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ABSTRACT In this paper, we develop a new color image lossless compression algorithm with bit-error
awareness based on a general bi-level block coding method. The proposed method contains three stages.
First, a color image in the RGB color space is converted to the YCrCb color space by lossless reversible
transformations. Next, predictors in theYCrCb color space are applied to generate residue sequences. In order
to achieve a better image compression ratio, a particle swarm optimization (PSO) algorithm is adopted to
search the best combination from the candidates of color transformations and predictors which generate the
minimum residue entropy. Third, a new 2-D bi-level block coding algorithm is developed to further encode
the residue sequences. Comparing with the existing residue coding methods, including 1-D bi-level block
coding, interval Huffman coding, and standard Huffman coding, the 2-D bi-level block coding algorithm can
improve image compression ratio as well as preserving the bit-error resilience. Finally, the key parameters
such as color transformation information, predictor parameters and residue coding parameters are protected
using (7, 4) Hamming codes in the bit stream before transmission. The performances are validated in terms
of compression ratio (CR) and peak signal to noise ratio (PSNR). The compression algorithm with bi-level
coding achieves the highest PSNR when the bit-error rate (BER) is larger than 0.001 and maintains an
acceptable PSNR for BER less than 0.001. In particular, the compression algorithm using the new 2-D
bi-level block coding scheme achieves the highest CR.

INDEX TERMS Lossless compression, bit-error awareness, general bi-level block coding, particle swarm
optimization, (7, 4) Hamming code.

I. INTRODUCTION
Digital image information is increasingly adopted in
many areas, such as medical imaging, remote sensing
applications, biomedical engineering and communication
engineering [1], [2]. However, transmission and storage of
digital images are facing major challenges due to the growing
size of digital image datasets [3]. Due to the enormous
data volumes, it is necessary to develop efficient ways to
compress images [4]–[7]. Although many lossy compression
methods can achieve high compression ratios [8], [9], lossless
image compression algorithms are the better choices when
it is unsure whether discarding information contained in the
image is applicable or not [10], [11]. For example, lossless
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compression algorithms are often required for ECG signals,
2-D, 3-D or even 4-D medical images [12], [13]. Among
the lossless compression approaches, the linear predictive
lossless image compression may traditionally involve with
prediction which generates the residue sequence and then the
residues are compressed by entropy encoding, or run-length
coding, or other residue coding algorithms. The linear pre-
diction for 1-D signals using a traditional least-square design
method can be found in [14]–[17]. The predictive coding
method can remove redundancy between pixels by extracting
and encoding the new information in each pixel, where the
new information refers to the difference between the current
actual value of the pixel and the predicted value of the
pixel [18]–[20].

Currently, there are several directions of lossless com-
pression algorithm development, including lossless algorithm
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improvement, data encryption, and lossless deep learn-
ing feature compression [21]–[23]. Compression algorithm
such as the arithmetic coding method can be improved by
using the range adjusting, step size adjusting, and mutual
learning scheme [21], where the compression efficiency is
mainly focused. In [22], lossless compression algorithm
involving with data encryption for high capacity data hiding
is proposed. In addition, due to recent advances of hard-
ware technology, the intelligent analysis equipped at the
front-end with deep learning becomes practical. Report [23]
proposes a strategy to compactly represent and convey the
intermediate-layer deep learning features with high gener-
alization capability, to facilitate the collaborating approach
between front and cloud ends. Thus, lossless compression
of deep learning features demonstrates a promising feasi-
bility, as a series of tasks can simultaneously benefit from
the transmitted intermediate layer features. However, the bit
stream produced from standard lossless compression algo-
rithms such as Huffman or arithmetic coding is vulnera-
ble to bit errors during transmission, since the bit stream
consists of the instantaneous codes [20]. The image quality
using such existing lossless compression methods may not
be preserved if a noisy transmission environment is involved.
A common solution by simply adding a bit-error control
scheme [25], [26] to the compressed bit stream may alleviate
the problem but often causing a significant reduction of data
compression efficiency or sometimes causing data expansion
as a result. Such a problem is currently tackled by developing
lossless compression algorithms to improve the compression
efficiency to compensate data expansion due to using the bit
error control scheme; and to possess the feature of bit error
resilience [27]–[31], in which the one-dimensional signal
and gray-scale image are compressed. However, if the color
image compression is considered, there will still exist a room
for further improvement.

For color image compression, there are several opportuni-
ties for improvement. First, the prediction can be conducted in
the YCrCb color space instead of the RGB color space using
the reversible color transformation as reported in [24]. The
prediction in the YCrCb color space has two advantages [32],
that is, the predictors may be more effective in the YCrCb
color space; and when an YCrCb image is converted back
to an RGB image, there exists a useful feature of bit-error
resilience. In addition, choosing the best combination of the
image color conversion and prediction can be achieved via
an artificial intelligence algorithm such as the particle swarm
optimization (PSO) algorithm [33], [34]. Next, an improved
residue coding scheme over the existing schemes [27]–[30]
can be developed, which may offer a better compression ratio
and bit-error resilience. Finally, the error correction for key
information can be applied [25], [26] to ensure the recovery
process of lossless compression.

This paper is organized as follows to address the above
issues. The proposed research work is first described
in Section II. In Section III, a generalized bi-level block
coding algorithm is derived. Then a new 2-D bi-level block

coding scheme is developed as a special case, which
offers better data compression while preserving the bit-error
resilience. Section IV proposes a three-stage framework for
color image compression; and illustrates the determination of
the best combination of the color space transformations and
the predictors using the particle swarm optimization (PSO)
algorithm. Section V outlines the existing residue coding
methods including 1-D bi-level block coding, interval
Huffman coding, standard Huffman coding, and bit stream
using a pack scheme which protects key information param-
eters with (7,4) Hamming codes [31]. Section VI validates
the performances using the new 2-D bi-level block coding
algorithm by comparing with the other three residue coding
algorithms mentioned above. Finally, the conclusions are
presented in Section VII.

This paper has following contributions:
a. Developed a general bi-level block coding scheme with

a 2-D bi-level block coding scheme as a special case, which
can offer the best compression ratio while preserving bit-error
resilience;

b. Developed a three-stage framework for color image
compression;

c. Applied the PSO algorithm to determine the best
reversible color transformations from the RGB color space to
the YCrCb color space and the best predictors in the YCrCb
color space.

II. PROPOSED WORK
In the previous work [27]–[30], the compression algorithm
consists of prediction and residue coding, where the residue
coding is conducted in one-dimension domain assuming the
predicted residues are statistically independent. Our moti-
vation and objectives are describes as follows. To improve
the previous work, first our proposed work is to generalize
1-D bi-level block coding to N-dimensional bi-level block
coding. To compress 2-D residue data, 2-D bi-level block
coding, which is a special case of N-dimensional bi-level
block coding, can be applied to explore the spatial correlation
of 2-D residue data to improve coding efficiency as well as to
achieve better bit-error resilience.

As for color image compression, the prediction stage can
be split to the lossless RGB to YCrCb conversion and pre-
diction [24]. Our proposed work is to obtain the minimum
residue entropy from prediction by a PSO scheme to select the
best combination of the conversion formulas and predictors
from the RGB color space to the YCrCb color space.While in
the recovery process, that is, the conversion from the YCrCb
color space back to the RGB color space, we may expect
the second-level bit-error resilience. The validation can be
easily achieved by comparing the results from applying the
related work [27]–[30] by compressing the RGB channel data
independently.

III. GENERALIZED BI-LEVEL BLOCK CODING
A. N-DIMENSION BI-LEVEL BLOCK CODING
For an N dimension data samples each with a size of N0
bits, we can divide data samples into level-1 blocks, in which
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each sample requires less or equal to N1 (N1 < N0) bits
to encode, and level-0 blocks, in which at least one sample
requires more than N1 bits and less than or equal to N0 bits to
encode. Assuming all data samples are statistically indepen-
dent, the probability of a level-1 block can be expressed as
P1 = px1x2...xN , where x1, x2, . . . , xN are the dimension sizes
of a data blocks, respectively. p = 1 − p0 is the probability
of a data sample requiring less than N1 bits to encode and
p0 (close to zero) is the probability of a data sample requiring
more thanN1 bits to encode. The probability of a level-0 block
can be written as P0 = 1 − P1 = 1 − px1x2...xN . For the N
dimension data samples consisting ofm blocks in which there
are k level-1 blocks and (m − k) level-0 blocks, the coding
length and its probability are, respectively, given below:

L(k) = m+ N0x1x2 . . . xN (m− k)+ N1x1x2 . . . xN k (1)

P(k) =
(
m
k

)
Pk1 (1− P1)

m−k

=

(
m
k

)
px1x2...xN k

(
1− px1x2...xN

)m−k (2)

The average length Lave can be found below:

Lave=
m∑
k=0

P(k)L(k)

= (m+ N0x1x2 . . . xNm)
m∑
k=0

P(k)

− (N0 − N1)x1x2 . . . xN
m∑
k=0

kP(k)

= (m+ N0x1x2 . . . xNm)
− (N0 − N1)x1x2 . . . xNmpx1x2...xN (3)

Assuming that x1x2 . . . xNp0 ≤ γ , where 0 < γ � 1, we can
approximate probability P1 using a Taylor series expansion
and further omitting the higher-order terms as

P1 = px1x2...xN = (1− p0)x1x2...xN

= 1− p0x1x2 . . . xN + . . . ≈ 1− p0x1x2 . . . xN (4)

Defining n = x1x2 . . . xN × m, we obtain

Lave =
n

x1x2 . . . xN
+ nN1 + (N0 − N1)nx1x2 . . . xNp0 (5)

For a fixed N1, taking derivative of (5) to x1, x2, . . . , xN ,
respectively and setting the resultant equations to zero lead
to the following:
∂Lave
∂x1

= −
n

x21x2 . . . xN
+ (N0 − N1)nx2 . . . xNp0 = 0

∂Lave
∂x2

= −
n

x1x22 . . . xN
+ (N0 − N1)nx1x3 . . . xNp0 = 0

. . . .
∂Lave
∂xN

= −
n

x1x2 . . . x2N
+ (N0 − N1)nx1x2 . . . xN−1p0 = 0

Therefore, we yield the optimal product of block dimensions
and the minimum average bits per sample, that is,

(x1x2 . . . xN )∗ = 1/
√
(N0 − N1)p0 (6)(

Lave
n

)
min
= 2

√
(N0 − N1)p0 + N1 (7)

TABLE 1. 2-D bi-level block coding rules.

B. TWO-DIMENSION BI-LEVEL BLOCK CODING
By setting N = 2, x = x1, y = x2 in the N-dimension bi-level
block coding, we can develop a 2-D bi-level block coding
scheme as shown in Table 1. Equations (1)-(2) are simplified
to

L(k) = m+ N0xy(m− k)+ N1xyk (8)

P(k) =
(
m
k

)
Pk1(1− P1)

m−k
=

(
m
k

)
pxyk (1− pxy)m−k (9)

Correspondingly, Equations (6) and (7) become

(xy)∗ = 1/
√
(N0 − N1)p0 (10)

Lave =
n
xy
+ nN1 + (N0 − N1)nxyp0 (11)(

Lave
n

)
min
= 2

√
(N0 − N1)p0 + N1 (12)

with xyp0 < γ . The 2-D bi-level block coding rules are given
in Table 1.

The optimal coding parameters are N1 and (xy)∗ corre-
sponding to the smallest (Lave/n)min through the entire search
for 1 ≤ N1 ≤ N0. Initially, let N1 = N0 − 2, and xy = 4.
Table 2 lists the 2-D bi-level block coding algorithm.

IV. CORLOR TRANSFORMATION AND BEST PREDICTORS
A. THREE-STAGE FRAMEWORK
Fig. 1 depicts our framework for three-stage lossless color
image compression.

As shown in Fig. 1, the process of losslessly compressing
a color image into a bit stream is divided into three stages.
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TABLE 2. 2-D bi-level block coding algorithm.

FIGURE 1. Bit-error aware three-stage lossless color image compression.

At the first stage, a RGB image is converted into a YCrCb
image, where Y is the luminance component and Cr and Cb
are red-difference and blue-difference chrominance compo-
nents. At the second stage, the YCrCb image is predicted
by predictive coders so that the correlation between pixels
is reduced and the residue sequence is generated. Note that
a particle swarm optimization (PSO) algorithm is used to
search the best formulas of color space transformation and
the best predictors in the YCrCb color space. The acquired
residues are further encoded into a residue bit stream using
a residue encoding algorithm at the third stage. In addition,
due to bit errors in transmission, some key parameters, that
is, the color transformation information, predictor parameters
and residue coding parameters, need to be protected by (7,4)
Hamming code. The final bit stream is produced by packing
these key parameters and unprotected residue bit stream.
Decompression is then in a reversed order.

B. COLOR SPACE TRANSFORMATION
YCrCb is used to optimize the transmission of color video
and digital signals. The principle is that in the YCrCb format,

TABLE 3. Transformation formula for Y, Cr and Cb in color space.

the luminance channel carries more signal energy, while
the chrominance channels carry much less signal energy of
color components. After transformation, more effort can be
spent on coding the luminance channel [17], which is more
predictable. According to this principle, the compression in
the YCrCb color space can obtain a higher compression ratio
and better bit-error resilience than in the RGB color space.
Table 3 lists reversible transformations from the RGB to the
YCrCb and vice versa [24], [32], where nine (9) equations
are related to conversion from RGB to Y, and twelve (12)
equations are related to conversion from RGB to CrCb. As an
example for compressing the 512 × 512 ‘‘Lena’’ image on
the basis of the maximum compression criterion, the PSO
algorithm determines the eighth formula for Y and the first
formula for CrCb, that is,

Y = b(2R+ G+ B)/4c ; Cr = R− G; Cb = B− G. (13)

The YCrCb image can be obtained by applying (13) to
the RGB image. On the other hand, the converted YCrCb
image can also be recovered back to the RGB image as:

R = Y + floor{(2Cr − Cb)/4} (14)

G = R− Cr; B = Cb+ G. (15)

For the 512 × 512 ‘‘Baboon’’ image, the transformation
formulas for Y at the sixth row, and CrCb at the eleventh row
in Table 3 are adopted to obtain a YCrCb image. The YCrCb
image can be converted back to the RGB image as follows:

G = Cb+ Y ; B = Y − floor{Cr/2};

R = Y + Cr − floor{Cr/2}. (16)

C. PREDICTION
According to the correlation between pixels, a pixel can be
predicted by using the surrounding pixels, and then the dif-
ference between the actual pixel value and the predicted value
(prediction error) is encoded. If the prediction is correctly
chosen, the error will be small, and it can be encoded with
fewer bits to achieve data compression. To illustrate, as shown
in Fig. 2, X is the predicted pixel; and A, B and C are the
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FIGURE 2. Neighbored pixels for the predictor in an image.

TABLE 4. Linear predictors for Y, Cr and Cb.

FIGURE 3. Iterative curve of PSO for ‘‘Lena’’ image.

known neighbor pixels of X used for the predictor. According
to A, B and C, the value of X can be calculated.

As can be seen in Table 4, two linear predictive
equations are selected for Y, Cr and Cb components,
respectively [27], [32]. In the light of the maximum
compression criterion, the best equations will be adopted.

D. PARTICLE SWARM OPTIMIZATION (PSO)
From Table 3 and Table 4, there are nine formulas of Y
space transformation, twelve formulas of CrCb space
transformation, and two predictors for Y, Cr and Cb compo-
nents, respectively. There are 864 combinations. It is tedious
to find out the best solution to minimize the compression ratio
by checking each combination. The particle swarm optimiza-
tion (PSO) algorithm can effectively be used to solve this
problem. This algorithm uses an evolutionary computation
which seeks an optimal solution through collaboration and
information sharing among particles in a swarm. The PSO
algorithm is listed in Table 5.

Fig. 3 shows the plot of fitness value versus the number of
iterations using the PSO algorithm for the 512×512 ‘‘Lena’’
image. It takes about 6 minutes to process the image on
Lenovo Y900 (i7-6700k). The best fitness value is 4.55114.

TABLE 5. Process of particle swarm optimization.

V. RESIDUE CODING ALGORITHM
After prediction, the predicted residues can be compressed
sequentially. It is assumed that the residue samples are
uncorrelated and follow the Laplacian distribution [14]
approximately. Besides 2-D bi-level block coding devel-
oped in Section III, 1-D bi-level block coding [30], interval
Huffman coding and standard Huffman coding are included
for comparison.

A. BI-LEVEL BLOCK CODING
Based on the 2-D bi-level block coding scheme developed
in Section III, our proposed algorithm in a complete form is
depicted in Fig. 4.

Note that the 1-D bi-level block coding scheme [27]–[30],
is also used for comparison purpose. By using 1-D bi-level
block coding, the residue sequence is divided into blocks with
a size of x samples and each block is encoded based on the
rules in [32].

B. INTERVAL HUFFMAN CODING
Interval Huffman coding is an entropy coding, which can
divide the residue into different interval and its offset.
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FIGURE 4. Bit-error aware YCrCb predictive coding using the new 2-D
bi-level block coding scheme.

TABLE 6. Interval Huffman coding.

The interval and offset [30] are determined using the
following equations

q(n) = floor{r(n)/2(N0−N1)} (17)

offset = r(n)− 2(N0−N1) × q(n). (18)

where q(n) is the symbol of interval, which is quantized from
a residue r(n). It is entropy encoded and error protected. N0
andN1 are the symbol sizes. Function floor(x) rounds x down
to the nearest integer towards negative infinity. Assuming that
q(n) follows a perfect Laplacian distribution, choosing the
smaller symbol sizeN1 for the interval entropy coder will gain
approximately compression. Here choosing N1 = 3 leads the
best result from our experiments. The interval Huffman codes
are listed in Table 6 [30].

C. STANDARD HUFFMAN CODING
To raise a comparison, standard Huffman coding is also
included in this work. The scheme is shown in Table 7 [30].

TABLE 7. Standard Huffman coding.

FIGURE 5. Coding protection for different methods.

Residue of prediction is encoded using a prefix which
describes code size, cascaded by the binary amplitude bits.
To encode −3, −2, +2 and +3, for example, the results are
01100, 01101, 01110, and 11111, respectively. The first three
numbers are the prefix code. In this work, the prefix part is
protected using (7,4) Hamming codes.

For these four residue coding algorithms, key parameters
are protected by (7,4) Hamming code. Fig. 5 depicts coding
protection for four different residue coding methods.

As shown in Fig. 5, (7,4) Hamming code protects color
space transformation of Y and CrCb, predictors parameters,
first row and first column of the original image, bi-level block
coding parameters and block types; interval Huffman coding
parameters and residue interval codes, and code words of
standard Huffman coding.

VI. RESULT AND DISCUSSION
In our experiments, we adopt four different color images of
‘‘Lena’’, ‘‘Baboon’’, ‘‘Pepper’’, and ‘‘Airplane’’ in the public
domain each with a size of 512× 512, as shown in Fig. 6.
The peak signal to noise ratio (PSNR) and compression

ratio (CR) are used to evaluate the image compression and
bit-error resilient performance, in which PSNR is related to
the image quality. The larger the PSNR, the better the image
quality is. The PSNR of RGB image with an M × N size is
given by:

PSNR(dB) = 20× log10

(
255
RMSE

)
(19)
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FIGURE 6. Public domain test images.

Note that

RSME2
=

1
3M × N

 N∑
i=1

M∑
j=1

[R(i, j)− R̂(i, j)]2

+

N∑
i=1

M∑
j=1

[G(i, j)− Ĝ(i, j)]2

+

N∑
i=1

M∑
j=1

[B(i, j)− B̂(i, j)]2

 (20)

where R(i, j) and R̂(i, j), G(i, j) and Ĝ(i, j), and B(i, j) and
B̂(i, j) are the original pixels and the recovered pixels, for
RGB components, respectively. The CR is the ratio of the
pixel size of the original image and the bits of per pixel of
the compressed image.

For a RGB color image, it is necessary to convert the
RGB image to the YCrCb image. If the image is directly
compressed without color space conversion, its compression
ratio and image quality will decrease. Table 8 lists the PSNRs
and CRs of RGB images without color space conversion as
well as the results from the color-converted images using
different residue coding algorithms when the bit-error rates
(BERs) are 0.001 and 0.005, respectively. Here, we only show
the results from the 512×512 ‘‘Lena’’ image in details. Each
PSNR and CR are obtained by averaging the values from
10 independent runs, respectively. Notice that the PSNRvalue
varies according to the bit error rate while the compression
ratio is a robust value.

As shown in Table 8, the CRs and PSNRs of images which
have not been processed by color conversion are smaller than
those of images from converting RGB to YCrCb. In addition,
for residue coding methods, the PSNRs of these four methods

TABLE 8. Performance evaluation for RGB image and color-converted
image.

are almost the same when the BER is 0.001. Bi-level block
coding algorithm has a higher PSNR than other two algo-
rithms when the BER is 0.005. Even though the PSNR from
1-D bi-level block coding has almost the same PSNR when
comparing with the PSNR from 2-D bi-level block coding,
the 2-D bi-level block coding method achieves a higher CR.

Fig. 7 shows the results for BER at 0.005. Note that only the
2-D bi-level block coding results are included in Fig. 7 since
1-D bi-level block coding has almost the same PNSR value.
When the BER increases, there exists more significant impact
on the image quality, resulting in image distortion.

Figs. 8-11 show the PSNR performances with the change
of the bit-error rate for color-converted ‘‘Lena’’, ‘‘Baboon’’,
‘‘Pepper’’, and ‘‘Airplane’’ images in the YCrCb color space,
respectively. Each PSNR in each figure is obtained by
averaging the values from 10 independent runs.

It can be seen that the PSNRs from 2-D and 1-D bi-level
block coding algorithms are close. When the BER is more
than 0.001, bi-level block coding offers a higher value of
PSNR than the other three methods. On the other hand, the
‘‘Lena’’ image using bi-level block coding has the lowest
value of PSNR when the BER is less than 0.001. However,
bi-level block coding algorithm still maintains an excellent
image quality.

In order to compare CR performances, we list the results
from using four different residue coding methods in Table 9.
As shown in Table 9, two industry standard lossless compres-
sion algorithms of JPEG2000 [35] and WebP [36] are used to
create reference values by adding (7,4) Hamming codes so
that they are more robust to bit errors for fair comparisons.

As shown in Table 9, the bi-level block coding algorithms
achieve higher CRs. The new 2-D bi-level block coding
algorithm has a higher CR than the 1-D bi-level block coding
algorithm. In terms of both bit-error resilience and compres-
sion ratio, the 2-D bi-level block coding algorithm with pre-
diction in the YCrCb color space offers the best performance
in general.

Clearly, it can be seen that the proposed YCrCb predic-
tive 2-D bi-level block coding has the following advantages:
(1) it offers a highest CR in comparison with the other
different combinations, since the first efficiency is achieved
via the best selection of the RGB to YCrCb conversion and
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FIGURE 7. Comparison results using predictive 2-D bi-level block coding,
predictive interval Huffman coding and predictive Huffman coding
at BER = 0.005 for ‘‘Lena’’ image.

prediction; and the second efficiency is further obtained via
2-D bi-level block coding; (2) for a noisy environment with a
larger bit-error rate, that is, 0.001< BER<0.01, the proposed
method restores the best color image quality, that is, achieving
the highest PSNR value. Many additional simulations show
that the PNSR value using prediction in the YCrCb color
space is about 2∼3 dB higher than the one from the prediction

FIGURE 8. PSNR performances versus the bit-error rate for ‘‘Lena’’ image.

FIGURE 9. PSNR performances versus the bit-error rate for ‘‘Baboon’’
image.

FIGURE 10. PSNR performances versus the bit-error rate for ‘‘Pepper’’
image.

in the RGB color space. Note that ourmethod has a significant
advantage for compressing color images. For the gray-scale
images, the two-stage method in [27] can be easily applied.
Our future work will include the measurement comparisons
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FIGURE 11. PSNR performances versus the bit-error rate for ‘‘Airplane’’
image.

TABLE 9. Compression ratio (CR) performances versus different residue
methods and industry standards.

of image quality in the bit-error environment using the PNSR
as well as a similar index such as the structural similarity
(SSIM).

VII. CONCLUSION
In this paper, we have first developed a general bi-level
block coding method so that a 2-D bi-level block coding can
be proposed for image residue compression. Next, we have
proposed a three-stage compression framework for color
image compression with bit-error awareness. It consists of
converting the RGB image to the YCrCb image; applying lin-
ear predictors for the YCrCb components; encoding residue
sequence and packing key parameters protected using (7,4)
Hamming codes. A particle swarm optimization (PSO) algo-
rithm is also applied to determine the best combination of
reversible color transformations from the RGB color space
to the YCrCb color space, and image predictors.

Our experimental results validate the coding performances
in terms of the compression ratio (CR) and peak signal to

noise ratio (PSNR). When the bit-error rate (BER) is larger
than 0.001, the bi-level block coding algorithm offers the
highest PSNR. Even if the BER is less than 0.001, this method
still maintains a good value of PSNR. In terms of compression
ratio, the new 2-D bi-level block coding algorithm achieves
the highest CR.

REFERENCES
[1] X. Wu and N. Memon, ‘‘Context-based, adaptive, lossless image coding,’’

IEEE Trans. Commun., vol. 45, no. 4, pp. 437–444, Apr. 1997.
[2] T. Lin and P. Hao, ‘‘Compound image compression for real-time computer

screen image transmission,’’ IEEE Trans. Image Process., vol. 14, no. 8,
pp. 993–1005, Aug. 2005.

[3] L. Shen and R. M. Rangayyan, ‘‘A segmentation-based lossless image
coding method for high-resolution medical image compression,’’ IEEE
Trans. Med. Imag., vol. 16, no. 3, pp. 301–307, Jun. 1997.

[4] J. Mielikainen and B. Huang, ‘‘Lossless compression of hyperspectral
images using clustered linear prediction with adaptive prediction length,’’
IEEE Geosci. Remote Sens. Lett., vol. 9, no. 6, pp. 1118–1121, Nov. 2012.

[5] S.-G.Miaou, F.-S. Ke, and S.-C. Chen, ‘‘A lossless compressionmethod for
medical image sequences using JPEG-LS and interframe coding,’’ IEEE
Trans. Inf. Technol. Biomed., vol. 13, no. 5, pp. 818–821, Sep. 2009.

[6] V. Sanchez, R. Abugharbieh, and P. Nasiopoulos, ‘‘Symmetry-based scal-
able lossless compression of 3D medical image data,’’ IEEE Trans. Med.
Imag., vol. 28, no. 7, pp. 1062–1072, Jul. 2009.

[7] H. Wu, X. Sun, J. Yang, W. Zeng, and F. Wu, ‘‘Lossless compression of
JPEG coded photo collections,’’ IEEE Trans. Image Process., vol. 25, no. 6,
pp. 2684–2696, Jun. 2016.

[8] S. Kim and N. I. Cho, ‘‘Hierarchical prediction and context adaptive cod-
ing for lossless color image compression,’’ IEEE Trans. Image Process.,
vol. 23, no. 1, pp. 445–449, Jan. 2014.

[9] R. Kannan and C. Eswaran, ‘‘Lossless compression schemes for ECG sig-
nals using neural network predictors,’’ EURASIP J. Adv. Signal Process.,
vol. 2007, no. 1, pp. 1–20, Dec. 2007.

[10] R. Starosolski, ‘‘Simple fast and adaptive lossless image compression
algorithm,’’ Softw., Pract. Exp., vol. 37, no. 1, pp. 65–91, Jan. 2007.

[11] T. Leung, M. W. Marcellin, and A. Bilgin, ‘‘Visually lossless compression
of windowed images,’’ in Proc. Data Compress. Conf., Mar. 2013, p. 504.

[12] A. Koski, ‘‘Lossless ECG encoding,’’ Comput. Methods Programs
Biomed., vol. 52, no. 1, pp. 23–33, 1997.

[13] V. Sanchez, P. Nasiopoulos, and R. Abugharbieh, ‘‘Efficient lossless com-
pression of 4-D medical images based on the advanced video coding
scheme,’’ IEEE Trans. Inf. Technol. Biomed., vol. 12, no. 4, pp. 442–446,
Jul. 2008.

[14] S. D. Stearns, L. Tan, and N. Magotra, ‘‘A bi-level coding technique for
compressing broadband residue sequences,’’ Digit. Signal Process., vol. 2,
no. 3, pp. 146–156, Jul. 1992.

[15] S. D. Stearns, ‘‘Arithmetic coding in lossless waveform compression,’’
IEEE Trans. Signal Process., vol. 43, no. 8, pp. 1874–1879, Aug. 1995.

[16] S. D. Stearns, Digital Signal Processing With Examples in MATLAB.
Boca Raton, FL, USA: CRC Press, 2002.

[17] L. Tan and J. Jiang, Digital Signal Processing: Fundamentals and Appli-
cations, 3rd ed. Amsterdam, The Netherlands: Elsevier, 2018.

[18] N. Sriraam and C. Eswaran, ‘‘Context based error modeling for lossless
compression of EEG signals using neural networks,’’ J. Med. Syst., vol. 30,
no. 6, pp. 439–448, Nov. 2006.

[19] M. J.Weinberger, G. Seroussi, andG. Sapiro, ‘‘The LOCO-I lossless image
compression algorithm: Principles and standardization into JPEG-LS,’’
IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324, Aug. 2000.

[20] S. D. Stearns, L.-Z. Tan, and N. Magotra, ‘‘Lossless compression of wave-
form data for efficient storage and transmission,’’ IEEE Trans. Geosci.
Remote Sens., vol. 31, no. 3, pp. 645–654, May 1993.

[21] J. Ding, I. Wang, and H.-Y. Chen, ‘‘Improved efficiency on adaptive
arithmetic coding for data compression using range-adjusting scheme,
increasingly adjusting step, and mutual-learning scheme,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 28, no. 12, pp. 3412–3423, Dec. 2018.

[22] A. K. Shukla, A. Singh, B. Singh, and A. Kumar, ‘‘A secure and high-
capacity data-hiding method using compression, encryption and opti-
mized pixel value differencing,’’ IEEE Access, vol. 6, pp. 51130–51139,
Sep. 2018.

VOLUME 8, 2020 110101



X. Peng et al.: 2-D Bi-Level Block Coding for Color Image Compression and Transmission

[23] Z. Chen, K. Fan, S. Wang, L. Duan, W. Lin, and A. C. Kot, ‘‘Toward
intelligent sensing: Intermediate deep feature compression,’’ IEEE Trans.
Image Process., vol. 29, pp. 2230–2243, 2020.

[24] T. Strutz and A. Leipnitz, ‘‘Reversible color spaces without increased bit
depth and their adaptive selection,’’ IEEE Signal Process. Lett., vol. 22,
no. 9, pp. 1269–1273, Sep. 2015.

[25] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ, USA: Prentice-Hall, 1983.

[26] S. Rhee, C. Kim, J. Kim, and Y. Jee, ‘‘Concatenated Reed–Solomon
code with Hamming code for DRAM controller,’’ in Proc. 2nd Int. Conf.
Comput. Eng. Appl., Bali, Island, 2010, pp. 291–295.

[27] L. Tan and L. Wang, ‘‘Bit-error aware lossless image compression,’’ Int. J.
Mod. Eng., vol. 11, no. 2, pp. 54–59, 2011.

[28] G. Zeng and N. Ahmed, ‘‘A block coding technique for encoding sparse
binary patterns,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. 37,
no. 5, pp. 778–780, May 1989.

[29] L. Tan and J. Jiang, ‘‘A bi-level block coding technique for encoding data
sequences with sparse distributions,’’ Technol. Interface J., vol. 9, no. 1,
2008.

[30] L. Tan, J. Jiang, and Y. Zhang, ‘‘Bit-error aware lossless compression of
waveform data,’’ IEEE Signal Process. Lett., vol. 17, no. 6, pp. 547–550,
Jun. 2010.

[31] F. Marcelloni and M. Vecchio, ‘‘A simple algorithm for data compres-
sion in wireless sensor networks,’’ IEEE Commun. Lett., vol. 12, no. 6,
pp. 411–413, Jun. 2008.

[32] X. Peng, J. Hou, L. Tan, J. Chen, J. Jiang, and X. Guo, ‘‘Bit-error aware
lossless color image compression,’’ in Proc. IEEE Int. Conf. Electro Inf.
Technol. (EIT), Brookings, South Dakota, May 2019, pp. 126–131.

[33] M. Ahmadieh Khanesar, M. Teshnehlab, and M. Aliyari Shoorehdeli,
‘‘A novel binary particle swarm optimization,’’ in Proc. Medit. Conf.
Control Autom., Athens, Greece, Jun. 2007, pp. 1–6.

[34] X. Wu, ‘‘A density adjustment based particle swarm optimization learning
algorithm for neural network design,’’ in Proc. Int. Conf. Electr. Control
Eng., Yichang, China, Sep. 2011, pp. 2829–2832.

[35] (May 16, 2020). OpenJPEG. [Online]. Available: https://www.
openjpeg.org/

[36] (May 16, 2020). A New Image Format For the Web. [Online]. Available:
https://developers.google.com/speed/webp

XUAN PENG received the B.S. degree in mate-
rials science and engineering from the Beijing
Institute of Technology, Beijing, China, in 2017,
and the M.S. degree in electrical and computer
engineering, from Purdue University Northwest,
Hammond, IN, USA, in 2019. His research inter-
ests include digital signal processing, data and
image compression, and image processing.

JEAN JIANG (Senior Member, IEEE) received
the B.S. and M.S. degrees in electrical engineer-
ing from Southeast University, Nanjing, China,
in 1982 and 1985, respectively, and the Ph.D.
degree in electrical engineering from The Uni-
versity of New Mexico, Albuquerque, NM, USA,
in 1992.

She is currently an Associate Professor with
the College of Technology, Purdue University
Northwest, Hammond, IN, USA. She has authored

or coauthored two textbooks Analog Signal Processing and Filter Design
(Linus Publications, Second Edition, 2016) and Digital Signal Processing:
Fundamentals and Applications (Elsevier, Third Edition, 2018). Her research
interests include digital signal processing, adaptive signal processing, control
systems, computer vision, and robotics.

LIZHE TAN (Senior Member, IEEE) received the
B.S. degree from Southeast University, Nanjing,
China, in 1984, and the M.S. degree in engineer-
ing mechanics and the M.S. and Ph.D. degrees in
electrical engineering from The University of New
Mexico, Albuquerque, NM, USA, in 1987, 1989,
and 1992, respectively.

He is currently a Professor with the Depart-
ment of Electrical and Computer Engineering,
Purdue University Northwest, Hammond, IN,

USA. He has authored or coauthored two textbooks Analog Signal Pro-
cessing and Filter Design (Linus Publications, Second Edition, 2016) and
Digital Signal Processing: Fundamentals and Applications (Elsevier, Third
Edition, 2018). He holds a granted U.S. patent. His research interests include
digital signal processing, adaptive signal processing, control systems, com-
puter vision, and robotics. He has served as an Associate Editor for the
International Journal of Engineering Research and Innovation.

JINTAO HOU received the B.S. degree in mea-
surement and control technology from the North
University of China, Taiyuan, China, in 2017,
and the M.S. degree in electrical and computer
engineering from Purdue University Northwest,
Hammond, IN, USA, in 2020. His research
interests include digital signal processing, image
processing, and computer vision.

110102 VOLUME 8, 2020


