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ABSTRACT The mobile ad hoc network (MANET) is a kind of dynamic, easy to construct and universal
network, which has been widely concerned by a large number of researchers. Graph theory provides an
effective theoretical tool for MANETSs modeling and analysis. Clustering is one of the most effective methods
to measure network performance with different attributes. This paper gives the basic concept of graph kernel
and discusses the principle of optimizing graph kernel and multi-graph kernel. In this paper, we propose
a Graph Kernel based Clustering Algorithm in MANETs (GKCA). The GKCA algorithm gives the basic
concept of graph kernel, discusses the principle of optimizing graph kernel and multi-graph kernel, and
proposes the basic principle based on d-hop graph kernel. GKCA algorithm uses shortest path (SP) to connect
different cluster head nodes for packet transmission. The performance of GKCA algorithm, such as the
control packets ratio, packets loss ratio, and average end-to-end delay are experimentally evaluated using
network simulation (NS2) software. Experimental analysis shows that the proposed approach is efficient,
and its performance advantage in dynamic mobile networks is promising.

INDEX TERMS MANET, graph kernel, clustering, performance analysis.

I. INTRODUCTION

A mobile ad hoc network (MANET) is an Internet made
up of mobile nodes that are not supported by any base sta-
tions or infrastructure. Due to rapid development, it has been
widely used in many fields such as military and civil [1]-[3].
In MANET, the nodes are mobile and the links are wire-
less. However, the network has many limitations, which
include the transmission capacity of nodes, bandwidth, lim-
ited energy, unpredictable node connections, and many oth-
ers. In order to maximize the data transmission capacity of
MANET and prolong its lifetime, it is necessary to select the
optimal routing and the node with the best performance for
data processing and transmission [1]-[3].

The MANET structure can be divided into distributed net-
work structure and cluster network structure. In distributed
network structure, the roles of all nodes are equal, and the
network topology can be adjusted freely according to the
mobility of nodes. In clustering networks, the selection of
cluster-head node is a key problem. Since the performance of
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cluster-head nodes is better than that of ordinary nodes, which
requires stronger processing capacity and better energy. Thus,
the selection of cluster-head nodes is an important factor in
clustering network. Clustering can overcome routing proto-
col problems, improve data transmission quality, and help
improve network scalability [4]. Clusters in MANET pro-
vide a stable way to connect mobile nodes and allocate
resources efficiently, and provide a network layered envi-
ronment through cluster to ensure the stability of MANET
structure. The main feature of a MANET is that the network
can be connected using a cluster-based hierarchy, while a
larger network can be divided into smaller subgroups [4].

Graph theory provides an effective theoretical knowledge
and technical tool for network modeling and analysis of
Internet networks. Graph theory as an ancient branch of
mathematics. Dating back to the famous Konigsberg’s bridge
problem, Euler proposed an elegant graph theory solution
in 1736 [5]-[7]. Since then, graph theory has been advanc-
ing in a variety of successful applications, from traditional
postman, traffic scheduling to modern Internet, mobile com-
munication, cloud computing, artificial intelligence (AI) and
many others [S]-[7].
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In graph theory, graphs are usually abstracted from real
world problems and can be generated in advance by random
methods. For example, the cornerstone of a timing graph is to
bridge the gap between point-based and period-based seman-
tics, and between time graph traversal and static graph traver-
sal [6]. The famous postman problem [7] can be modeled as
an undirected weighted graph, whose vertices are cities, edges
are roads, and edge weights are road lengths. Therefore, it can
be used for analyzing the valuable attributes hidden in the
graph or mining information patterns, such as small world
events, global optimization, etc. However, for Internet analy-
sis problems, neural network analysis problems, and artificial
intelligence analysis problems, which cannot be solved by
traditional chart analysis. Thus, learning from data is needed
and graph mining learning methods needs to be designed.

This paper reviews the research progress of kernel theory
and clustering protocol. The authors attempt to analyze and
discuss the clustering performance by using the graph kernel
theory, considering the properties between the cluster-head
node and the surrounding node of MANET. The purpose
of this paper is to provide a complete knowledge of graph
kernel theory, as well as the design of clustering algorithm.
Thus, the clustering environment of MANET can be correctly
understood.

The major contributions of our work are as follows:

Firstly, we develop the basic concept of graph kernel, dis-
cuss the principle of optimizing graph kernel and multi-graph
kernel, and put forward a basic principle based on d-hop
graph kernel.

Secondly, we discuss the algorithm of clustering. Com-
bining with the d-hop graph kernel, we propose a Graph
Kernel based Clustering Algorithm in MANETs (GKCA).
GKCA algorithm uses shortest path (SP) to connect different
cluster-head nodes for packet transmission.

Finally, in the simulation environment, the GKCA algo-
rithm is simulated and the simulation results are given. The
key idea of the algorithm is to find the clustering schemes
in the process of cluster-head selection criteria. The control
packets ratio, packets loss ratio, and the average end-to-end
delay are combined evaluation to stability and reliability of
MANET.

This paper is organized as follows: Section II reviews
the research work of MANET and graph kernel. Section III
presents the theory and calculation methods of graph ker-
nel, and the improved graph technique are also given.
In Section IV, we provide multiple graph kernels, prediction
model and GKCA algorithm. Simulation results are provided
in section V. Finally, section VI concludes the paper.

Il. RELATED WORK

In this section, we discuss relevant works with respect to
our proposed GKCA algorithm. For the sake of conve-
nience, the discussion is organized based on several aspects,
including cluster algorithm, cluster-head selection, graph ker-
nel theory, d-hop mechanism, multi-graph accounting, and
others.
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FIGURE 1. Cluster architecture.

A. THE CLUSTER ARCHITECTURE AND ALGORITHM

In MANET, the mobile nodes in the mobile cluster usually
contain the following categories: cluster-head, border node,
and cluster member.

The cluster-head nodes: a node is the cluster-head if it is
a central node, or if it has a strong performance (or greater
than a predicted threshold) link to the central node of another
cluster.

The border node: a node is called a border node if its
neighbor node belongs to another cluster.

Cluster member node: if a node is neither the cluster-head
node nor a border node, it is a cluster member node.

Fig. 1 shows the cluster architecture. Mobile node A and
node B are the border node connecting cluster 1 and cluster 2,
mobile node C is the cluster-head node of cluster 2, mobile
node D is the border node between cluster 2 and cluster 3,
and mobile node E is the cluster-head node of cluster 3. The
neighborhood set nodes of node E are node D, node F and
node G.

In order to realize the organization of the nodes in the
cluster and the generation of the cluster-head nodes, we adopt
a progressive method, that is, each node is determined
according to its neighbors and the signals it receives. The
cluster-headed node declares that it is the cluster-headed
node. All nodes adjacent to the cluster-head node check the
signal strength and node performance received from it and
declares that they are the cluster-head node. At the same time,
the other nodes in the cluster examine the signal strength
received from the adjacent nodes to determine the category
of their nodes. If a node has a neighbor belonging to another
cluster, it declares itself as a boundary node.

Aboutorab et al. [8] analyzed the problem of data group-
ing generation and recovery scenarios, which improved the
performance of the network, but they did not consider the
extraction and sharing of grouping. Aiming at the problem
of free view video streaming in the network, Zhang et al. [9]
proposed an algorithm to extract a part of anchor points from
the server through a main channel for each user, which can
improve the transmission of real-time free view video stream-
ing in the network. Bayat et al. [10] proposed a peer-to-peer
(P2P) video streaming framework in the overlay network,
which solves the application problem of deploying real-time
video streaming on the P2P overlay network. The framework
supports decentralized decision making, fast crowding, and
uses network coding algorithms to improve bandwidth uti-
lization. Mobility Prediction-Based Clustering (MPBC) [11]
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algorithm estimated the relative speed of mobile nodes and
proposed algorithms based on independent and random mov-
ing nodes. In MPBC algorithm, the velocity information of
each moving node is first obtained, and then the cluster-head
node information of the cluster is maintained, thus solving the
relative movement problem of nodes.

In literature [12], a comparative study was conducted on
the cluster scheme for locating mobile nodes and beacon sen-
sor nodes, and a precise positioning algorithm based on dis-
tance and angle was proposed. This method can improve the
energy efficiency of nodes in MANETS. Bentaleb et al. [13]
proposed a QoS (Quality of Service) topology manage-
ment and efficient k-hop scalability scheme for large-scale
MANETS, which is suitable for urban environments. This
scheme focuses on the construction and maintenance of
MANET topology, including cluster formation stage, node
joining stage and gateway selection stage. Prabha and Jeyan-
thi [14] proposed a new trust model, which uses behav-
ioral trust, neighborhood trust, and historical trust to isolate
malicious nodes in the routing process. Fuzzy rules can be
used to determine the size of cluster, the optimal distance
between cluster-head and member node, the optimal selection
of cluster-head and the energy consumption of member node.
The energy of each node is compared with the energy of the
adjacent nodes with the level of movement. Through fuzzy
modeling and energy modeling, efficient cluster-heads are
selected. Aftab et al. [15] proposed a self-organizing clus-
tering scheme based on regional group mobility in MANET
to improve the stability and scalability of the overall net-
work. The algorithm utilizes the biologically-inspired behav-
ior of bird clusters to form and maintain MANET clusters.
A dynamic cluster scale management mechanism is proposed
to reduce network congestion and improve MANETS perfor-
mance in cluster movement.

B. NEIGHBORHOOD AGGREGATION APPROACHES

As early as 2003, Kashima er al. [16] proposed that the
comparison method of graphs is the basic theory of graph
kernel, which has been widely used in the research of var-
ious graph theories and information theories since its birth.
Since 2012, scholars have put forward several kernel theo-
ries specially designed for graphs with continuous attributes,
and proved the feature representation technology of feature
space of the graph kernel, etc., but the study of the graph
kernel is still a challenging work. In the following, we will
give an overview of some of the typical model pairs that
work with the graphics kernel [17]. The working principle
of neighborhood aggregation method is to assign an attribute
to each node according to the local structure of neighboring
nodes around the node, and so on [17]. For each node in
the graph, the attributes of its neighbors will be aggregated
into the cluster-head node to calculate a new attribute, which
will eventually be extended to other neighborhood structures.
Shervashidze et al. [18] proposed a heuristic algorithm based
on 1-dimensional Weisfeiler-Lehman (1-WL), which is based
on a class of highly influential neighborhood aggregation
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neural algorithms. The goal of graph cluster is to identify
the connections between internal nodes, so as to establish
a more compact cluster than external nodes. Ma et al. [19]
introduced a new cluster mass fraction based on local motif
rate, which can effectively respond to the density of clusters in
high-order graphs, and proposed a motif-based local extended
optimization algorithm (MLEO) to improve the clustering of
local high-order graphs.

Gong and Ai [20] proposed a neighborhood adaptive graph
convolutional network (NAGCN) based on efficient learn-
ing nodes. The NAGCN algorithm abstracts the neighbor-
hood adaptive kernel from the diffusion process in order to
learn and integrate the relevant neighborhood node infor-
mation of each node more accurately. Wang er al. [21]
used graph kernels to capture the local to global structural
information of functional connectivity networks, and pro-
posed a novel graph-kernel based structured feature selection
(gk-SFS) method for brain disease classification based on
functional connectivity networks.

C. NETWORK CONNECTIVITY

To predict the connectivity and correlation between two
mobile nodes, the data interaction between the two mobile
nodes is usually used for measurement [22]. The more inter-
active and similar the two mobile nodes are, the more likely
the positive correlation between the two nodes is. The less
interactive and similar two nodes are, the more likely they
are to be negatively correlated. Given an undirected graph
G(V, E), V is the node set in G, E is the link set in G,
suppose mobile node v; and mobile node v; are two nodes
of graph G, the similarity of v; and v; is: S(v;, vj) = IN1(v;)) N
Na(vj)|, where N1(v;) is the neighbors of v; in G, Na(v)) is
the neighbors of v; in G, and | - | means the number of *’.
Graph structure balance theory [23] considers four differ-
ent ternary relationships between node v;, node v; and their
common neighbor vi. The structural balance theory is used
to predict the links and cluster-heads. The related work first
finds all the triad relations containing the target links, and
then assigns the symbols to the target links to maintain the
balance of the triad relations. Node information, link infor-
mation and cluster-heads information reflect part information
of MANETSs. Nodes are widely connected in a MANETs.
They are affected not only by themselves or the links that
connect them, but also by other nodes and links that are not
directly connected to them. Therefore, we consider structural
information to predict link and cluster-heads of MANET.

In the G, minimum spanning tree (MST) is an acyclic con-
nected subgraph with all vertices, and a tree with minimum
weight is generated by search algorithm [24].

Given a set of vertices V, the Delaunay triangulation (DT)
is defined as a circular hypersphere in which no vertices in
V are located in any simplex circular hypersphere. The e-N
method gets the graph topology E by simply setting up the
connection matrix C, where ¢ is a pre-defined threshold. e-N
is a commonly used method for sparsifying both MANETS
and social networks, where the connected matrix C is often a
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FIGURE 2. Shortest path graph.

Pearson’s correlation matrix [24]. Kumar et al. [25] aimed at
network connectivity problems such as dynamic network fail-
ure and network link disconnection caused by landslide prone
areas and bad weather, and improved network connectivity
according to geological attributes and demographic charac-
teristics of nodes. A common way to predict whether two
nodes are linked is to measure the interactivity and similarity
between two nodes. If the two nodes are more interactive,
the more positive relationship exists between the two nodes.
On the contrary, there are different similarity relations, which
are called negative correlation [26].

D. GRAPH KERNEL AND SHORTEST PATH (SP)

If there is a path between any pair of nodes in V(G), graph G is
called connected graph G, otherwise it is disconnected graph
G. Paths, nodes, links and cluster are illustrated in Fig. 2.
In graph theory, sparsity-inducing graph can provide very
good robustness, high efficiency and interactivity, which pro-
vides an important promotion for the application of graph
theory. Qiao et al. [27] designed a sparsely retained pro-
jection algorithm to reduce the dimension of L1 graphs
by preserving them in a low-dimensional space. Low-rank
graph learning algorithm is a joint lowest-rank representation
method for finding the entire node set, which can better
capture the global structure of data [28]. The theory and
practice of graphs prove that the low-rank method is effec-
tive, especially in matrix compensation and robust subspace
recovery [28].

In literature [29], the author used a similar local regularizer
to learn low-rank graphs and further improved the theory. The
most common way to compare two paths or subgraphs is to
determine the best match between the nodes that make up
the two objects, or to map the nodes of one subgraph to the
structure of another. This method can also be applied to graph
kernels, such as optimizing the allocation of graph kernels
(Kriege et al. [30]). Lanneau et al. [31] proved the new
polynomial calculation of the subfamily of perfect graphs,
including claw-free perfect graphs and chord graphs, and
based on the design of the kernel calculation method, gave
two graph operations: clique-cutset decomposition and aug-
mentation of flat edges.

The shortest path (SP) kernel is a typical application of
graph kernel. The idea of a shortest path kernel is to compare
the length and properties of the shortest path between all ver-
tex pairs in two subgraph cores. A labeled graph G(V, E, f)
is a label function f: V(G) — N on the previous graph
G(V,E), where N is a positive integer, let k(i, j) represent
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the SP distance between node i and node j in the same graph.
The graph kernel is defined as,

ksp(G,H) =y > ki, j) ()

Using this algorithm, the time complexity of SP kernel is
reduced to that of the existing the Weisfeiler-Lehman algo-
rithm, which is in O(n?) [17]. Kriege et al. [32] have stud-
ied that under certain conditions, the algorithm of explicit
calculation of graph kernel can process feature graph with
higher efficiency. The algorithm is combined with several
graph kernels (such as SP kernel) to improve the accuracy
and efficiency of the dataset.

We supposed to have a random variable ¢sp for each arc SP,
and denote {sp = Y, ¢p ¢v for each path SP. Given a source
node S and a destination node D, a SP problem typically seeks
an S—D path P minimizing a probability functional p

min n(y_ e ©)
veP
under P path constraints of the form
EQ o) < B 3)
veP

where [t is a probability functional.

lll. GRAPH KERNEL

MANET graph can be expressed as undirected graph
G = G(V, E), where V represents the set of wireless nodes
in G, and E represents the set of wireless undirected edges
in G. Wireless link e = (i, j) € E means that mobile node i
can directly transmit packets to wireless node j, that is, node i
is directly connected to node j. We assume that the wireless
link is symmetric, that is, (i, j)) = (j, i) € E.

A. IMPROVED KERNEL
For an undirected graph G, several reduction rules for this
problem can be given [17], [21], [32], [33].

Definition 1: Graph G/ = (V, E, f) is a label graph, V is
the node set, E is the edge set, and function f: V(G) — N to
the graph G(V, E), where N is a positive integer.

Definition 2: All the nodes directly connected by node j are
called the neighbor set of node j € V, represented by N(j),
ie., N(G) ={i € V|(j, i) € E}. The size of its neighborhood
is called the degree of the node, deg(i) = |N(7)|.

Definition 3: A path in G can be represented as an ordered
sequence of nodes, P;j = (i, ..., j). If P;j = (i, j), then node i
and node j are directly connected.

Definition 4: In G, if there is a path between any pair of
nodes in V, graph G is said to be connected, otherwise it is
not connected.

Rule 1: In graph G, if the degree of node i is 0, node i can
be removed from G.

Rule 2: For a node v in graph G, if the node v contains at

least two neighbors of degree 1, denoted by {u, us, ..., u;}
(i = 2), then delete arbitrarily i-1 nodes from {uy, us, ..., u;}.
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Rule 3: If a node i has two distinct neighbors x, y of
degree 1, then delete node x or node y.

Rule 4 [17], [33]: If node i and j are two nodes such that
IN()NN(j)| > 2 and if there exist two nodes x,y € N(H)NN (j)
with deg(x) = deg(y) =2, then node x can be deleted.

Definition 5: Assuming that undirected graph G has n
nodes, if each node induced subgraph has an exact match
of n-1 nodes, then G is called a factor-critical graph.
For a matching M in G, if there happens to be a mis-
matched node in G, M is called a near-perfect match
of G.

Theorem 1 [33]: Let G is an undirected graph reduced with
respect to the rules 1, 2, 3 and 4, for which any induced
matching contains at most k nodes. Then |V| = O(k).

Proof: We assume that there is a maximum induced
matching subgraph of size M at k, the maximum value of
graph G. Thus, it can be proved that: either |V| = O(k)
is true, or M cannot be the maximum induced matching
subgraph. According to the setting, we have: if M is the
maximum induced matching subgraph of graph G, then for
each node i, there is a node u, so that d(i, j) <2. Other-
wise, we can add an edge to the match M to get a bigger
induced match. Roughly speaking, each node in the graph
G is at most two nodes V(M) away, and each edge at M is
at most four to at least one other edge M away. This leads
the idea of regions “‘between” to the edge of matching each
other. Thus, it can be obtained that if the graph is reduced
according to the above data reduction rules, these regions are
not too large. Furthermore, we have shown that it is impos-
sible to have many nodes that are not contained in such a
region.

Lemma 2: Given an undirected graph G and the maximum
induced match M of graph G, there exists an algorithm to
construct the maximum M region decomposition with O(|M |)
region.

Lemma 3: In an undirected graph G, each region contains
O(1) nodes in M regions simplified for decomposition.

Theorem 2: It is assumed that the undirected graph G is a
reduced plane graph and M is a maximum induced match of
G. Then there is an M region decomposition, so that the total
number of nodes in all regions is O(|M ).

Proof: Using lemma 2, the maximum M region decom-
position on the maximum O(|M|) region of the undirected
graph G can be obtained. According to lemma 3, the number
of nodes in each region is constant. Therefore, there are
O(]M ) nodes in the region.

B. SUBGRAPH GENERATION

In MANET, in order to obtain the information of wireless
nodes, the similarity of wireless nodes can be obtained. In an
undirected network graph, the information of a node can be
represented by a set of subgraphs. The shortest path dis-
tance between nodes reflects the strength of the relationship
between nodes: the shorter the distance, the stronger the rela-
tionship between nodes; the further the distance, the weaker
the relationship between the nodes. Therefore, the shortest
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path distance between nodes can be used to construct the
generation of subgraphs, and the nodes in different subgraphs
have different strength of mutual relationship.

One drawback of the node and link label kernels is that
they ignore the structure of the graph and the interaction
between the labels, and they have almost no information for
unlabeled graphs. The kernel can be calculated as a sub-
graph pattern. To avoid the problem of graph normalization,
a graph invariant can be used, which in rare cases can map
a non-isomorphic neighborhood subgraph to the same path.
Then, the shortest path distance between these neighborhood
graph pairs and their center nodes is characterized. We can
first define the isomorphic subgraph and the d-hop subgraph,
as shown below.

Definition 6: Two graphs are considered isomorphic if they
have the same marker graph.

Definition 7: Given two graphs Gi and G, a common
subgraph G’ is isomorphic to G if it is isomorphic to G.

Algorithm 1 Common Subgraph Algorithm
Input: Graph G, Go;
Output: Common subgraph G’;

1G'=¢;

2 for all v; in G| do

3 forallv;in G, do

4 if f(vi) = f(vj) then

5 if match(v;, v;) then
6 add nodes to G’
7 end if

8 end if

9 end for

10 end for

Algorithm 1 is mainly to extract the common subgraph.
The algorithm first traverses the two graphs to find two
similar nodes, and then creates a new node for the common
subgraph structure to grow the rest of the common subgraph
as a seed node. The algorithm recursively attempts to add new
nodes to the graph.

Denfinition 8 [33]: (d-hop subgraph) Let G = (V, E)
represents a graph containing a set of vertices V. ={vy, va, ...,
vn}, also called nodes, and a set of undirected binary edges
E ={(i,v)l (vi, vj) €[=1, 1], vi,v; € V} |V| =n, |[E| = m.
Let SP(v;, vj) be the length of the shortest path between v; and
vj. Node v;’s d-hop subgraph is defined as Nf(vi) =(V',E"),
in which d is the allowable length of the shortest hop between
v; and Vi, ie., VV]' e V if SP(v;, Vj) < d then Vvj € V'.d e Z+;
Vvj, ve € V2, if (vj, v/) € E then (v}, v;) € E'.

In order to predict the characteristics of link (v;, v;), a set of
subgraphs of node v; and node v; with hop 1 can be defined:

K§vp) = INU(p), NS (p), - .., NS () “
where v, €[v;, v;], subgraphs belonging to KdG(vp) represent
the structural information of v, according to different wireless

connection strength.
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C. GRAPH KERNEL CALCULATION

Graph kernel is a function of similarity between degree sub-
graph pairs, which allows artificial intelligence algorithms
and optimization algorithms to operate directly on the graph
kernel [34]. The method in this paper uses the graph kernel
function proposed by Neumann et al. [35], because this func-
tion can calculate the number of links in time linearity and
has good scalability in experiments.

First, each subgraph can be described by the k-order
Krylov subspace, which is a set of vectors derived from its
truncated power iterations. In this work, the k-order Krylov
subspace can be used to mathematically represent the sub-
graph generated above. The k-order Krylov subspace is rep-
resented by mathematical notation that makes sense, and also
produces some of the fastest linear algebraic algorithms for
sparse matrices.

Secondly, the graph kernel of the Bhattacharyya kernel
function quantum graph was used to calculate the similarity
of k-dimensional Gaussian distributions representing k-order
Krylov subspaces.

The similarity of two k-dimensional Gaussian distributions
was calculated using the Bhattacharyya kernel [17], [25].
For two multidimensional Gaussian distributions D;(x) and
D»(x), the similarity is:

K(D1, D) = /\/D1(X)D2(X)dx &)

Since Di(x) and D;(x) follow Gaussian distributions, (5)
can be transformed to (6).

Covi+Covy
2

/|Covi| |Covy|

where Cov; is the covariance matrix of D(x), Cov; is the
covariance matrix of D(x), and | - | is the determinant of
matrix.

Since the multi-dimensional Gaussian distribution can be
used to represent the subgraph pairs based on formula (6),
the similarity of the subgraph G and G; can be calculated as

S(G1, G2) = K(Dy, D) )

K(Dy,D2) = (6)

where Di(x) and D,(x) are the multidimensional Gaussian
distributions corresponding to graph G and G, respectively.
K (D1, Dy) is calculated by formula (6).

The similarity of node v; and node v; can be represented as

x(i, vj) = [SINE (i), NEp)), SINE (vi), NS (v),
o SINE (), NE(v))] 8)

IV. MULTIPLE KERNELS AND PREDICTION MODEL

A. MULTIPLE KERNELS RIDGE REGRESSION

In this section, the representation and model of ridge regres-
sion are considered, and a new model that performs clustering
tasks and learning similarity relationship in kernel space is
introduced. Kernel ridge regression (KRR) [36] is a nonlinear
regression method, which uses the well-known graph tech-
nology to transfer time series {t1, f2, ..., t,} data schema
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is transformed nonlinearly into a high-dimensional feature
space determined by a kernel function satisfying the Mercer’s
condition. Let the training data set contain n pairs, denote
(x1, 11), (x2, 12), ..., (xn, t,), where n is the number of inputs
and a nonlinear mapping function ¢(x;), while the original
input space is transformed into a higher-dimensional feature
space. The linear regression model is expressed as

vi=Ppeok), i=12....n )

where y; is the i-th output, and 8 is the weight vector and is
given by

B=1B1B2 ., Bal" (10)

The kernel ridge regression uses regularized least square
method to obtain weight vector 8 by minimizing the objective
function as follows:

_ 1o, 1 = 4
m1nL=§||,3|| +§~C';§i (11)
1=
subject to
ti_ﬂ'(p(xi)zé‘ia i=1’27"'5n (12)

In Eq. (11), parameter C(C > 0) is a regularization
parameter and is the positive constant adjusted by the user,
and is equivalent to the penalty coefficient of the squared
error. The choice of C is C = 2*, A > 0. Once the graph’s
parameter values are trained and the output weights are fixed,
the graph assumes that the predictive time series data is ready.

Applying Lagrange multipliers to Eq. (12) the following
expression is obtained:

L T O VPR o WA
L—2||,3|| +2 C ;:1 g +,§:1 aiti— B - o) — &)
(13)

By taking the derivative of L with respect to 8, ¢, and «
equating the resulting equations to zero, the output weight
vector f is obtained as.

B= o+ el (14)

and the target vector T = [t1, 1o, ..., ty]7.
Therefore, in the case of N node spaces, the obtained kernel
matrix is

K(x1, x1)
K(x2,x1)

K (x1,x2)
K (x2, x2)

K(x1,xn)

K — K(x2, xn) (15)

Ky, x1) K, x2) K(xn, xn)
B. CLUSTER HEAD ALGORITHM
The cluster-head algorithm is mainly used to form k-hop
clusters. However, in order to select stable cluster-head nodes,
a cluster-head selection algorithm based on graph kernel is
proposed in MANET.

In MANET, each node has information about relative
speed. The cluster-head algorithm can contain two parts: the
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| k-hop Subgraph Generator |

v

| Subgraph Data, Matrix calculation |

v

| k-order Krylov Subspace |

| Graph Kernel calculation |

v

| Link and cluster-head predictor |

v

FIGURE 3. The architecture of our proposed algorithm.

cluster-head mechanism based on graph kernel selection and
the cluster-head maintenance mechanism [37].

In the cluster-head algorithm, the maintenance part of the
cluster uses the method based on graph kernel to solve the
stability problem in the process of node movement. The
maintenance part of the cluster-head is responsible for dealing
with the problem of k hop and the node situation of the graph
kernel, which guarantees the stability and connectivity of the
cluster-head node.

The proposed algorithm compares the structural
information of nodes to obtain their similarity and uses
these similarities to predict links and cluster-heads. Our
algorithm architecture is shown in Fig. 3. The input is the
entire MANET. The output is the predicted link and cluster-
header. The proposed method includes three stages: subgraph
generation, kernel calculation and kernel classification.

C. GKCA ALGORITHM
It can be seen from literature that the singular KRR
algorithm cannot produce accurate results in the predic-
tion research. Therefore, multiple kernels ridge regres-
sion (MKRR) learning can be expressed as a combination
of base nucleus and structural parameters of KRR [36]. This
extension handles different heterogeneous data efficiently
and performs better across a wider range of applications.
MKRR refers to the process of linearly combining the M
specified kernels into a kernel Kysxrg:

M
Kukgr = ) BuK" (16)
m=1

where, 8; >0,(i=1,2,....M),B1+ B+ ...+ By = 1.
By definition, the kernel Ky xgg is symmetric and positive,
and a feature space and a feature map are formed. Therefore,
this kernel can be used for subsequent analysis, as it can pro-
vide a full sample summary. The combined kernel computes a
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kernel that minimizes the distortion between all input kernels.
Algorithm 2 is the algorithm structure of GKCA.

Algorithm 2 Algorithm of GKCA
Input: Randomly generated network graph G;
Predefined kernel matrices K;
Hop count #;
Parameters A;
The number of clusters C;
Output: Similarity matrix K;
Calculate the cluster and cluster-head node;
1 initialize network graph G;
2 initialize L to identity matrix and parameters A;
3fori=1ton
4 calculate 8, x;, y;;

5 calculate ¢;, o;
6 update L;
7 end for

fori=1ton

9 calculate K$(v,) in Eq. (4);

10 calculate K (D1, D3) in Eq. (6);

11 calculate matrix K in Eq. (15);

12 calculate kernel Kyxrr in Eq. (16);

13 determine the cluster size and cluster-head node;
14 end for

D. TIME COMPLEXITY ANALYSIS

Here, the computational cost of GKCA is discussed. From
Algorithm 2, the time complexity of GKCA is O(n?), where
n denotes the number of instances. Besides the iterative
updates, our model also needs O(nzk) to construct the kernel,
where k = )" k" and k" is the number of features of the v-th
view. Thus the overall cost for GKCA is O(n3).

V. SIMULATION EXPERIMENT

A. SIMULATION MODEL

Several network scenarios datasets are used to evaluate the
performance of the proposed approach. Network randomly
generated datasets have been widely used in MANET net-
work research, such as wireless link connection, wireless link
bandwidth and mobile node transmission capacity.

In this section, we show the efficiency of our scheme
through simulations conducted on NS2 (Network
Simulator 2). The simulations range is 1000mx 1000m in a
2-D free space with 100 mobile nodes. The radio transmission
range is assumed to be 250 m. The source node and the
destination node are randomly selected. The data sending
speed of the source node is a constant bit rate (CBR), and each
source node generates corresponding data packets according
to the protocol for sending. In the simulation, the nodes move
according to the random waypoint mobility model (RWP)
with the minimum and maximum speeds setting to 0 and
20 m/s, respectively. Each simulation execution time is
600 seconds. Several simulation runs with different param-
eter values were carried out for each scenario execution,
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TABLE 1. Simulation parameters.

Name Parameter
Number of nodes 100
Map Size 1000m>1000 m
Transmission range 250 m
Average node degree 3-5
Simulation time 600 seconds
Node’s mobility speed 0-20 m/s
- Random waypoint mobility
Mobility model
model
Communication model Constant bit rate (CBR)
Connection Rate 1 Mbps
Node pause time 2 seconds

Examined routing protocol ~ GKCA, MPBC, NAGCN

and the average data was selected in these simulation runs.
The free space propagation model is used in the simulation
experiment. Table 1 lists some parameters in the simulation
experiment.

B. PERFORMANCE METRICS

The performances of GKCA algorithm are compared with
that of typical MPBC algorithm [11] and NAGCN algo-
rithm [20] under the same movement model and commu-
nication model. MPBC algorithm is a clustering algorithm
based on mobility prediction in MANET, which is more
suitable for the rapid movement of nodes and the change of
cluster-heads, and has some typical characteristics. NAGCN
algorithm can construct a neighborhood adaptive kernel effi-
ciently and collect more useful information about the neigh-
borhood. NAGCN algorithm is a typical neighborhood cluster
algorithm. The main performance parameters can be defined
as follows:

The control packets ratio: the ratio of the number of
control packets generated to recover the cluster-head to the
data generated by the cluster-head.

The packets loss ratio: the ratio of the number of lost
packets sent by the source node to the destination node to
the total number of packets sent by the source node to the
destination node.

Average end-to-end delay: the average value of the time
that the received data packets take to reach the destination
from their origin.

C. PERFORMANCE ANALYSIS

In order to evaluate the performance of GKCA algorithm
based on graph kernel selection, we used NS-2 [38] sim-
ulation software recommended by IEEE 802.11 and with
complete implementation extension mechanism to conduct
simulation experiments. NS-2 is a discrete event simulator
for network problems research. NS-2 provides a lot of simu-
lation support for simulating Transmission Control Protocol,
routing and cluster-head protocols on wired and wireless
networks.
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Normalized network information, integrity, and accuracy
are used to evaluate mobile node clusters. These index param-
eters are widely used in mobile node clustering with good
positive correlation. The larger the number of mobile node
clusters, the better the performance of the cluster-head.

Fig. 4 shows the performance comparison of GKCA algo-
rithm with MPBC algorithm and NAGCN algorithm in con-
trol packets ratio as the number of MANET mobile nodes
increases. When the number of network nodes increases,
the number of cluster and cluster-head selection control pack-
ets also increases, so the control packets rate also increases.
It can be seen from the experimental results in Fig. 4 that the
control packets rate of GKCA algorithm is lower than that
of MPBC algorithm and NAGCN algorithm, because GKCA
algorithm uses the graph kernel method to select clusters
and cluster-heads, resulting in relatively stable clusters and
cluster-head nodes.

Fig. 5 compares the performance of GKCA algorithm in
MANET with MPBC algorithm and NAGCN algorithm in
control packet rate when the node movement speed increases.
It can be seen in Fig. 5 that when the movement speed of
mobile nodes increases, the link changes between mobile
nodes are relatively large, and the changes of cluster con-
struction and cluster head selection will increase, requiring
more control groups to construct clusters and cluster head
nodes. Fig. 5 also shows that GKCA algorithm selects clusters
and cluster head nodes with stable performance, making the
control packet rate of GKCA algorithm better than that of
MPBC algorithm. This is mainly because GKCA algorithm
uses the graph kernel mechanism to select clusters and keeps
the stability of clusters.
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Fig. 6 shows the relationship between packet loss rate and
network size. When the network size is small, the packet
loss rate of GKCA algorithm, MPBC algorithm and NAGCN
algorithm is very small. When the number of network nodes
increases gradually, the packet loss rate also increases gradu-
ally. When the network scale increases, the packet loss rate
of GKCA algorithm does not increase significantly. This
is mainly because GKCA algorithm uses the structure of
graph kernel to select the cluster and cluster-head node with
excellent performance, thus ensuring the better transmission
of data packet.

Fig. 7 shows the relation between the packet loss rate and
the node movement speed. When the node mobile speed
is low, the packet loss rate of GKCA algorithm is very
similar to MPBC algorithm and NAGCN algorithm. When
the node movement speed is high, the cluster head node,
the stability of the cluster and the connectivity between nodes
are also poor, and the packet loss rate is also increasing,
but the packet loss rate of GKCA algorithm is the lowest.
GKCA algorithm can choose the cluster with better perfor-
mance and the cluster head node. This is mainly because
the GKCA algorithm uses the structure of the graph ker-
nel to select the cluster and cluster head nodes with good
performance, selects the cluster and cluster head nodes with
better performance, and guarantees the transmission of data
packets.

Fig. 8 shows the performance comparison of GKCA algo-
rithm with MPBC algorithm and NAGCN algorithm when the
size of network nodes increases. With the increasing of node
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number, GKCA algorithm is obviously better than that of
MPBC algorithm and NAGCN algorithm. As shown in Fig. 8,
the average end-to-end delay of GKCA is at most 10-20%
larger than that of MPBC algorithm and NAGCN algorithm.
It demonstrates that the GKCA algorithm is more stable with
the variation of the network size.

Fig. 9 shows the comparison of the average end-to-end
delay performance of network data packets when the move-
ment speed of network mobile nodes changes from 0 to
20 m/s. As can be seen from Fig. 9, when the movement
speeds of mobile nodes increases, the data packet trans-
mission delay also increases slowly, but the performance
of GKCA algorithm is obviously better than that of MPBC
algorithm and NAGCN algorithm. The increase of motion
speed leads to more frequent topological changes, which
leads to an increase in the probability of chain break and a
longer reconnection time of links. From Fig. 9, it can be seen
that when the node’s mobility speed increases, GKCA algo-
rithm has lower average end-to-end delay in higher mobility
environment.

VI. CONCLUSION

Due to the good scalability and adaptability of MANET net-
work in the case of environmental change, it can be deployed
as an emergency network when other networks fail in the
case of disaster or combat. We propose a Graph Kernel based
Clustering Algorithm in MANETs (GKCA). The key idea of
the protocol is to find the clustering schemes in the process
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of cluster-head selection criteria. The control packets ratio,
packets loss ratio, average end-to-end delay are combined to
evaluate the cluster-head. The performance evaluation of our
proposed methods is accomplished via modeling and simu-
lation. The simulation results demonstrate that the proposed
approach and parameters provide an efficient method of esti-
mating and evaluating the cluster-head stability in dynamic
mobile networks. Further work to improve the algorithm
includes the support of nodes with limited mobility.
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