sensor noise is Cnoise. p and k are constant,
which are determined by the actual situation.
Sub-Task 2: Not hitting any obstacles. The reward signal

for sub-task 2 is shown in Eq.(7), as shown at the bottom of
the next page, where f is a constant.
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Sub-Task 3: Not losing the target. The reward signal for
sub-task 3 is shown in Eq.(8).

r =

{
+2, if don’t lose the target
-10, if lose the target

(8)

The greatest negative reward is given to the WMR if the
WMR loses the target. Conversely, a certain positive reward
is given to the agent to avoid too sparse rewards. If the
WMR loses the target or hits the obstacle, this episode is
terminated and the next episode begins. If the WMR reaches
the target position, this episode is terminated and the next
episode begins.

C. THE TRAINING ALGORITHM FOR EACH SUB-TASK
It is hard to tackle a multi-objective decision-making problem
directly. A divide and conquer approach is a solution to
address this type of problems including obstacle avoidance
[34]. Inspired by the idea of hierarchical decision-making,
this work decomposes the source task into several sub-tasks
[35]. For a source obstacle avoidance task, the prior experi-
ence of the trained sub-tasks is assembled to form an ensem-
ble policy, which guides the agent to select an action for
this complicated task. Each sub-task is trained by a double
Q-learning.

We set two estimators, which are Q1 (st , at) and
Q2 (st , at). In the learning process, we use Q1 (st , at)
to select an action using the maximization operation
argmaxa Q1 (st , a) and use Q2 (st , at) to evaluate the
value function Q2 (st+1, argmaxa Q1 (st , a)) for the selected
action. Then, in the next step, we switch roles for the two Q-
value functions. Only one value function is updated in each
step. The updating law for Q-value functions by Double Q-
learning is given by,

Q1 (st , at) = (1−α)Q1 (st , at)
+α

[
rt+γ maxQ2 (st+1, argmaxa Q1 (st , a))

]
Q2 (st , at) = (1−α)Q2 (st , at)
+α

[
rt+γ maxQ1 (st+1, argmaxa Q2 (st , a))

] (9)

Two estimators, Q1 (st , at) and Q2 (st , at), are treated com-
pletely symmetrically. The training algorithm for each sub-
task using the double Q-learning is given by Algorithm 1.

IV. THE ACTION POLICY WITH THE EXPERIENCE
AGGREGATION AND A MULTI-ATTRIBUTE
DECISION-MAKING
A. THE STANDARDIZED REWARDS FOR EACH SUB-TASK
Each reward function for the sub-task gives the learning agent
using the fusion method a different reward and the standard-
ized rewards are calculated by each learning agent, as shown

Algorithm 1 Training Algorithm Using Double-Q Learning
1. Definition
2. st := Current state
3. at := Current action
4. st+1 := The next state
5. rt := Current reward
6. α:= Learning rate
7. γ := Discount factor
8. Initialization
9. Initialize Q table Q1 (st , at) and Q2 (st , at) arbitrarily
10. Repeat (for each step)
11. Initial the current state s0
12. t ← 0;
13. Repeat(for each step of the episode):
14.
15. Select an action at using policy derived from
Q1 (st , at) and Q2 (st , at) (e.g.,epsilon-greedy)

16. Take action at and observe st+1, and reward rt .
17. Updating the Q-value functions with a certain
probability ξ .

18. If rand < ξ :
19.
Q1 (st , at) = (1−α)Q1 (st , at)

+α
[
rt+γ maxQ2(st+1, argmaxa Q1 (st , a))

]
;

20. Else:
21.
Q2 (st , at) = (1−α)Q2 (st , at)+α [rt

+γ maxQ1 (st+1, argmaxa Q2 (st , a))
]
;

22. st ← st+1
23. t++
24. until St is terminal.

FIGURE 3. Standardization of rewards.

in Fig.3. The standardization of rewards is necessary because
different sub-task receives a different reward.

The number of sub-tasks is m. An episode starts on time
t1. The sub-task k receives a reward rka at time ta. µa is the
average value for the rewards received by all sub-tasks on
time ta. σa is the variance for these rewards at that time. The

r =

−
(
f×Rad+

∑N

i=1

|n−p|×Cn
p

−Cnoise

)
, if don’t hit the obstacle

-100, if hit the obstacle
(7)
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average value and the variance for these rewards are given by,
µa =

∑m

k=1
rka
/
m

σa =

√
1
m
×
∑m

k=1 (

∑m
k=1 r

k
a

m
−rka )2

(10)

Eq.(11) gives the standardized reward Reka of sub-task k .

Reka =
rka−µa
σa

=
rka−

∑m
k=1 r

k
a
/
m√

1
m×

∑m
k=1 (

∑m
k=1 r

k
a

m −rka )2
, k = 1, 2, . . . ,m (11)

At time ta, the average value for these standardized rewards
R̂ea is given by,

R̂ea =
∑m

k=1
Reka

/
m (12)

This average value is given to the source task.

B. EXPERIENCE AGGREGATION IN THE
EXPLORATION PROCESS
In the process of exploration, the prior experience gained by
a mobile robot needs to be stored effectively and an effective
storage method can also improve the efficiency of prior expe-
rience. For tasks completed by divide and conquer, the prior
learning experience mainly collected from these trained sub-
tasks. This paper investigates the storage method for the prior
experience collected by sub-tasks and proposes an experience
aggregation (EA) method using a decision-tree structure.
The decision-tree is used to store the experience samples
to improve search efficiency. This aggregation method can
improve the exploitation efficiency of the prior experience of
these trained sub-tasks for the agent of the source task.

The learning experience of sub-tasks is represented by
quadruples (st , at ,Q1 (st , at) ,Q2 (st , at)). In the process of
experience aggregation, the most similar samples are merged
into similar nodes. At the beginning of a learning pro-
cess, there is only one node, the root node, to represent
the experience aggregation model. The new learning expe-
rience is clustered according to the similarity between the
experience samples, and prior experience will be marked
by clustering. In each iteration, a new experience sample is
compared with the root node. If the current state is simi-
lar, the similarity of the actions is compared. If the actions
are similar, the Q-values corresponding to the similar state
and action are aggregated to the root node. Otherwise, it is
placed in a new child node. When a sub-task is trained, the
Q-values Q1 (si, ai) ,Q2 (si, ai) of the first experience sam-
ple Ei (si, ai,Q1 (si, ai) ,Q2 (si, ai)) forms a root node in the
decision-tree. The initial number of nodes is 1. The next sam-
ple Ej

(
sj, aj,Q1

(
sj, aj

)
,Q2

(
sj, aj

))
is compared with the

existing node using the similarity to determine whether the
sample is stored. State similarity and action similarity are two
parts of similarity calculation. The Jaccard similarity is used
to estimate the similarity between two experience samples.

FIGURE 4. Structure for experience aggregation.

After each cluster, the center of each cluster is represented by
the average value of the samples in this cluster.

The process of the experience aggregation method is
shown in Fig.4. The structure of the decision tree is a binary
tree and each node represents a cluster. The first sample is
treated as the root node of the model. For the next sample,
similarity calculation is performed for the state similarity
between the root node and the new sample. If the similarity
between the states is not satisfied, the sample will enter
the yellow node and perform similarity calculation with the
sample node, and so on. If the similarity between the states
meets the conditions, the similarity of actions is calculated.
If the condition of the similarity of actions is not satisfied,
the sample will enter the red node and then the similarity
with the red node is calculated, and so on. If the similarity
condition is satisfied, the sample and the root node are the
same clusters, and the sample is stored in the root node.
After storing the experience samples, we use st , at as indexes
for each process of getting the experience samples of sub-
tasks. This process uses a step-by-step traversal method.
By comparing the clustering centers, if the similarity between
the index and the clustering center is less than a certain
threshold, then we will search the appropriate samples from
the clustering.

C. ACTION SELECTION USING A MULTI-ATTRIBUTE
DECISION-MAKING
We decompose the source task into several sub-tasks, and
each sub-task is trained in the same way. The learning experi-
ence of each sub-task is stored by an experience aggregation
model. Prior experience of several sub-tasks will expand the
source of prior experience for the source task. At time t,
the Q-values for the current state st corresponding to each
sub-task is regarded as attributes and the available actions
of the learning agent are considered as the schemes. Then,
we use amulti-attribute decision-making approach to develop
an action policy depending on the attributes and schemes.
The Q-values for sub-task u corresponding to the state st
and action at is Q(u) (st , at). Action policy employs a multi-
attribute decision-making method to calculate the evaluation
value of each action, and the action with the maximum
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evaluation value is selected. The number of actions is n
and the action space is A = {a1, a2, . . . , an−1, an}. For
the current state st , the decision-making using Q-values of
trained sub-tasks is shown in (13), as shown at the bot-
tom of this page, where the attributes for the scheme aj is
{Q(1)(st , aj),Q(2)(st , aj)
, . . . ,Q(m−1)(st , aj),Q(m)(st , aj),Q(st , aj)}. The evaluation
value Eq

(
aj
)
of the scheme using a multi-attribute decision-

making method is calculated as follows.
Step 1: Attributes for the scheme aj are ordered

from large to small to get a set of ordered data
{Q[1](st , aj),Q[2](st , aj), . . . ,Q[m](st , aj),Q[m+1](st , aj)}.
Step 2: According to the visibility theory, we calculate the

visibility attributes for each attribute, as shown in Eq.(14).
Eq.(14) gives the visibility attributes {Q[k]

(
st , aj

)
|Vis (j) ,

1 ≤ j ≤ m+1} for an attribute Q[k]
(
st , aj

)
. For any index

f and k from the interval (1,m), it satisfies f < k .

Vis(k) : Q[f ] (st , aj)
≤

(
k−f
k−i

)
×

(
Q[i] (st , aj)−Q[f ] (st , ak)

)
×

(
i,Q[i] (st , aj))+Q[k] (st , aj) ; ∀i < f < k

(14)

Step 3: Eq.(15) gives the weight ωk of the attribute
Q[k]

(
st , aj

)
using its visibility attributes. The final vector for

weights is ω = (ω1, ω2, ω3, . . . , ωm, ωm+1).

ωk =

∑
Q[f ](st ,aj)∈Vis S

(
Q[f ]

(
st , aj

)
,Q[k]

(
st , aj

))
∑m+1

p=1
∑

Q[f ] (st ,aj)∈Vis
S
(
Q[f ]

(
st , aj

)
,Q[p]

(
st , aj

))
=

∑
Q[f ](st ,aj)∈Vis

(
Q[f ](st ,aj)×Q[k](st ,aj)

|Q[f ](st ,aj)−Q[k](st ,aj)|
2

)
∑m+1

p=1
∑

Q[f ](st ,aj)∈Vis

(
Q[f ](st ,aj)×Q[p](st ,aj)

|Q[f ](st ,aj)−Q[p](st ,aj)|
2

) (15)

Step 4: Eq.(16) gives the evaluation value of the action aj.

Eq
(
aj
)

=

∑m+1

k=1
Q[k] (st , aj)×ωj

=

∑m+1

i=k

(
Q[k] (st , aj))

x×

 ∑
Q[f ](st ,aj)∈Vis S

(
Q[f ]

(
st , aj

)
,Q[k]

(
st , aj

))
∑m+1

p=1
∑

Q[f ] (st ,aj)∈Vis
S
(
Q[f ]

(
st , aj

)
,Q[p]

(
st , aj

))


(16)

Finally, the learning agent of the source task selects the
action aj with maximum evaluation value Eq

(
aj
)
. The pro-

cedure for the proposed action policy with a multi-attribute
decision-making method is given by Algorithm 2.

V. THE FRAMEWORK OF THE PROPOSED METHOD
FOR THE OBSTACLE AVOIDANCE OF WHEELED
MOBILE ROBOT
A. THE WHOLE FRAMEWORK FOR THE PROPOSED
METHOD IS SHOWN BELOW
The framework for the proposed method is shown in Fig.5.
The original obstacle avoidance task is divided into three
sub-tasks: Reaching the target position faster, Not hitting
any obstacles, and Not losing the target. The three sub-tasks
have different reward functions. Each sub-task is trained to
convergence by the Double-Q learning algorithm. The learn-
ing experience of each sub-task is stored in each experience
aggregation (EA) model. The learning agent of the source
task uses an experience aggregation model to get the prior
experience, that is, the Q values of the trained sub-tasks.
Then, an action policy with a multi-attribute decision-making
method uses prior experience to select the current action. The
environment gives different rewards to different sub-tasks.
A method of reward standardization standardizes the rewards
of these sub-tasks. The average value of standardized rewards
is the final reward for the learning agent of the source task.

VI. EXPERIMENTS AND ANALYSIS
A. EXPERIMENT ON THE OBSTACLE AVOIDANCE
FOR THE MAZE TASK
In the experimental section, three simulations are used to
demonstrate the effectiveness of the proposed method. In the
first simulation, the robot explores the unknown environment
to learn an optimal policy to guide it from the starting position
to the target position without bumping into any obstacle.
An excellent action policy can guide the robot to reach the
target position faster. The competitors include ε-greedy strat-
egy (ε-greedy) [12], the ε-greedy strategy with an attenuation
threshold (ε-decreasing) [36], [37] and softmax strategy (soft-
max) [32]. The task scenario is a map of square tiles that is
m× n. In the maze environment, the gray squares represent
obstacles. The action includes up, down, left, and right. In this
experiment, the maze is set to 30×30 square tiles and includes
100 square tiles of obstacles.

In each episode, the learning agent collects the experience
sample from the task environment and learns a policy to
reach the target position. The immediate reward is determined

DQ =


Q(1)(st , a1) Q(2)(st , a1) · · · Q(m)(st , a1) Q(st , a1)
Q(1)(st , a2) Q(2)(st , a2) · · · Q(m)(st , a2) Q(st , a2)

...
...

...
...

...

Q(1)(st , an−1) Q(2)(st , an−1) · · · Q(m)(st , an−1) Q(st , an−1)
Q(1)(st , an) Q(2)(st , an) · · · Q(m)(st , an) Q(st , an)

 (13)
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FIGURE 5. The whole framework for the proposed method.

TABLE 1. Experimental parameters.

by the Euler distance between the current position and the
target position. If the next Euler distance is less than the
current one, the learning agent will be rewarded +1. Oth-
erwise, the learning agent will be given a reward -1. If the
learning agent bumps an obstacle, the maximum punish-
ment−100 will be given, and the robot will stay in the current
position. If the learning agent reaches the target position,
the maximum reward+ 100 will be given. If the learning time
for each episode exceeds 2000, this episode is terminated.
The maximum number of episodes is 200. The experimental
parameters for the first experiment are shown in Table 1.

Two different subtasks are set, reaching the target position
faster, and not hitting any obstacles. The experimental results
of four different methods are shown in Fig.6. Fig.6 shows the
trajectories of four different methods. The proposed method
can reach the target position more quickly with the shortest
path. However, the motion paths for the other three methods
are longer. Fig.7 and fig.8 show the number of steps of each
episode and rewards for the four different methods. In Fig.7,
all four methods converge after 200 training. The ε-greedy
method has the largest fluctuation and the longest time step
to reach the target position, after 200 training. Meanwhile,
the proposed method has the minimum fluctuation and the
minimum time step required for each episode, about 80 steps.
The proposed method can make the robot reach the target
position faster and collide with obstacles as little as possible.
In Fig.8, we set the cumulative reward of each episode as
the ordinate and the number of episodes as the abscissa.

FIGURE 6. The trajectories for the four methods in task I.

FIGURE 7. The number of steps of each episode for the four methods.

The proposedmethod obtained the highest cumulative reward
compared with the other three methods. The cumulative
reward of each episode for the proposed method is about
155, after 200 episodes. Similar to the results shown in Fig.7,
the curve of the reward for the proposed method has the
smallest fluctuation.
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Algorithm 2 The Proposed Action Policy Using Double Q
1. Definition:
2. m := The number of sub-tasks
3. n := The number of actions
4. R̂ea: = The average value for standardized rewards
5. Eq(): = Evaluation value for each action
6. α: = The learning rate
7. ε := The threshold value
8. ξ := Another threshold value
9. γ : = The discount value
10. Initialization:
11. Initialize Q1 (st , at) ,Q2 (st , at) randomly
12. Initialize ε, ξ ← 0.9
13. Repeat (for each step)
14. Initialize state st .
15. Repeat(for each step of the episode):
16. Give a random number ran← rand (0, .., 1)
17. If ran < ε then
18. Choose action at randomly.
19. else
20. Get

Q̂ (st , ai) = 1
2 (Q1 (st , ai)+Q2 (st , ai)) ,

i = 1, 2, . . . , n
21. Max{Eq(Q̂, a1),Eq(Q̂, a2), . . . ,Eq(Q̂, an−1),

Eq(Q̂, an)} → at
22. End if
23. Perform action at , and receive rewards from sub-tasks

24. Get the next state st+1.
25. Get the standard reward for each sub-task.
26. Get the average value R̂ea for the standard rewards.
27. Ifran < ξ

28. Get 1Q1 (st , at) = R̂ea+γ maxQ2 (st+1, at+1)
−Q1 (st , at)

29. Q1(st , at ) = Q1(st , at )+α1Q1(st , at )
30. Else
31. Get 1Q2 (st , at) = R̂ea+γ maxQ1 (st+1, at+1)

−Q2 (st , at)
32. Q2(st , at ) = Q2(st , at )+α1Q2(st , at )
33. st ← st+1
34. Until st is terminal.
35. End

The proposed method extends the source of prior expe-
rience using a multi learner parallel learning method, and
an experience aggregation model can store prior experi-
ence more efficiently. The MADM method can guide the
learning agent to make more wise action decisions in the
current environment. In order to further test the effective-
ness of the algorithm, we expand the task scenario model
to 39×36. Similar to the scenario of task 1, a larger scale
scenario will bring more difficulties for the agent to com-
plete the task. The same four methods were tested in this
scenario. The maximum number of episodes is set to 200.
When the robot reaches the target position, the robot will be

FIGURE 8. The reward of each episode for the four methods in task I.

FIGURE 9. The trajectories for the four methods in task II.

FIGURE 10. The number of steps of each episode for the four methods in
task II.

awarded + 10. Otherwise, the robot is rewarded – 1. The
trajectories of the four different methods are shown in Fig.9.
From the experimental results, it can be seen that the tra-
jectory of the proposed method is the smallest. The other
three methods have a relatively long trajectory, among which
the ε-greedy method has the longest trajectory and the most
fluctuation.

In Fig.10, the experimental results show that the proposed
method has the least fluctuation and the least time step to
reach the target, about 86 time steps. Compared with the
other threemethods, the proposedmethod can reach the target
position in less time. The relatively small fluctuation of the
training curve means that the agent can avoid bad actions to
reduce inefficient exploration. The multi-attribute decision-
making method can help the agent choose effective action
for each step. Meanwhile, in Fig.11, the proposed method

VOLUME 8, 2020 108187



C. Hu et al.: Experience Aggregative RL With MADM for Obstacle Avoidance of WMR

FIGURE 11. The reward of each episode for the four methods in task II.

FIGURE 12. The experimental platform for obstacle collisio.

TABLE 2. Experimental parameters.

received the highest reward, about− 71. Effective experience
collection and action selection will help the learning agent get
higher rewards.

B. EXPERIMENT ON WEBOTS SIMULATOR
We designed the experimental environment on the Webots
simulator [38], [39], as shown in Fig.12. As shown in the
experimental scenario, the initial and target positions are set.
There are several obstacles between the initial position and
the target position. These obstacles will hinder the robot from
reaching the target position. We find an optimal path through
experiments, which can ensure the maximum reward and
the minimum loss. The proposed RL method for obstacle
avoidance is used to solve this task. Meanwhile, two methods
are used as the competitors, which are ε-greedy strategy
(ε-greedy) and softmax strategy (softmax).

For this experiment, wewill evaluate the experiment results
from the following three aspects: average reward, the time to
reach the target, and the retention time for obstacle collision.
As explained before, we have compared the performance of
three renowned policies. The experimental parameters are
shown in Table 2.

FIGURE 13. The curve of the average rewar.

FIGURE 14. The curve of the reaching time.

FIGURE 15. The curve of the retention tim.

The average reward is the cumulative reward of the episode
divided by the total time of the episode. We take 100 episodes
that are to reach the target position in the training process.
Fig.13 to Fig.15 shows the experimental results. In Fig.13,
the average reward obtained by the proposed method is the
largest although the reward of this method is not high at the
beginning of the training process. This result is consistent
with experiment one. In the process of training, the perfor-
mance of the ε-greedy method is relatively poor, because it is
difficult to balance exploration and exploitation in complex
tasks with a fixed threshold. Softmax strategy can reduce
the randomness of action selection by temperature function.
In the later stage of learning, the robot will choose actions
based on previous learning experience, so the curve of the
reward will be relatively stable in the later stage. The pro-
posed method enables the robot to collect more experience in
the early stage of learning, while in the later stage, the best
action is selected through the action policy using a MADM
method, and better performance is achieved.

The times for reaching the target for the three methods are
shown in Fig.14. Finally, the three methods are stable with
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continuous training, but the reaching time is different. The
proposed method has the least reaching time, compared with
the other two methods.

Fig.15 shows the robot’s retention time in front of obsta-
cles. Three different methods all have a large retention time,
in the beginning, that is, the robot will stay in front of
the obstacles for a long time. However, with the training,
the retention time of the three methods is decreasing. The
reduction rate of retention time is different for different meth-
ods. The experimental results show that the retention time of
the proposed method decreases the fastest. The experimental
results show that the proposed method can make the robot
learn a better strategy to avoid obstacles.

Several simulation experiments show that the proposed
method has better performance than competitors. Prior expe-
rience can effectively help robots learn the best behavior
strategy. Therefore, the prior experience should be collected
efficiently. Meanwhile, the action policy based on multi-
attribute decision-making can help the robot choose better
actions in a task.

VII. CONCLUSION
In this work, to address the dilemma of exploration and
exploitation for real-time obstacle avoidance, an experience
aggregative method with multi-attribute decision-making is
proposed. An experience aggregation method is developed
to cluster experiential samples. Meanwhile, the method of
expanding the source of prior experience, and the method
of integrating these prior experience are investigated. Firstly,
the source task is decomposed into several sub-tasks. A dou-
ble learning scheme was adopted to train these sub-tasks
separately. A reward standardization method is proposed to
calculate the current reward for the source task. The training
method running several learners in parallel can gain more
prior experience. The experimental results show that the
proposed scheme outperforms the competitors in terms of
learning performance.

For real robots, complex communication modules and
uncertain environmental factors lead to the sample ineffi-
ciency, which is a hot issue at present [40], [41]. In the real
world, the samples are often difficult to be collected effec-
tively and the collected samples often have a lot of uncertainty
[42]. It is difficult to develop an effective experience model,
which also limits the application of reinforcement learning
in a real robotic system. In the future, we will try to extend
the proposed method to real-world systems. A platform
robustness approach is needed to achieve data compatibility
for different real-world platforms. In addition, integrating
the possibility of applying multi-attribute decision-making
in deep reinforcement learning-based systems [43] is also
worthy of study.
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