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ABSTRACT Crop disease diagnosis is an essential step in crop disease treatment and is a hot issue
in agricultural research. However, in agricultural production, identifying only coarse-grained diseases of
crops is insufficient because treatment methods are different in different grades of even the same disease.
Inappropriate treatments are not only ineffective in treating diseases but also affect crop yield and food
safety. We combine IoT technology with deep learning to build an IoT system for crop fine-grained disease
identification. This system can automatically detect crop diseases and send diagnostic results to farmers.
We propose a multidimensional feature compensation residual neural network (MDFC–ResNet) model
for fine-grained disease identification in the system. MDFC–ResNet identifies from three dimensions,
namely, species, coarse-grained disease, and fine-grained disease and sets up a compensation layer that
uses a compensation algorithm to fuse multidimensional recognition results. Experiments show that the
MDFC–ResNet neural network has better recognition effect and is more instructive in actual agricultural
production activities than other popular deep learning models.

INDEX TERMS IoT, multiple crops, fine-grained disease recognition, ResNet, singular value
decomposition.

I. INTRODUCTION
For a long time, crop disease has been one of the most
urgent problems in the field of agriculture. It directly affects
crop yield, food safety, and sustainable development. South
American rubber blight prevents exploitation of native rubber
trees, and wheat stem rust strain Ug99 spread across Africa,
Asia, and the Middle East. Historically, the worst pest is
the Irish potato blight, which killed 1.2 million people from
1845–1849 [1]. Oerke [2] calculated total global potential
loss from 2001–2003 at 26%–29% for soybean, wheat, and
cotton; 31% for maize; 37% for rice; 40% for potatoes.
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Savary et al. [3] estimated global losses for wheat at 21.5%,
rice at 30%, maize at 22.5%, potatoes at 17.2%, and soy-
beans at 21.4%. Generally, crop losses due to pathogens,
animals, and weeds are approximately between 20% and
40% of global production [2], [4]–[6]. In the near future,
global warmingmay increase crop losses throughmore active
fungi [7] and insects [8].

Rapid and accurate identification of crop diseases is the
first step prevention and control. Early identification limits
the damage and allows for less intensive countermeasures.
If crop diseases are inaccurately recognized, then treatments
may be ineffective or even harmful to crops. Globally, and
especially in developing nations,methods for identifying crop
diseases are mostly manual. Farmers recognize diseases on
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the basis of tradition and limited training with potentially
high error rates. Similarly, they may not have access to lat-
est information about crop disease treatments. Even when
visual inspection is performed by experts in accordance with
detailed guidelines and standards, significant interrater vari-
ability and low intrarater repeatability are still found [9]–[14].
Therefore, misdiagnosis of crop diseases and inappropriate
treatment methods are common and can severely affect agri-
cultural production. Inaccurate chemical treatments can be
ineffective, and unnecessarily high dosages increase cost and
cause pollution. We must use scientific control technology.

Some scientific detection methods are direct. Samples of
plants are analyzed in laboratories with techniques, such as
polymerase chain reaction, immune fluorescence, fluores-
cence in-situ hybridization, enzyme-linked immunosorbent
assay, flow cytometry, and gas chromatography–mass spec-
trometry [15]. Indirect methods include thermography, fluo-
rescence imaging, and hyperspectral techniques [16].

With the development of artificial intelligence technology,
deep learning has been used in many fields. In agriculture,
deep learning technologies have been widely used in obstacle
detection, fruit counting, crop yield estimation, field soil
moisture prediction, weather prediction, crop disease iden-
tification, and other production activities [17]–[25]. Specifi-
cally, crop disease recognition has been a frequent subject of
research in recent years [16], [21], [26]–[28]. In crop disease
recognition, diseases in fruits, vegetables, and cash crops are
mainly used for identification [17].

Analysis of current methods for identifying crop diseases
based on deep learning found that the existing methods still
have certain limitations. The success of these models is
dependent on the quality of the data set [17], [29], color
spectrum and vegetation indices [28], different stages of the
disease [30], and the limited availability of data sets [29]. The
neural networks often have the following limitations:

1.) Existingmethods often use a single type of crop (such as
tomatoes [21] and cucumbers [31]), and fewmethods support
multiple crops and diseases.

2.) Identification process focuses on recognizing diseases
without clear indication of the severity of the disease. In agri-
cultural production, the degree of crop disease is also essen-
tial. It directly determines the type and level of treatment.
Inaccurate type or dosage not only affects the efficacy but
also the safety of consumers [32] and causes unnecessary
environmental damage [33], [34].

3.) Existing methods mostly focus on shallow neural net-
work models, such as AlexNet and VGG. Although they have
achieved good recognition accuracy for diseases, they need
more sophisticated recognition for the disease level.

To solve these limitations and contribute to agricultural
production, we have combined deep learning with IoT tech-
nology to build an agrarian IoT system for crop disease
identification. In the deep learning module of the IoT sys-
tem, we constructed the multidimensional feature compen-
sation residual neural network (MDFC–ResNet) with feature
compensation. Compared with the existing methods of crop

disease identification, our model can identify the severity of
crop diseases; it is instructive in actual agricultural production
activities. Our contributions are as follows:

1.) On the basis of deep learning and IoT technology,
we build an end-to-end IoT system for crop disease identi-
fication. This system can obtain crop disease information in
time and feed it back to farmers.

2.) We improve the model training by using singular
value decomposition (SVD) technology to prepare the data.
We use SVD to process images of crop leaves, extract relevant
information, eliminate noise, compress data size, and reduce
image size to a certain extent.

3.) We optimize the network model by adjusting the initial-
ization and optimization procedures of the residual network.

4.) We construct MDFC–ResNet for fine-grained identifi-
cation of crop diseases.

The remainder of the paper is arranged as follows: Chap-
ter II describes the related literature; Chapter III introduces
our IoT system and the residual network of the multidi-
mensional feature compensation mechanism proposed in this
article; Chapter IV analyzes the experimental results, and
Chapter V describes the conclusions and recommendation for
future research.

II. RELATED WORK
Early crop disease identification methods are mostly manual,
mainly by farmers or related experts to diagnose and identify
crop diseases in the field [13], [35]. These methods are very
dependent on the farmers or relevant experts’ own experience
in identifying crop diseases. The problems of these meth-
ods are as follows: keen personal subjective awareness, low
recognition efficiency, and high recognition error rate.

With the development of image processing technology and
its application in the agricultural field, crop disease iden-
tification has improved [18], [19], [36]. Computer image
processing refers to converting an image signal into a dig-
ital signal and then processing it by using a computer. Its
advantages are good reproducibility, high processing accu-
racy, rich processing content, complex nonlinear processing,
and flexibility. However, in solving complex problems of crop
disease identification, image processing technology seems to
be inadequate, and the recognition accuracy rate cannot reach
the expected effect.

To solve the problem of crop disease identification in
agricultural production activities, a large number of scholars
introduced deep learning [20]–[25] into the agricultural field
and achieved excellent results. In deep learning technology,
photos of crop disease parts are captured, and then a neural
network model is sent via the computer. The photos of crop
disease parts are sent to the neural networkmodel for learning
(feature extraction), and the learned model is finally used to
identify crop diseases. Deep learning technology is faster,
more convenient, and has higher recognition accuracy than
the first two methods.

Recent works use the combination of IoT technology and
deep learning technology to identify crop diseases [37]–[39].
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This method uses IoT technology to combine various infor-
mation sensing devices with the Internet to collect informa-
tion in real-time and feed back to the deep learning model.
The deep learning model processes the collected information
in time and then displays the results in smart terminal devices.
In this way, we can grasp relevant information in real-time.
An artificial intelligence brain is also available to analyze
the information. We combine the IoT technology with deep
learning to build an IoT system for crop disease identification
in real-time. In the next section, we will focus on the structure
of the experimental system.

III. PROPOSED SYSTEM AND MDFC–ResNet SCHEME
A. SYSTEM STRUCTURE
The proposed IoT system combines video cameras, deep
learning models, and intelligent terminal devices. The sys-
tem uses cameras to collect crop videos. It feeds back the
health status of crops analyzed by deep learning models to
farmers through smart terminal applications (web applica-
tions or smartphone applications). Fig. 1 shows the system
structure. The system consists of the following six parts:
one or more video cameras, decoder, deep learning model,
message center, processing center, and terminal (computer or
smartphone). The main functions of each par and the system
operation process are as follows:

FIGURE 1. System structure.

The video camera is set up in crop-fields or greenhouse to
collect crop information. Usually, we set up multiple video
cameras.

The decoder can receive data frommultiple video cameras,
decode the video data, and extract the crop image from the
decoded information stream.

The deep learning model receives the crop image from
the decoder, judges the health status of the crop through the
trained model, and sends the result to the message center.

The message center receives the discrimination results and
organizes and manages the discrimination results in the form
of the message queue, which the processor uses.

The processor obtains information from the message cen-
ter, processes the information, and sends it to the web appli-
cation and smartphone application in the form of notification.

Deep learning models are an essential part of the system,
directly determining the performance of the IoT system.
At present, most crop disease identification systems only
identify the types of crop diseases but do not perform more
fine-grained identification of these diseases (the degree of
crop disease identification). However, in actual agricultural
production activities, the degrees of crop disease are dif-
ferent. Thus, the treatment plan adopted and the amount of
medicine used are also different. Fine-grained identification
of crop diseases is instructive in terms of disease treatment,
reducing the number of pesticides used, and protecting the
crop and the natural environment. Therefore, we propose the
MDFC–ResNet model, which can identify the general and
serious diseases of crops and ismore instructive in actual agri-
cultural production activities, for the system’s deep learning
model. TheMDFC–ResNet model is described in detail in the
following section.

B. MODEL FLOW
Fig. 2 shows the overall process of our experiment. It consists
of two parts. In the data processing phase, we perform data
enhancement, normalization, and SVD operations on pictures
in the data set. The purpose is to reduce the negative impact
of the data set on model training. In the model training phase,
we divide the data set into a training set, a validation set, and
a test set. The training set trains the model. The validation
set verifies that the expectations are satisfied; if yes, then the
model is saved, and if no, then the parameters in the model
training are adjusted until the expectations are satisfied. The
test set is used to test the accuracy of the model.

C. DATA PROCESSING
The data set used in this study is obtained from AI Chal-
lenger [40]. It was divided according to ‘‘species–disease–
degree,’’ with a total of 59 categories, including 10 species,
49 detailed disease categories, and 10 health categories with
a total of 36258 pictures. Each image was obtained from a
crop in a natural environment and treated with only one leaf.
Fig. 3 shows the various class images.

The dataset was not ready for use in image classification
due to different sources of pictures in the original dataset, the
shooting environment, equipment, and differences between
the crop species. Substantial differences in the number of
picture types, uneven picture quality, and inconsistent picture
sizes cause image recognition problems. To solve these prob-
lems, we processed the dataset before model training. The
process included three critical steps, namely, data enhance-
ment, data normalization, and SVD.

The first step of data enhancement solves the problem of
significant differences in the number of pictures between the
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FIGURE 2. Overall experimental process.

FIGURE 3. Sample dataset diagram.

various categories. The largest category has 2473 images, and
the smallest category has only 22 images. The number of
images in categories affects the model training, resulting in
a decrease in test accuracy. Data augmentation technology
expands categories with a small amount of samples in the

FIGURE 4. Image flip and rotation horizontally.

original data set. Random cropping might remove the dis-
eased part of the picture, resulting in loss of the characteristic
information. Therefore, we used rotation and horizontal flip
to enhance the dataset. We expanded categories with less than
1,000 pictures to approximately 1,000 and reduced larger
categories to approximately 1,000. Balancing the number
of images in various categories removes the impact of the
number of pictures on the final classification accuracy. Fig. 4
shows an example of data enhancement process. The original
image is flipped horizontally and rotated by 90◦, 180◦, and
270◦. At the end of this phase, the dataset increased from
36258 to 63265 images.

The second step of data normalization converts all images
to a uniform size to facilitate model training. We normalized
the pictures in the dataset to 224 × 224 pixels prior to the
experiment. Many deep learning models use this image size.

The third step of singular value decomposition solves the
problem of picture quality. It extracts important information
from the original picture and removes noise. In many images,
a small section of data carries most of the information, and
the remainder is irrelevant. The quality of the pictures in
the original data is uneven. We adjust the singular value and
observe the effect on the image, an example of which is shown
in Fig. 5. We select the singular value 0.9 to process the
images in the data set.
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FIGURE 5. Original and SVD-processed images.

D. MODEL TUNING
During model training, the initializer and optimizer play an
essential role and have a significant impact on the final test
results.

The residual network is a deep network, and deep networks
require appropriate weight initialization to reduce the risk
of gradient explosion and gradient disappearance. If the cost
gradients are extremely large, then the cost oscillates around
the minimum value. If the cost gradient is extremely small,
then the cost converges before it can reach the minimum
value. Weight initialization refers to the process of setting
values in advance before the neural network starts training.
Without initialization, the weight values are 0, and all neural
nodes are the same. During backpropagation, each weight
gradient is the product of the node’s input value x and the
gradient of the previous layer. If the weights are equal, then
each neural node of the neural network updates equally and
no difference between nodes is found. The neural network
cannot learn useful information during the training process.
An appropriate initializer sets initial weights that allow the
network to train in an efficient and timely manner.

The goal of deep learning is to continuously adjust net-
work parameters to allow them to perform various nonlinear
transformations on the input to fit the output effectively.
Essentially, it is the process of solving the optimal solu-
tion of the loss function. Research on deep learning focus
on algorithms to update the parameters. We refer to these
algorithms as optimizers. Selecting an optimizer in the field
of deep learning is one of the top priorities of a model.
Even when the dataset and the model architecture are the
same, using different optimizers may lead to different training
results. Therefore, the combination of network and dataset is
tested using different optimizers to select the most effective
approach.

With the development of deep learning in recent years,
some new optimizers and initializers have been proposed and
applied [41]. Therefore, before the experiment, the model
is tuned to select the appropriate initializer and optimizer.
This experiment is performed in a GPU environment, using
Keras framework based on TensorFlow, which mainly adjusts
the model’s learning rate, epoch, and batch parameters.
Table 1 shows the experimental environment and parameter
configuration.

TABLE 1. Experimental environment and parameter configuration.

Weuse 58725 pictures in the dataset during the experiment.
We use training samples and 4,540 pictures as test samples.
The training samples are divided into the training set and the
verification set with a ratio of 8:2, as shown in Table 2.

TABLE 2. Data set partition.

1) INITIALIZER SELECTION
This experiment selects the optimal initializer for the
traditional residual neural network. In the experiment,
three common initializers, namely, Lecun et al. [42],
Glorot and Bengio [43], and He et al. [44], [45] are
selected as the research objects. Each initializer is used
with normal and uniform distribution, resulting in six
types, namely, lecun_normal, lecun_uniform, glorot_normal,
glorrot_uniform, he_normal, and he_uniform. Technical
specifications can be found in the Keras initializer documen-
tation [46]. On the basis of a learning rate of 0.0001, the
optimizer selects six sets of comparative experiments. Table 3
shows the experimental results. The glorot_normal initializer
proved most suitable for the residual network given the high-
est scores for training accuracy, validation accuracy, and test
accuracy. Therefore, we selected the glorot_normal initializer
as the model’s initializer for the remaining experiments.

2) OPTIMIZER SELECTION
This experiment aims to select the best optimization
algorithm for the traditional residual neural network.
We compared five optimizers by using the initializer,
glorot_normalas. The five optimizers are SGD [47],
RMSProp [48], Adadelta [49], Adam [50], and Adamax [51].
Technical specifications can be found in the Keras optimizer
documentation [48]. The results of the comparative tests are
shown in Table 4. The experimental results show that the
Adam optimizer scores best in training accuracy and test
accuracy and second best in validation accuracy. Therefore,
we select Adam optimizer for this experiment.
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FIGURE 6. MDFC–ResNet.

TABLE 3. Experimental results of each initializer.

TABLE 4. Learning rates of five optimizers and experimental results.

E. MDFC–ResNet
Our MDFC–ResNet is based on the deep residual network
optimized in the previous section. TheMDFC–ResNet model
consists of three dimensions, namely, species, disease, and
disease level. A compensation layer connects the three levels.
The recognition results of species and disease dimensions are
fed back as a compensation and error correction mechanism
and to improve the accuracy of crop disease level recognition.
Fig. 6 shows the structure of our deep residual neural net-
work with the multidimensional compensation mechanism.
The uppermost layer shows the first species dimension. The
optimized ResNet-34 network is used to identify the species
to which the picture belongs. The second dimension is the
disease dimension in the middle layer of Fig. 6. It uses the
optimized ResNet-50 network to identify diseases. The third
dimension is the disease level dimension in the bottom layer
of Fig. 6. The ResNet-50 models of disease dimension and

disease level dimension use parameter sharing to speed up
the recognition process and improve recognition accuracy.

Algorithm 1MDFC–ResNet
Input: Training dataset and validation dataset
Output: Picture recognition results
1: For image in train dataset
2: Picture feed into the first (species) dimension
3: ResNet-34
4: Result of species identification
5: Picture feed into the second (disease) dimension
6: ResNet-50
7: Obtain disease results
8: Picture feed into the third (disease level) dimension
9: ResNet-50
10: Get disease level results
11: Use compensation layer to integrate species results,

disease results, and disease level results
12: End For
13: Output Final results
14: End Algorithm 1

Algorithm 1 describes the process of MDFC–ResNet. For
any single crop disease picture, the output of the three dimen-
sions is the probability distribution matrix of the crop species
to which the picture belongs, the disease, and the level of
disease. A compensation layer is used after three dimensions.
The compensation layer receives the probability distribution
matrices from the three dimensions. It uses the probability
distribution matrix of the identified species and t of the dis-
ease as feedback data to compensate for the probability of the
obtained level of disease.

Algorithm 1 introduces the specific design scheme of
MDFC–ResNet.

Fig. 7 shows the operation flow of the distribution matrix
and compensation layer.

The results of the species identification, disease identifi-
cation, and disease level identification are in different dimen-
sions. Thus, the species dimension and the disease dimension
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FIGURE 7. Operation process of compensation layer.

results are ‘‘expanded’’ in accordance with the disease level
result before all results are fused by using Eq. 1, as follows:
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·

·

·
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= α
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·

·

·
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·

·

·

PZ59


(Yj ∈ Xi & Z ∈ Yj). (1)

In the model, PXi is the probability of the i-th species, PYj
is the probability of the i-th disease, PZi is the probability
of the i-th disease level, and P′Zi is the final detailed feature
recognition result. In the process of selecting α and β values,
we set α = 1, determine the value of β, and finally, determine

the best value of α. After several trials, we achieve the highest
accuracy of the test set when α = 10 and β = 1.5.

Algorithm 2 shows the calculation algorithm of the com-
pensation layer.

The specific process of ‘‘expanding’’ is shown in Fig. 8,
with apples and tomatoes as examples. The recognition result
of the species dimension is a matrix of 2×1, which represents
the probability of apple and tomato. The recognition result of
the disease dimension is a 4× 1 matrix. The matrix contains
apple scab, apple gray spot, tomato powdery mildew, and
tomato scab. The disease level dimension result is an 8 × 1
matrix, which generally contains apple scab, severe apple
scab, general apple gray spot, severe apple gray spot, general
tomato powdery mildew, severe tomato powdery mildew,
general tomato scab, and severe tomato scab. At this point,
the dimensions of the matrices are different. In the expansion
process, the size of the disease level dimension is used as
a reference, and the results of the species dimension and
the disease dimension are expanded into 8 × 1 matrix. The
species dimension extends from 2 × 1 to 8 × 1; thus, each
element repeats four times before moving to the next element.
Similarly, because the disease dimension expands from 4× 1
to 8 × 1, each element of the disease dimension repeats
twice before moving to the next element. At the end of this
expansion process, the three matrices have identical sizes.
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FIGURE 8. Apple and tomato as examples to illustrate the operation process of the compensation
layer in detail.

TABLE 5. Experimental results of each model.

IV. PERFORMANCE ANALYSIS
We preprocess the data set in the model tuning process by
normalizing the size of the pictures. We use SVD technology
to remove the noise in the picture and determine the model’s
initializer and optimizer. This section focuses on the perfor-
mance of our proposed model.

In the experiment, we compare MDFC–ResNet with com-
monly used methods in crop disease identification, namely,

AlexNet, VGG, and ResNet-50. The results of the experiment
confirm that our proposed residual network with multidimen-
sional feature comparison performs better than traditional
models. The overall results are shown in Table 5. The table
shows that our MDFC–ResNet has the best performance in
terms of training accuracy, validation accuracy, and test accu-
racy. Specifically, the accuracy of the training set is increased
by 1.10%, 8.40%, and 5.31%; the accuracy of the validation
set is increased by 0.08%, 4.12%, and 3.04%; the accuracy
of the test set is improved by 5.03%, 2.12%, and 3.18%.
Our model contains two ResNet-50 models and one ResNet-
34 model (arguably less accurate than ResNet-50); thus, we
conclude that the compensation layer adds accuracy to our
model is reasonable.

Network performance is not only measured by high accu-
racy. Accuracy is simply the ratio of accurately predicted
values to the total number of observations. In any recognition
model, we have true positive and true negative values, as well
as false positive and false negative values. Precision is the
ratio of true positive over true positive and true negative.
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TABLE 6. Results for each class in MDFC-ResNet.
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TABLE 7. Summary of accuracy.

Algorithm 2 Compensation Layer Design
Input: Species result matrix, disease result matrix, and dis-
ease level result matrix
Output: Picture recognition results
1: For disease level result i in disease level result matrix
2: Find the species s to which i belongs to
3: From species result matrix, find species s result
4: Set position i of the extended species result matrix as

species s result
5: Find the disease c to which i belongs
6: From disease result matrix, find disease level c result
7: Set position i of the extended disease result matrix as

disease c result
8: End For
9: Combine the extended species result matrix, the

extended disease result matrix, and the disease level
result matrix by using Formula 1 to calculate the
detailed result matrix of compensation

10: Find the maximum score from the detailed result matrix
of compensation

11: Output The category corresponding to the maximum
score

12: End Algorithm 2

In our study, it represents the accurately identified diseased
leaves out of the total diseased leaves. Recall or sensitivity is
the ratio of true positive, overall labeled as positive, whether
correct or not. In our study, it represents the accurately iden-
tified diseased leaves out of all leaves labeled as diseased.
Finally, F1 ratio is the weighted average of precision and
recall. This measure is more useful than accuracy if the class
distribution is uneven. Our model holds 59 crop disease cate-
gories, but 49 of which are levels of specific diseases; only 10
categories show healthy leaves. This finding skew the disease
identification, but the F1 statistic corrects the disparity. For
a more detailed analysis, we review the precision, recall,
and F1 values of all four models in the 59 classifications.
Table 6 shows the precision, recall rate, and F1 measure of
each model.

We compare the performance of MDFC–ResNet with the
best performance of the other three models, in terms of
ranges of precision, recall, and F1. For each network and each
statistic, we record the average, minimum, and maximum
scores. We then determine the highest average for the three
other networks and compare with the average of MDFC–
ResNet. The same procedure is performed for the minimum
and maximum scores. All networks had perfect 100% scores;
thus, we considered them as well. Table 7 shows the results.
MDFC–ResNet performs better than the other models on
all measures. It has the highest average accuracy, the high-
est range (minimum to maximum), and perfect scores for
precision, recall, and F1 values. The only exception is the
minimum score for F1 percentage, and class 22 obtain the
worst case; the score of the two other models is only 44.45%.
Finally, MDFC–ResNet scores lower than 50% for F1 in only
two of 59 cases, namely, 22 and 50.

V. CONCLUSION AND FUTURE RESEARCH
Wehave shown that our IoT system is effective in crop disease
recognition systems of the agricultural industry. Through
the combination of deep learning and IoT technology, the
proposed method can be automatically used with multiple
crop types. It differentiates between levels of disease, apart
from recognizing the disease. Treatment protocols may differ
between mild and severe cases of crop disease, especially
in types and amounts of chemicals used to combat the dis-
ease. Most importantly, accuracy is high, even compared with
human recognition. We attribute much of this accuracy to
using three stages of recognition and the compensation layer.

Future research can focus on two aspects; on the one
hand, identifying reasons why recognition fails in some cases.
Improving accuracy at the low end enhances the efficiency of
the system. Picture quality may be a factor in some cases, and
we can establish guidelines and requirements for pictures in
the dataset. One possible solution may be the use of color
calibration charts to be included in the images. Preprocessing
may then include correcting the image colors to standard.
Visual attention mechanisms and target detection can then
improve picture data. On the other hand, we improve the IoT
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system by increasing sensor types. Through sensors, we can
collect weather, soil, and air quality data to improve the
accuracy of crop disease recognition.

ResNet is suitable for multiple purposes in agriculture.
Farmers can use them for fruit counting, crop yield esti-
mation, field soil moisture prediction, weather prediction,
crop disease identification, and other production activities.
Surprisingly, little is known about the actual level of use.
We may learn from the failure of medical diagnostic systems
in healthcare. One reason is the difficulty of data entry. This
case is not the same as in agriculture. Farmers can take
pictures with their cell phones and send them for analysis.
Another factor may be more relevant. Medical diagnostic
systems suffer from lack of follow-up in the form of recom-
mendations for treatment. Future research could focus on the
impact of providing treatment recommendations according
to best practices. Combined with the excellent performance
of IoT technology and neural convolutional networks, these
steps may improve penetration in practice.
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