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ABSTRACT This paper develops the systematic procedure for designing of iterative learning control (ILC)
algorithms through the differential repetitive process setting. This means that the proposed approach can
be directly applied to plants with differential dynamics and allows to satisfy the additional requirements
on the resulting dynamics. In particular, the proposed design procedure enforces a required frequency
attenuation over a finite frequency range and includes regional pole constraints. Additionally, an important
result extension to the plants with relative degree greater than unity is presented. The sufficient conditions
for the existence of the controllers are derived in terms of linear matrix inequalities, which are immediately
extended to deal with time varying uncertainties. Finally, the simulations for a typical actuator of tracking
servo system prove that the design is effective and brings some advantages when compared to the existing
alternatives.

INDEX TERMS Convergence analysis, iterative learning control, linear differential repetitive processes,
regional pole constraints.

I. INTRODUCTION
Iterative learning control (ILC) is a popular control scheme
applicable to the systems that perform a given task itera-
tively [1], [2]. Each iteration of a given task is known as
a trial, or pass, and when a trial is complete, the system resets
to the same initial conditions and the next trial can begin.
This allows to use the information or data collected during
the previous trials, such as control input and error signals,
to modify the current control input signals, aiming to track
the desired trajectories of the controlled plant and hence the
control performance is successively improved. Specifically,
ILC scheme aims to construct the control input signal such
that the output tracks the reference as accurately as possible.
Hence, the basic ILC problem is to design both feedback
and learning controllers which produce a such control signal
to ensure that the error sequence generated over the trials
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converges to the prescribed value, see, e.g. [2]–[4]. Driven by
this important feature, ILC has been extensively employed in
high precision control systems and other important industrial
applications. Reported applications of ILC mainly include
robotics [5] and chemical batch processing [6].

Clearly, the design of the feedback and learning con-
trollers must include some requirements on transient dynam-
ics and trial-to-trial error convergence. As recognized, see,
e.g. [7], for details, an efficient way to do this is to formulate
ILC problem as the two-dimensional (2D) stability problem.
Within this formulation, the finite time domain behavior and
discrete trial number domain behavior can be easily captured
and hence both time and trial number domain objectives
are easily imposed with the design procedure. Therefore the
trial-to-trial convergence and transient response goals can
be simultaneously satisfied and hence the high performance
tracking control is achieved as shown in [7] and [8]. Although
ILC design over 2D/repetitive setting simplifies the integrated
synthesis of both feedback and learning controllers in an
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ILC scheme for error convergence and performance, known
results on applying this approach, e.g. [8], prefer discrete-
time models of a plant since the control algorithm uses infor-
mation from previous iterations and this information can be
only recorded using suitable digital devices. However, as was
demonstrated in some previous work on ILC, see [3] or [9],
convergence results obtained for discrete-time models can
be sometimes over-optimistic and hide problems (e.g. with
robustness) when the discrete-time algorithm is applied on a
plant that is originally a continuous-time system. Correspond-
ingly, although discrete-time domain seems to be preferred
by many authors, e.g. [10], [11], continuous-time model of
a plant is more useful for ILC designs. This means that
the hybrid (continuous-discrete) nature of the ILC problem
should be considered, as it is done when differential repetitive
process setting is applied and finite time domain behavior
along a given trial and discrete trial domain behaviour are
directly captured. Additionally, when designing ILC schemes
it is preferred to impose specific performance requirements
(for both transient and convergence). Often these require-
ments are defined over the complete frequency spectrum.
This is a very strict condition since design requirements
and specifications are mostly defined for different frequency
ranges of relevance. For example, a closed-loop feedback
control system should have small sensitivity in a low fre-
quency range and small complementary sensitivity in the high
frequency range. Moreover, since the bandwidth of the refer-
ence signal has the strongest influence on the convergence
rate, learning over this frequency range should only occur
when the ILC is applied.

The contribution of this paper is to provide new insights
into the currently known ILC design procedures with the
two-dimensional/repetitive setting. Specifically, systematic
guidelines for designing of ILC laws for continuous-time
systems subject to restricted frequency-domain specifica-
tions and/or structured time-varying uncertainty are pro-
posed. Additionally, the regional pole constraints are included
for transient dynamics response shaping. The generalized
version of Kalman-Yakubovich-Popov (KYP) lemma [12] is
extensively used to permit control law design over selected
frequency ranges. These controller design procedures can
also include multiple design specifications (e.g. reject distur-
bances at specific frequencies), whereas the vast majority of
currently known designs cannot impose many relevant addi-
tional performance specifications. In particular, the devel-
oped results allows a designer to specify and/or maximize,
frequency ranges where the error convergence condition has
to be satisfied. Moreover, this allows design procedures over
convex sets and therefore they are amenable to effective
algorithmic solution in terms of linear matrix inequalities
(LMIs) [13]. Additionally, by the introduction of additional
decision variables in the final LMI forms the reduced conser-
vatism may be achieved and hence improve the applicability
of developed results. Finally, a numerical example illustrates
the effectiveness of the obtained results. To highlight the

potential interest in our approach the tracking performance
is compared with some known results.

The notation used throughout this paper is as follows. The
null and identity matrices with appropriate dimensions are
denoted by 0 and I , respectively. Also, for a matrix W , its
transpose, complex conjugate transpose and the orthogonal
complement are denoted by W T , W ∗ and W⊥, respectively.
Additionally, for hermitian (symmetric) matrices, W � 0
(W ≺ 0) means that W is positive (negative) definite. The
operator sym{W } = W + W T is used to shorten formulas
and a symmetric term in amatrix defined by blocks is denoted
by (?). The symbol⊗ denotes the Kronecker matrix product.
Also, two specific regions of the complex plane are defined:
Chp = {s ∈ C| Re(s) < 0} (open left half plane) and
Cuc = {z ∈ C| |z| < 1} (an open disc centered at the origin
and radius 1).

Finally, the following lemmas are used in the proof of the
main results.
Lemma 1 [14]: Suppose that thematricesϒ = ϒT ,3 and

6 are given. Then the following statements are equivalent
• there exists an unstructured matrix W that satisfies

ϒ + sym{3TW6} ≺ 0,

• for arbitrary matrices3⊥ and6⊥ whose columns form,
respectively, a basis for the null spaces of 3 and 6 the
below inequalities hold

3T
⊥
ϒ3⊥ ≺ 0, and 6T

⊥
ϒ6⊥ ≺ 0. (1)

Lemma 2 [15]: Given matrices X , Y , 8 = 8T , δ(t) of
compatible dimensions, then

8+ sym{Xδ(t)Y } ≺ 0,

for all δ(t) satisfying δT (t)δ(t) � I if, and only if, there exists
ε > 0 such that

8+ εXXT + ε−1Y TY ≺ 0.

II. BACKGROUND AND PROBLEM FORMULATION
Consider an uncertain linear differential plant executing a
given task repeatedly over a finite time interval [0,T ], T > 0.
The plant dynamics can be described as below

∂xk (t)
∂t
= [A+1A(t)]xk (t)+ [B+1B(t)]uk (t),

yk (t) = Cxk (t), (2)

where k ≥ 0 denotes the iteration or trial number and t is
the continuous time variable such that t ∈ [0,T ]. Also, for
all t ∈ [0,T ], yk is the plant output, xk denotes the state
vector and uk is the control input applied to a plant at trial k .
Matrices A, B and C represent the nominal plant dynamics
and they are assumed to be time and iteration invariant.
Matrices 1A(t) and 1B(t) denote time-varying uncertainties
which are assumed to satisfy

1A(t)=Eδ(t)Fa, 1B(t)=Eδ(t)Fb, (3)
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where E , Fa and Fb are known real constant matrices of
compatible dimensions, and δ(t) is an unknown and time-
varying perturbation satisfying δT (t)δ(t) � I ,∀t ∈ [0,T ].
Also, δ(t) is assumed to be independent of the trial number k
and therefore the allowable uncertainties can vary along each
trial but are assumed constant from trial to trial. No loss of
generality arises from assuming xk (t) = xk (0) on each trial.

Let us first consider the nominal dynamics of (2), that is
δ(t) = 0, ∀t ∈ [0,T ]. Then this system is said to have the
relative degree κ ∈ N, where κ is characterized as

min
κ
{CAκ−1B 6= 0}.

Clearly, if the relative degree κ = 1, then CB 6= 0 and the
following formula can be derived along the trial k

∂yk (t)
∂t
= C

∂xk (t)
∂t
= CAxk (t)+ CBuk (t).

Consequently, if the relative degree κ = 2 then CB = 0 and
CAB 6= 0 and hence

∂2 yk (t)
∂t2

= CA2xk (t)+ CABuk (t).

In general, if the relative degree of the nominal dynamics
in (2) is κ > 1, we get

∂ iyk (t)
∂t i

= CAixk (t), 0 ≤ i ≤ κ − 1,

∂κyk (t)
∂tκ

= CAκxk (t)+ CAκ−1Buk (t).

Based on the above formula, κ denotes the lowest derivative
order of the output yk (t) that is explicitly fed by the control
input uk (t).
The control problem that we are dealing with is stated as

follows. Given plant (2) of the relative degree κ , iteratively
find a suitable control input u(t), t ∈ [0,T ] such that the
plant output y(t) tracks a desired output trajectory denoted as
Yd over a finite time interval t ∈ [0,T ] where T is known and
finite (i.e. T <∞) trial length. Also, let

ek (t) = Yd (t)− yk (t), t ∈ [0,T ], k > 0

be the tracking error of the kth trial generated by the plant
based disturbances and transient errors form feedback con-
troller. Therefore, the control objective is to find a control
sequence such that tracking errors are minimized (to within
a specified tolerance) or removed completely. Furthermore,
some additional performance specification can be considered.
Specifically, for the prescribed finite frequency performance
specification and the pre-specified region of the complex
plane, find a control sequence such that the following require-
ments are simultaneously satisfied:
• the resulting control scheme is convergent over limited
frequency domain,

• the poles of the controlled dynamics lie in the prescribed
region of the complex plane.

Remark 1: The desired output trajectory Yd is assumed to
be smooth over time interval [0,T ]. This means that Yd is

differentiable and hence the higher order derivatives of Yd
exist.

Now, let us suppose that a standard form of ILC law
(i.e. the means of updating the control vector from trial-to
trial) given as

uk+1(t) = uk (t)+1uk (t) (4)

is applied to a plant described by (2) where1uk (t) is the cor-
rection term. This form of control law constructs the input for
the next trial as the sum of the previous trial input and1uk (t),
where this last term is computed using the previous trial error.
Introducing additional vector-valued variables ηk (t) and ξk (t)
such that

∂ηk (t)
∂t
= xk+1(t)− xk (t),

∂ξk (t)
∂t
= 1uk (t)

one can find that (for plants of the relative degree κ = 1)

ek+1(t)− ek (t) = −CAηk (t)− CBξk (t),
∂ηk (t)
∂t
= Aηk (t)+ Bξk (t).

In addition, suppose that the control law correction term
1uk (t) in (4) is defined as

1uk (t) = K1
∂ηk (t)
∂t
+K2

∂ek (t)
∂t

, (5)

whereK1 andK2 are matrices of compatible dimensions to be
designed. Application of the control law given in (5) allows
the controlled dynamics to be written as

∂ηk (t)
∂t
= Aηk+1(t)+ B0ek (t),

ek+1(t) = Cηk+1(t)+D0ek (t), (6)

where

A = A+ BK1, B0 = BK2,

C = −C(A+ BK1), D0 = I − CBK2. (7)

The boundary conditions are

ηk (0) = 0, ∀k > 0, e0(t) = Yd (t).

An important point to note about the state-space model (6) is
that it has the form of a differential repetitive process where
the vector ηk+1(t) plays the role of the state vector and the
vector ek (t) plays the role of pass profile (output) vector.
This means that the problem of feedback and learning gains,
i.e. K1 and K2 in (5) can be transformed to an equivalent
stability problem for repetitive processes - see [7] for detailed
discussion on this topic. Anyway, this theory can be applied to
the ILC dynamics (6), resulting in the required control design
algorithms.

To proceed, define the trial-to-trial shift operator as z and
use s as the Laplace transform variable. The Laplace trans-
form can be applied for the along the trial dynamics since it
is routine to argue that the trial length is suitably extended
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from T to ∞ - check [2] and the cited references on how
detrimental effects due to the finite trial length are avoided.
Consequently, based on transformation applied to (6) we have

Ek+1(s) = G(s)Ek (s),

where G(s) is the so-called intertrial transfer function map-
ping ek (t) to ek+1(t) and it is expressed by

G(s)=C(sI−A)−1B0+D0. (8)

Additionally, based on definition of G(s) the model (6) can
also be extended to include the case when κ ≥ 2. It is
important since the term CAκ−1B is non-zero while CB up to
CAκ−2B are zero and hence a new formulation for the matri-
ces in (7) can be derived for a general relative degree κ ≥ 1.
Specifically, consider the term sκ (sI − A)−1 and assuming
(sI−A)−1 is nonsingular we get that (sI−A)(sI−A)−1 = I
and hence

s(sI −A)−1 = I+A(sI −A)−1.

This immediately implies that

sκ (sI−A)−1 =
κ−1∑
j=0

sκ−1−jAj
+Aκ (sI −A)−1.

Furthermore, one can find that

CAκ−1
= CAκ−1 = −CAκ−1,

CAκ
= −CAκ−1A = −CAκ−1(A+BK1)

and then the matrices in (7) transform into

A = A+BK1, B0=BK2,

D0 = I−CAκ−1B0, C =−CAκ−1A. (9)

A. STABILITY ANALYSIS
As discussed earlier, the representation (6) can facilitate sta-
bility analysis and control synthesis. Specifically, based on
the results provided in [7], [16], [17], the process (6) is said
to be stable along the trial if

det(sI −A)det(zI −D0) 6= 0, and

det
([

A− sI B0
C D0 − zI

])
6= 0, ∀(s, z) ∈ Chp × Cuc,

where the state-space quadruple {A,B0, C,D0} are defined
in (7) for κ = 1 or in (9) for κ ≥ 2. It turns out that the above
condition is the exact algebraic characterization for stability
along the trial. Anyway, by exploring some determinant for-
mulas the above conditions can in turn be reformulated as the
following lemma.
Lemma 3 [7]:The differential linear repetitive process (6)

representing ILC dynamics is robustly stable along the trial
for all admissible uncertainties if, and only if
i) eig (D0) ⊂ Cuc,
ii) eig (A) ⊂ Chp,
iii) eig (G(jω)) ⊂ Cuc, ∀ω ∈ [0,∞).

Checking the third condition of this last result for a numer-
ical example requires computations for the entire frequency
range, i.e., all points on imaginary axis in the complex plane.
Anyway, one can note that condition iii) is equivalent to

ρ (G(jω)) < 1, ∀ω ∈ [0,∞), (10)

where ρ(·) denotes the spectral radius of its matrix argument.
Alternatively, the above result can be expressed by requiring
for each ω ∈ [0,∞) the existence of a R(jω) � 0 of the
Lyapunov inequality

G(jω)∗R(jω)G(jω)− γ 2R(jω) ≺ 0, ∀ω ∈ [0,∞)

and a scalar γ satisfying 0 < γ ≤ 1. Unfortunately, still
the stability along the trial is characterized by a convex feasi-
bility test over the infinite-dimensional space. Furthermore,
the function R(jω) depends on ω and hence this inequal-
ity cannot be easily solved. In what follows, the repetitive
process theory shows that the above condition may be not
sufficient to achieve reasonable transients during the con-
vergence process. Specifically, ek (t) may not decrease over
some number of trials when (10) is satisfied only. To avoid
these problems, a stronger convergence criteria is required for
engineering practice. One can ensure that the Euclidean norm
of the tracking error decreases monotonically for every trial
if G(jω) satisfies the sufficient stability condition

σ (G(jω)) < γ, ∀ω ∈ [0,∞), (11)

where σ (·) stands for the maximum singular value of
its matrix argument. Although (10) is the true stability con-
dition, (11) is sometimes more practical. Moreover, (11) is
advantageous in dealing with convergence analysis since

σ (G(jω)) ≤ sup
ω∈[0,∞)

σ (G(jω)) = ‖G(jω)‖∞.

This means that for a given scalar γ ∈ (0, 1] we have

σ (G(jω)) < γ ⇔ ‖G(jω)‖∞ < γ, ∀ω ∈ [0,∞).

Furthermore, let || · ||2 denote the L2 norm and then

‖ek (t)‖2 ≤ ‖G(s)‖
k
∞
‖e0(t)‖2 .

Therefore if (11) holds then monotonic trial-to-trial error
convergence, i.e., ||ek+1|| < ||ek ||, k ≥ 1, occurs in L2 for
k → ∞. Simply, this means that monotonic convergence in
the sense of the L2-norm occurs.

Additionally, some simple multipliers (e.g. R(jω) = R
or R(jω) = I ) can be used to avoid computational problems
when multipliers with direct dependence on ω are consid-
ered. These simple multipliers allow us to apply the gener-
alized KYP lemma and then we can turn our problem into
finite-dimensional LMI which are relatively easy to solve
and directly leads to the controller design procedures. Note
that the generalized KYP lemma and its dual version (given
below) provides a necessary and sufficient condition for
G(jω) to satisfy a specified frequency domain property over a
finite frequency ranges (i.e. ω belongs to a subset of [0,∞))
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in terms of a matrix inequality form and hence in can be
directly applied to address the paper problem.
Lemma 4 [12]: Let A, C and 2 be given. Then if

det(jωI −A) 6= 0 for all ω ∈ [0,∞) the following conditions
are equivalent:
i) The frequency domain inequality[

(jωI −AT )−1CT
I

]∗
2

[
(jωI −AT )−1CT

I

]
≺ 0 (12)

holds ∀ω ∈ � where � is the frequency range, i.e. ω
belongs to a subset of real numbers denoted by � and
specified as in Table 1.

ii) There exist matrices Q � 0 and a symmetric matrix P
such that[
A I
C 0

] (
9∗ ⊗ Q+8∗ ⊗ P

) [A I
C 0

]T
+2≺0, (13)

where

8 =

[
0 1
1 0

]
, 9 =

[
τ υ∗

υ ς

]
. (14)

The values of τ , υ and ς for specified choices of ω ∈ � are
shown in Table 1 and LF, MF and HF stand for low, middle
and high frequency ranges, respectively.

TABLE 1. Frequency ranges of interest.

Importantly, appropriate choices for the matrix 2 in
Lemma 4 allow to analyse the various system properties.
In particular, we have to consider two cases concerning
the application of different convergence criteria, i.e. (11)
and (10), for γ ∈ (0, 1] in the frequency intervals and hence
the matrix 2 is fixed as

2 =

[
B0 0
D0 I

]
(5⊗R)

[
B0 0
D0 I

]T
, (15)

where R � 0 and5 is a given real symmetric matrix (defined
later).

Firstly, let us consider the case when R = I . This
choice means that we are concerning with satisfying (11) for
γ ∈ (0, 1] in frequency intervals. Furthermore, according to
the work in [18], one can note that introducing two scalar
variables ε1 > 0 and ε2 > 0 satisfying ε1 ≤ ε2 then the
requirement that γ ∈ (0, 1] can be equivalently replaced
by defining γ = ε1ε

−1
2 . This means that the condition

‖G(jω)‖∞ < γ ≤ 1 can be expressed as

‖ε2G(jω)‖∞ < ε1, ∀ω ∈ �, (16)

where

ε2G(jω)=C(jωI −A)−1ε2B0+ε2D0, ∀ω ∈ �.

Let us choose the matrix5 in (15) as5 = diag{ε−11 , ε1} and
then immediately (12) yields

ε22G(jω)G(jω)
∗ < ε21, ∀ω ∈ �,

which is equivalent to the condition (16). Additionally, it is
worthwhile noting that the choice of 5 as diag{ε−11 , ε1}

makes possible to rewrite the inequality (13) asAT CT
I 0
0 I

T
ϒ1

[
0

ε−11 ε
2
2B0DT

0

]
(?) ε−11 ε

2
2D0DT

0 −ε1I


AT CT
I 0
0 I

≺0,
(17)

where

ϒ1=
(
9∗ ⊗ Q+8∗ ⊗ P

)
+

[
0 0
0 ε−11 ε22B0BT0

]
.

Furthermore, an equivalent condition to (17) can be directly
obtained by means of Lemma 1 (or the Finsler Lemma which
is a specialized version of Lemma 1). In particular, the fol-
lowing result is obtained
9∗ ⊗ Q+8∗ ⊗ P 0

[
0

ε2B0

]
0 −ε1I ε2D0[

0 ε2BT0
]

ε2DT
0 −ε1I



+ sym



W1
W2
W3
0

[−I AT CT 0
]≺0, (18)

where W1, W2 and W3 are the slack matrix variables. At this
point, it is worthwhile noting that ensuring ε22D0DT

0 −ε
2
1I≺0

(i.e.D0DT
0−γ

2I≺0 for ε1 > 0 and ε2 > 0 satisfying ε1 ≤ ε2)
imposes that W3 can be zeroed without loss of generality.
Fortunately, ε22D0DT

0 − ε
2
1I ≺ 0 is not a strong assumption

since it holds even forD0 = 0. Moreover, the matrix variable
W1 can be eliminated from (18) if and only if the block (1,1)
of 9∗ ⊗ Q+8∗ ⊗ P is negative definite for Q � 0 (always
imposed) and 8 as in (14).

Secondly, let us consider the case when R 6= I is fixed
in (15) and hence we are concerning with satisfying (10) in
frequency intervals. This case seems to be more complicated
than the previous one where R = I . Therefore, we shall
develop a new set of transformations so that the resulting
problem becomes convex. Different from the results (when
R = I ) given above, to obtain LMI formulation of design
conditions we propose to rewrite the inequality (13) as

ϒ23ϒ
T
2 ≺ 0, (19)

where

ϒ2=

[
A I 0 B0
C 0 I D0

]
, 3=

[
9∗ ⊗ Q+8∗ ⊗ P 0

0 5

]
(20)

and the matrix 5 is chosen as 5 = diag{−γ 2 R,R} for
γ ∈ (0, 1].
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IMPOSING REGIONAL POLE CONSTRAINTS
In the sequel we turn our attention to extended performance
specification to involve the regional pole constraints. Our
motivation here is the fact that the transient behavior along
a given trial k is closely related to locations all eigenvalues
of A. This means that some bounds can be put on the time-
domain objective (such as the rise time, the settling time and
so on) when assigning all eigenvalues ofA to particular loca-
tions in the open left-half of the complex plane. In particular,
the region of interest for pole assignment is the interior of the
circle of radius r > 0 with center at c denoted by C(c, r) and
given by

C(c, r) := {x + jy ∈ C : |x + jy− c| < r} .

To guarantee that the interior of this circle is located in open
left-half complex plane requires c < 0 and |c| > r. Clearly,
let λ = −ζωn ± jωd be a pair of eigenvalues of A, where
0 < ζ < 1 is the damping ratio, ωn is the undamped natural
frequency, and ωd := ωn

√
1− ζ 2 is the damped natural

frequency. Further, suppose that every λ is placed in C(c, r).
Then the following conditions are satisfied

ζ >

√
1−

( r
c

)2
, ωd < r,

− c− r < ωn < −c+ r,

− c− r < ζωn < −c+ r .

Moreover, to include the eigenvalue assignment constraints,
as an additional design specification, the following condition
can be used to give an additional constraint in the design
equations discussed previously[

AT I
] ([ 1 −c
−c |c|2−r2

]
⊗ Z

)[
A
I

]
≺0, (21)

where Z � 0 is a matrix variable. Clearly, it can be ver-
ified that the above inequality is a particular version of
Lemma 5 in [19].

III. DESIGN OF MONOTONICALLY CONVERGENT ILC
SCHEMES FOR A NOMINAL PLANT MODEL
In this section, the problem of designing the correspond-
ing matrices in the control law (5), such that the resulting
ILC scheme is monotonically convergent and meets the con-
sidered design specifications, is studied. More specifically,
we assume that the system (2) of the relative degree κ ≥ 1
is operated repeatedly in the iteration domain with a desired
output Yd over a finite time interval t ∈ [0,T ] and let updat-
ing law (5) be applied. Then we study the condition under
which the resulting repetitive process (6) is stable along the
trial (and hence ensures monotonic convergence of the ILC
scheme in sense of L2-norm) for given design specifications
over finite frequency range together with the regional pole
constraints. In view of this condition, feasible ILC controller
gain matrices can be given.

The following theorem presents a sufficient condition for
the solvability of the considered problem.

Theorem 1: Consider a nominal dynamics of (2) (that is
δ(t) = 0) with relative degree κ ≥ 1, and let updating law (5)
be applied. Also, let β, c, r , p, q be given scalars where β > 0,
c > r > 0 and p, q satisfy p2 − 2cpq + q2(|c|2−r2) < 0.
Then an ILC scheme described as a repetitive process of the
form (6) has the stability along the trial property over the
finite frequency ranges defined in Table 1 and all eigenvalues
ofA are located in the circle of radius r with center at (−c, 0).
Moreover, monotonic trial-to-trial error convergence occurs
over the same frequency intervals if there exist matrices
Q � 0, Z � 0, W2, Y1, Y2, a symmetric P, positive scalars
ε1 and ε2 such that ε2 ≥ ε1 and the following LMIs hold([

1 −c
−c |c|2−r2

]
⊗ Z

)
+ sym

{[
−W2

(AW T
2 +BY1)

T

][
qI −pI

]}
≺0, (22)

τQ υ∗Q+P 0 0
(?) ςQ 0 BY2
(?) (?) −ε1I (ε2I−CAκ−1BY2)
(?) (?) (?) −ε1I



+ sym



βI
I
0
0

[−W2 (AW T
2 +BY1)

T ϒT
3 0

]≺0,
(23)

where a pair of 9 and 8 is defined by (14) and

ϒ3 = −CAκW T
2 −CA

κ−1BY1.

In addition, if the above LMIs are feasible, the corresponding
matrices in the control law (5) can be selected as

K1 = Y1W
−T
2 , K2 = ε

−1
2 Y2. (24)

Proof: First of all, it follows immediately that the fea-
sibility of (22) ensures that W2 is non-singular and hence
invertible. Next, the LMI (22) rewritten as a version of the
first inequality of Lemma 1 where

ϒ=

[
Z −cZ
−cZ (|c|2−r2)Z

]
,3=

[
−I AT

]
, 6=

[
qI − pI

]
and Y1 = K1W T

2 . Since 6
T
⊥
ϒ6⊥ ≺ 0 holds for any p, q

satisfying p2− 2cpq+ q2(|c|2−r2) < 0 then the equivalence
between (22) and (21) follows from the Lemma 1. Next,
we have that LMI (23) is transformed into (19) where W1 =

βW2. Clearly, we can arbitrary choose β = 0 for low and
middle frequency ranges since τ = −1 for these frequency
ranges - see Table 1. For the high frequency range we have
τ = 1 and hence β 6= 0 must be chosen. Note that (23)
becomes the LMI when β is fixed and given. Then the result
follow directly from Lemmas 3 and 4.

IV. DESIGN PROCEDURE FOR R 6= I
In this section, the conditions of Theorem 1 will be further
developed. Since it is required to select the multiplier R 6= I ,
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we propose to introduce additional slack matrix variables,
with the aid of which, new conditions for designing ILC
schemes are proposed. To proceed, the following notations
are first defined for future use[
A B0
C D0

]
=

[
A 0
−CAκ I

]
+

[
B

−CAκ−1B

][
K1 K2

]
=A+BK,

ϒ4=

[
τQ 0
0 0

]
, ϒ5=

[
ςQ 0
0 −γ 2R

]
.

Then the theorem established next gives new LMI-based
conditions for monotonic trial-to-trial error convergence.
Theorem 2: Consider a nominal dynamics of (2) (that is

δ(t) = 0) with relative degree κ ≥ 1, and let updating
law (5) be applied. Also, let γ , β, c, r , p, q be given scalars
where 0 < γ ≤ 1, β > 0, c > r > 0 and p, q satisfy
p2−2cpq+q2(|c|2−r2) < 0. Then an ILC scheme described
as a repetitive process of the form (6) has the stability along
the trial property over the finite frequency ranges defined
in Table 1 and all eigenvalues ofA are located in the circle of
radius r with center at (−c, 0). Moreover, monotonic trial-
to-trial error convergence occurs over the same frequency
intervals if there exist matrices Q � 0, Z � 0, W2, W32,
W33, Y1, Y2, F1, F2, F3 and a symmetric matrix P such that
the LMIs (22) and ϒ4−sym{βŴ2} (?)

ϒ6+β(AŴ T
2 +BN )T−Ŵ T

2 ϒ5+sym
{
AŴ T

2 +BN
}

F30−Ŵ3 −FT12+[0 I ](AŴ
T
2 +BN )

(?)
(?)

R−F3−FT3

≺0, (25)

where

ϒ6 =

[
P1+υQ F1

0 F2

]
,F12=

[
F1
F2

]
,F30=

[
0 F3

]
,

N = [Y1 Y2], Ŵ3 = [W32 W33], Ŵ2 =

[
W2 0
W32 W33

]
are feasible. In addition, if the above LMIs hold, the corre-
sponding matrices in the control law (5) can be selected as

[K1 K2] = NŴ−T2 . (26)

Proof: Assume that the LMIs defined in (22) and (25)
are feasible for some given scalars γ , β, p and q. Then it is
immediate that the feasibility of (22) ensures the stability of
A and its eigenvalues are located in the circle of radius r
with center at (−c, 0). Also, W2 is non-singular and hence
invertible. Next, the LMIs in (25) can be rewritten as

0+sym


I 0 0
0 I 0
0 0 I

βŴ2

Ŵ2

Ŵ3

[−I (A+BK)T 0
]≺0,

(27)

where

0=

ϒ4 ϒT
6 FT30

ϒ6 ϒ5 −F12
F30 −FT12 R− sym{F3}

 .

Introduce the matrices

3=

I 0 0
0 I 0
0 0 I

 ,W =
βŴ2

Ŵ2

Ŵ3

 , 6=[−I (A+BK)T 0
]

and then (27) can be reformulated by application of Lemma 1
as the second inequality in (1), i.e.

6T
⊥
06⊥ ≺ 0, (28)

where by construction the matrix 6⊥ is

6⊥ =

AT 0
I 0
0 I

 .
Since3 = I then3⊥ = 0 and hence the first inequality in (1)
holds. Furthermore, after some routine matrix manipulations
the inequality (28) can be rewritten as

01+sym


I 0 0
0 I 0
0 0 I

F1F2
F3

[BT0 DT
0 −I

] ≺0,
(29)

where

01 =

τAQAT
+ςQ+sym

{
PAT
+υ∗QAT

}
τCQAT

+υCQ+CP
0

τAQCT+υ∗QCT+PCT 0
τCQCT−γ 2R 0

0 R

 ≺0
and by Lemma 1, feasibility of (29) implies that the
inequality

6T
1⊥0161⊥ ≺ 0

must hold where

61⊥ =

 I 0
0 I
BT0 DT

0

 .
Finally, this last inequality is equivalent to (20) and by
Lemmas 3 and 4 stability along the pass is ensured and
hence the monotonic trial-to-trial error convergence is
guaranteed.
Remark 2: It is immediate that the slack matrix variable

Ŵ2 must have the specific structure and this may introduce
a level of conservatism into the design. On the other side,
the additional matrix variables F1, F2 and F3 may reduce the
level of conservativeness.
Remark 3: The design conditions provided in Theorem 2

are LMIs that can be easily and effectively solved via numer-
ical software. In addition, optimal values of the scalar param-
eters β, p and q can be sought to reduce the conservatism
(in terms of performance provided by γ ) of the solutions.
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A. SOME COMMENTS ON DEVELOPED RESULTS
While using the results of Theorems 2 and 1 some numerical
problems may arise. In particular, a reader must be aware
calculations for frequenciesω ≈ 0 since lim

ω→0
G(jω) = I (G is

defined in (8)). Simply, when ω = 0 then for any K1 and K2
the value G(0) is

G(0) = −CA−1B0+D0 = I .

This means that the proposed conditions cannot produce the
reasonable controller gains K1 and K2 for frequency ranges
that include ω = 0 even when feasible controller gains
exist. For this type of designs, we need to exclude ω = 0
and ω ≈ 0. However, it is not clear at the moment how
to choose an appropriate range of excluded frequencies for
specific systems. Simply there is no systematic procedure for
choosing this frequency range. An alternative would be to
put a filter F(s) in series with G(s) such that |F(0)G(0)| < 1.
Some simplification in filter selection procedure can be intro-
duced by choosing F to be frequency-independent (equal
to the constant f where f ∈ (0, 1)) - see [10] for more
details on this type of filtering applied to mechanical systems.
For this case, G(0) = fI and highlighted problems are
vanished.

V. DESIGN OF MONOTONICALLY CONVERGENT ILC
SCHEMES FOR AN UNCERTAIN PLANT MODEL
In this section, the design of ILC schemes for an uncertain
plant model is performed by making extensive use of the
previously developed results. Unfortunately, this cannot be
directly done for any κ ≥ 1 since higher order system relative
degree κ > 1 results in uncertainty matrices coupled with
each other. Therefore, the conditions for robust monotonic
trial-to-trial error convergence are only provided for the case
when κ = 1.

The analysis that follows in this section uses the following
matrices (a particular version of the left hand side terms
in (22) and (23))

ϒ7 =

([
1 −c
−c |c|2−r2

]
⊗ Z

)
+ sym

{[
−W2

(AW T
2 +BY1)

T

][
qI −pI

]}
,

ϒ8 =


τQ υ∗Q+P β(−CAW T

2 −CBY1)
T 0

(?) ςQ (−CAW T
2 −CBY1)

T BY2
(?) (?) −ε1I (ε2I−CBY2)
(?) (?) (?) −ε1I



+ sym



βI
I
0
0

[−W2 (AW T
2 +BY1)

T 0 0
] .
(30)

When uncertainty is present, i.e., the matrices 1A(t)
and 1B(t) are present in (2) and are of the form (3).

Hence, the matrices in (9) for κ = 1 transform into

A = (A+1A(t))+(B+1B(t))K1,

B0 = (B+1B(t))K2, D0= I−C(B+1B(t))K2,

C = −C(A+1A(t))− C(B+1B(t))K2 (31)

and inequalities in Theorem 1 will include terms formed by
multiplication of two matrices with additive uncertainties.
The next result reformulates the condition of Theorem 1 to
an LMI-based characterization of the robust monotonic trial-
to-trial error convergence.
Theorem 3: Consider an uncertain dynamics of (2) (that

is δ(t) 6= 0) with relative degree κ = 1, and let updating
law (5) be applied. Also, let β, c, r , p, q be given scalars where
β > 0, c > r > 0 and p, q satisfy p2 − 2cpq + q2(|c|2−
r2) < 0. Then an ILC scheme described as a repetitive
process of the form (6) has the robust stability along the trial
property over the finite frequency ranges defined in Table 1
and all eigenvalues of A are located in the circle of radius r
with center at (−c, 0). Moreover, robust monotonic trial-to-
trial error convergence occurs over the specified frequency
intervals if there exist matrices Q � 0, Z � 0, W2, Y1, Y2,
F1, F2, F3, a symmetric matrix P, positive scalars ε1, ε2, ε1,
ε2 such that ε2 ≥ ε1 and the following LMIs hold ϒ7 ε1E7 HT

7
ε1ET7 −ε1I 0
H7 0 −ε1I

≺0, (32)

 ϒ8 ε2E8 HT
8

ε2ET8 −ε2I 0
H8 0 −ε2I

≺0, (33)

where

E7 =
[
qET −pET

]T
, H7 =

[
0 FaW T

2 +FbY1
]
,

E8 =
[
0 ET −ETCT 0

]T
,

H8 =
[
βFaW T

2 +βFbY1 FaW T
2 +FbY1 0 FbY2

]
.

Moreover, if the above LMIs are feasible, the corresponding
matrices in the control law (5) can be selected as in (24).

Proof: Suppose that the LMIs (32) and (33) are feasible.
Then application of Schur’s complement formula to (32)
yields

ϒ7 + ε1 E7ET7 + ε
−1
1 FT7 F7 ≺ 0

and by Lemma 2 this last inequality is feasible if and only if

ϒ7 + sym {E7δ(t)F7} ≺ 0.

The last inequality is (22) applied to the uncertainty case.
The LMI of (33) can be obtained by employing the same
steps used as those above and hence a version of (23) applied
to the plant with uncertainty is obtained. Finally, by the
result of Theorem 1, feasibility of (32) and (33) ensures that
a differential linear repetitive process of the form (6) with (31)
is robustly stable along the trial. This implies the robust
monotonic trial-to-trial error convergence and the proof is
complete.
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As the next step, we extend Theorem 2 results to the
case of plants which include norm bounded uncertainties.
To proceed, let us introduce the following notation

ϒ9 =

 ϒ4−sym{βŴ2}

ϒ6+β(AŴ T
2 +BN )T−Ŵ T

2
F30−Ŵ3

(?) (?)

ϒ5+sym
{
AŴ T

2 +BN
}

(?)

−FT12+[0 I ](AŴ
T
2 +BN ) R−F3−FT3

 ,
E =

[
E
−CE

]
, F =

[
Fa 0

]
and then the following result extends Theorem 2 to the case
of uncertain plants and hence another LMI-based condition
for the robust monotonic trial-to-trial error convergence is
provided.
Theorem 4: Consider an uncertain dynamics of (2) (that

is δ(t) 6= 0,) with relative degree κ = 1, and let updating
law (5) be applied. Also, let γ , β, c, r , p, q be given scalars
where 0 < γ ≤ 1, β > 0, c > r > 0 and p, q satisfy
p2−2cpq+q2(|c|2−r2) < 0. Then an ILC scheme described
as a repetitive process of the form (6) has the robust stabil-
ity along the trial property over the finite frequency ranges
defined in Table 1 and all eigenvalues of A are located in
the circle of radius r with center at (−c, 0). Moreover, robust
monotonic trial-to-trial error convergence occurs over the
specified frequency intervals if there exist matrices Q � 0,
Z � 0,W2,W32,W33, Y1, Y2, F1, F2, F3, a symmetric matrix
P and positive scalars ε1, ε3 such that the LMIs (32) and ϒ9 ε3E9 HT

9
ε3ET9 −ε3I 0
H9 0 −ε3I

≺0, (34)

where

E9 =
[
βET ET ET [0 I ]T

]T
,

H9 =
[
0 FŴ T

2 +FbN 0
]

are feasible. In addition, if the above LMIs hold, the cor-
responding matrices in the control law (5) can be selected
as in (26).

Proof: The result follows from a straightforward appli-
cation the same steps as in proof of Theorem 3 and hence
omitted.

VI. SIMULATION BASED CASE STUDY
To illustrate the effectiveness and feasibility of the new ILC
design, this section shows the applications of developed
results.
Example 1: The first example demonstrates the control law

design of (5) for a permanent magnet DC-motor using the
approach given in Theorem 2. This motor might be driving
(via some gears) a joint in a robot arm, which has to perform
a repetitive task. The equations of the motor model have been

borrowed from [20] and they are as follows

 α̇(t)$̇ (t)
i̇(t)

=

0 1 0

0 0
Ke
J

0 −
Ke
L

−
R
L


 α(t)$ (t)
i(t)

+
0
0
1
L

 u(t)

y(t) =
[
1 0 0

] α(t)$ (t)
i(t)

 , (35)

where α denotes the angle of the motor shaft, $ = α̇

is the angular velocity, u denotes the input voltage and i
is the armature current. Clearly, the relative degree of the
nominal dynamics is 3 (κ = 3). Also, J is the total moment
of inertia of the rotor with gears, Ke represents the motor
torque constant (the same as the back-electromagnetic force
constant), L is the electric inductance and R stands for the
electric resistance. For the numerical simulations, we assume
choose the following values J = 1.5 · 10−3kgm2, R = 0.2�
and L = 0.02 H , Ka = k = 9 · 10−3Vs/rad . Based on these
data, we compute the control lawmatrices of (5) by executing
the design procedure of this paper and the existing methods
in [21] and [22], then compare the achieved performance.
Note that the results of [21] and [22] require some extensive
modifications since they cannot be directly applied to the
considered example. Simply, originally they are inapplicable
to systems with κ > 1 and without modifications they give no
feasible results. On the other hand, the method in [22] allows
to impose the regional pole constraint and uses a type of
frequency-independent filtering and hence it avoids problems
at frequencies ω ' 0.

Executing the design procedure given in Theorem 2 for
β = 0.7, p = −13920, q = 1000, γ = 0.99 and f = 0.9
(see sub-section IV-A) we have that the controller matrices
are obtained as follows for the frequency range [1, 10] and
the regional pole constraints C(−10, 4)

K1= [−1.3332 −0.5209 −0.2298], K2 = −1.3288 · 10−4

It can be verified that the controlled system represented by
the differential repetitive process model is stable along the
trial. Clearly, ρ(D0) = 0.9359, and ρ(G(jω)) < 1 for all
ω in the prescribed frequency range, where G(jω) is defined
in (8). This can be seen in Figure 1 and it confirms that
the design specifications are met. Using the same regional
pole constraints (C(−10, 4)) and frequency-independent fil-
ter gain (f = 0.9), the (modified) method in [22] gives

K1= [−2.2995 −0.7877 −0.3394], K2 = −6.5883 · 10−6

From Figure 1 one can clearly see that the developed
design procedure over the finite frequency range can yield
less conservative results than the entire frequency method
in [22]. Specifically, this paper method results in less value
of ρ(G(jω)) than that one in [22] and hence the tracking
error convergence rate becomes faster. However, the differ-
ence between methods is not significant. Anyway, when the
frequency range changed to [20,40] then effectiveness of this
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FIGURE 1. Plot of ρ(G(jω)).

FIGURE 2. Plot of ρ(G(jω)).

paper method is strongly demonstrated - see Figure 2. Finally,
the controlled dynamics were simulated over 20 trials and for
each one the RMS (Root Mean Square) value of the tracking
error was computed. The desired trajectory is taken as

Yd (t) = sin(60π t)+ 0.5 sin(50π t), for 0 ≤ t ≤ 8.

Figure 3 shows the RMS values of the tracking error as a func-
tion of the trial number and hence it indicates the convergence
speed and accuracy for ILC control schemes. Obviously,
simulations of the response of the controlled systems con-
firm that the tracking error of the ILC systems is monoton-
ically convergent. More importantly, one can observe that
this paper method converges the error faster than the method
in [22]. Moreover, when using the LMI test provided in [16]
or [21] (after obvious transformation from repetitive process
results into ILC design procedures), infeasibility occurs even
when the LMI computations are performed for middle fre-
quency range only (the frequency range [1, 10] or [20, 40]).
It means that the many approaches for computing the con-
trol law matrices of (5) fail while the presented approach

FIGURE 3. RMS values of the error over 20 trials.

succeeds. Additionally, it must be understood that unlike the
most applicable design procedures provided in, e.g. [8], [11]
or [18], there is no need to use discrete-time model of (35).
Simply, our algorithm is applied to a plant that is originally
a continuous-time system and takes into account the hybrid
nature of the problem, i.e., the learning is a discrete-time
process (control signal update is performed for previous iter-
ation to the current one) and the plant in is a continuous-time
system.
Example 2: In this example the uncertain system with

relative degree κ = 1 is considered where the state-space
model is defined by the following matrices:

A =
[
−6 −2
4 0

]
, B =

[
1
0

]
, C =

[
1 0.75

]
.

Obviously this is a pure academic example since there is
almost none continuous-time models of physical systems
with relative degree κ = 1. For uncertainties modeled by (3),
assume that

E =
[
0.2
0

]
, Fa =

[
1 0.75

]
, Fb = 0.5

Application of the design procedure given in Theorem 4
for β = 1, p = −180, q = 100, γ = 0.95 and
f = 0.9 gives that the controller matrices are as follows for
the frequency range from 1 [rad/s] to 10 [rad/s]

K1= [0.6236 0.3226], K2 = 0.1741

Again, it can be verified that the controlled system repre-
sented by differential repetitive process model is stable along
the trial and therefore the robust tracking performance of the
resulting ILC scheme is improved. The effectiveness between
the above controllers and the controllers designed by using
repetitive setting approach given by [21] is compared. Note
that the method of [22] can only be applied for nominal
systems and hence cannot be used for robust control law

107022 VOLUME 8, 2020



L. Wang et al.: ILC for Linear Differential Systems With Additional Performance Requirements

FIGURE 4. Comparison of two methods.

design here. By applying the modified version of Theorem 3
in [21] we can find the control law matrices as

K1= [−32.9240 −21.2431], K2 = 5.3524 · 10−15

As it is seen, K2 gain generated by the method of [21]
is very low (K2 ≈ 0), and hence it results in very low
convergence speed since ρ(G(jω)) ≈ 1 over the cho-
sen frequency range. On the other side, this paper method
yields ρ(G(jω)) < 0.87. From comparison of two situations
in Figure 4, the convergence rate of the developed method
is significantly increased when comparing with the method
of [21]. Obviously, the effectiveness of the presented ILC
design is apparent.

VII. CONCLUSIONS
This paper has developed new results on the ILC problem
for a class of linear continuous-time systems. Both nominal
and uncertain dynamics of a given plant have been consid-
ered and design of ILC schemes based on the differential
repetitive process theory has been developed. Sufficient con-
ditions for the existence of a monotonically convergent ILC
law have been obtained in LMI form and thereby allowing
practically relevant control requirements over restricted fre-
quency ranges to be imposed. A simulation based case study
demonstrates the effectiveness of the new design method.
It is visible that this paper design procedures outperform
known alternatives so this work is an important progress.
On the other hand, it should be noted that this paper methods
involve more matrix variables than known alternatives and
hence usually leads to more computational cost. However,
the control lawmatrices are designed off-line and the tracking
(convergence) performance is the main concern here. Since
this paper methods can guarantee a lower spectral radius (and
hence the higher speed of tracking error convergence), their
more computational cost is justified.

Future research should include a detailed investigation
into the H∞ robust performance in the presence of external
bounded non-repetitive disturbances in both the state and

output vectors. Another area is design of an ILC law where
the more complex controller structures are used, e.g. a
dynamic controller. Also the extension to multiple state and
input delays should also be investigated, together with the
effects of uncertainty in the state initial vector on each trial.
Finally, when appropriate, experimental validation should be
undertaken.
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