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ABSTRACT As a basis of many missions, the accuracy of localization is highly important for mobile robots.
For the generally used map matching based localization algorithms, the accuracy of localization, which is
described by localizability, is greatly impacted by the environment. Consequently, this paper proposed a
novel method to predict the localizability for the map matching based localization algorithms, based on the
environment map. Firstly, the uncertainty of localization in map matching and dead-reckoning is analyzed
based on which entropy of localization is chosen to describe the localizability instead of the generally used
covariance. Next, based upon the flow chart of the map-based localization algorithm, a localizability predic-
tor, which is composed of three different models, is designed to predict the entropy. Here a Convolutional
Neural Network (CNN) is designed for the first model to predict the entropy of localization that comes
from map matching. A Long Short-TermMemory (LSTM) neural network is designed for the second model
to predict the entropy that comes from the dead-reckoning. Finally, a Multilayer fully connected Neural
Network (MNN) is designed for the last model to predict the entropy after fusing the entropy results that come
from the two models described above. Both simulation results and experimental results have proven that the
proposed predictor can offer a better estimator of localizability compared to other existing approaches.

INDEX TERMS Localizability, map matching, mobile robot, deep learning, neural network.

I. INTRODUCTION
As one of the most fundamental functions of mobile robots,
localization algorithms are used to estimate the localization
of mobile robots. Based upon that, missions like navigation,
mapping, et al. are capable of being carried out by knowing
its position and orientation (localizations) at any time. Gen-
erally, localization is determined by using the sensor systems
installed on the robot. In this case, the task is called the
self-localization problem, which is mostly discussed in this
paper. Throughout this paper we define the localization algo-
rithms to be the self-localization algorithms. Map matching
based algorithms are a group of widely used localization
algorithmswhich localize the robot bymatching themapwith
the perceptions of the robot [1].

There are many kinds of map matching based localization
algorithms and a good review can be found in [1]. Among
them, Monte Carlo based localization algorithms are widely
adopted due to their good balance between the localization
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accuracy and the computation complexity [2]. Unfortunately,
the map details of the environment and the imperfect motion
estimation for the robot greatly impact the accuracy of the
localization results of the map matching based localization
algorithms. This would further impact the performance of
other dependent missions like path following, et al. Conse-
quently, this paper focused on the localizability of Monte
Carlo based localization algorithms.

Many researchers have focused on the localizability and
the uncertainty of map matching based localization algo-
rithms. The early research of localizability can be found in
the field of coastal navigation by Roy, Burgard, Fox, and
Thrun [3]. They employed the entropy of the probability dis-
tribution of the localization result during navigation to model
the navigation uncertainty. Rohde, Stellet, Mielenz, and Zöll-
ner have proposed a robot localizability estimation method
for landmark-based localization in a dynamic environment.
There, an analytical model of upper bounds on localization
uncertainty is estimated while detectable landmark types and
minimum detection rates are estimated based on specified
upper bounds on pose estimation uncertainty [4]. Moreover,
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localizability has also been studied extensively in the field of
localization in the wireless network [5]–[7]. A good survey
can be found by Zhen Yang et al. in [7].

The localizability of map matching based localization
algorithms has been researched by two fields. One is the field
of active Simultaneous Localization and Mapping (SLAM),
where the map-based localization algorithm has been inte-
grated to localize the robot. In this field, actions are generally
determined based on the balance of the uncertainty of local-
ization and the requirements of the environment exploration
task. The exploitation of pose uncertainty for exploration
phases has been extensively studied by many researchers,
where the uncertainty has been believed to keep increasing
until the loop is closed [8]. Barfoot, T. D. and Furgale,
P. T. have proposed a practical method to associate the uncer-
tainty with transformation matrices on Lie groups [9]. In the
research proposed by Youngji Kim and Ayoung Kim [10],
a hypothesis is that the monotonicity of pose uncertainty
is preserved when the uncertainty is propagated on Lie
groups rather than on Euclidean vector space. Additionally,
Rodriguez-Arevalo,M. L., et al. have also proposed a study of
the different representations of the uncertainty of localization.
They concluded that only D-opt and Shannon’s entropy may
preserve the monotonicity of uncertainty [8]. In the research
by Papachristos, C., et al. the belief of the robot state and
the tracked landmarks has propagated over the branches of a
random tree to predict the uncertainty of the robot state and
the landmarks, so that the path that minimizes the expected
localization and mapping uncertainty has been selected [11].
In the research by Maurović et al. [12], the localization
uncertainty was considered in an active SLAM algorithm to
improve the localization accuracy.

The other field is the field of the uncertainty of localiza-
tion algorithms or the localizability of that. Early research
of this topic was proposed by Censi, which first offered a
method to estimate the lower bound of the covariance of
localization based on the Cramér–Rao Bound, while binary
map and differentiable obstacles were assumed [13]. Based
on that, a series of researches involving localizability were
then developed. Qian, et al. proposed an improved version of
Censi’s method by adding a factor to represent the influence
of dynamic obstacles [14], while the localizability matrices
in use were derived from the work of Wang et al. [15].
A more recent effort on localizability was proposed by
Ruiz-Mayor et al. [16]. Instead of directly estimating the
covariance of the localization uncertainty, they offered a
probabilistic model of the indistinguishability for percep-
tion, assuming that the perceptual ambiguity can represent
the localizability. Weikun Zhen, et al. also proposed a new
method to evaluate the localizability of a given 3D map [17].
Arvanitakis et al. have proposed a navigation algorithm,
which has taken the pose uncertainty into account [18]. Yang
Gao, et al. have proposed a new evaluation function for
mobile robot path planning algorithms for better balancing
between the localizability and the traditional requirements for
optimal path [19]. Carvalho Filho et al. proposed a theoretical

analysis of the impact of parametric uncertainties of mobile
robot kinematic model on velocity and pose estimation [20].
There, they also proposed a model to estimate the uncertainty
of localization through dead-reckoning for differential driven
mobile robots.

As it can be found, many researchers have offered many
results on localizability or uncertainty of localization. How-
ever, to the best of our knowledge, most of the existing
researches like the method by Censi [13] andWang et al. [15]
and the method by Ruiz-Mayor et al. [16] can only offer an
indirect prediction of the localizability, while the influence
of dead-reckoning is ignored. Other methods like the method
by Papachristos et al. [11] and the method by Carvalho
Filho et al. [20] can only offer a prediction of localizability
through an inducement or propagation of the uncertainty.
These indirect predictions may lead to a loss of accuracy in
the prediction.

Consequently, in this paper, we focused on the localiz-
ability prediction for the map matching based localization
algorithms while a differential driven robot, equipped with
LIDAR and encoder, is assumed. Firstly, we will analyze the
generally adopted framework of map matching based local-
ization so that the propagation of uncertainty in localizing
would be analyzed. Secondly, a deep learning neural network
will be proposed based on this analysis. Consequently, this
paper is organized as follows: Section 2 proposed an analysis
of the framework of generally adopted map matching based
localization and the propagation of uncertainty. Section 3 pro-
posed our localizability predictor. Section 4 proposed a
description of the datasets and several experimental studies.
Finally, conclusions are drawn in Section 5. Table 1 shows
the symbols used in this paper.

II. THE ANALYSIS OF MAP MATCHING BASED
LOCALIZATION AND THE PROPAGATION
OF THE UNCERTAINTY
A. THE FRAMEWORK OF MAP MATCHING BASED
LOCALIZATION
Applications that involve robot localization generally use data
fusion techniques to merge information from both odome-
ters and other sensors, decreasing the uncertainty in local-
ization [20]. The Kalman filter and particle filter are often
employed as the data fusion algorithm, which applies infor-
mation about the laws of the robot’s motion at the forecast
stage and information from the sensors at the update stage or
the weight calculation stage. Assume the

S̃k = F(S̃k−1, ũk )+ Q̃k
Õk = H (S̃k )+ εk (1)

As it is shown in table I, let Sk (xk , yk , θk ) be the current 2D
pose of the robot and as well as the state of the Kalman filter.
Let S̃k denote the estimation of Sk . Assume S̃k conforms to
a Gaussian distribution and described as S̃k ∼ N

(
Sk , δ̃sk

)
,

which means the mean value and the covariance of S̃k are
Sk and δ̃sk respectively. Then formula (1) shows two state
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TABLE 1. Symbols in use.

equations in use. The first equation shows the prediction stage
where F() is the motion model of the robot as shown in
formula(2)-(3) [21], Q̃k ∼ N (0, δq) is the 0 mean Gaussian
noise and ũk is the motion of the robot. The second equation
shows the update stage where H () is the function of percep-
tion, Õk is the current perception data from the sensor and
εk ∼ N (0, δr ) is the 0 mean Gaussian noise in perception.
Consequently, the Kalman filter allows the evaluation of the
state of the system based on a noisy prediction of its evolution
and noisy measurements of its state.

B. THE UNCERTAINTY IN LOCALIZATION
As shown in formula (1) the uncertainty of localization prop-
agates in two stages. The first equation in formula (1) shows

the propagation in the prediction stage, which is, in fact,
a dead-reckoning process. The second equation in formula (1)
shows the propagation in the update stage, which includes a
map matching process and an information fusion process.

1) THE UNCERTAINTY IN DEAD-RECKONING
The research in [21], [22] has offered a theoretical analysis
for the uncertainty which comes from the dead-reckoning.
But here, we offer a simplified version for better efficiency.
As shown in Table 1, according to formula (1), δ̃sk can be
obtained as shown in formula (4) if we apply a first-order
Taylor expansion to the first equation of formula (1). More-
over, based on the formula (2) - (3), ∂F

∂S can be determined by
formula (5) where 1d and 1θ are the transitional displace-
ment and the angular displacement respectively. Here, Rd is
the turning radius of the robot at pose(xk−1, yk−1, θk−1). Let
Ed(S̃) denotes the entropy, obtained in dead-reckoning, then
Ed(S̃) can be obtained accordingly as shown in formula (6).

xk = xk−1 − Rd sin θk−1 + Rd sin(θk )

yk = yk−1 + Rd cos θk−1 − Rd cos(θk ) (2)

θk = θk−1 +1θ

Rd =
1d
1θ

(3)

δ̃sk =
∂F
∂S
δ̃sk−1(

∂F
∂S

)T + δq (4)

∂F
∂S
=


∂F
∂x
∂F
∂y
∂F
∂θ

 =


1−
∂Rd
∂xk−1

(sin θk−1 − sin(θk ))

1+
∂Rd
∂yk−1

(cos θk−1 − cos(θk ))

1+
∂1θ

∂θk−1


(5)

Ed(S̃) =
1
2
ln(

∣∣∣∣2πe(∂H
∂ S̃
δs
∂H

∂ S̃

T
+ δq)

∣∣∣∣) (6)

2) THE UNCERTAINTY IN MAP MATCHING
Assume the sensor in use is a Lidar and let the perception data
by the i-th laser beam be denoted by (oi,ϕi) where oi is the
range value and ϕi denotes the angle of the laser beam in the
robot coordinate system. Then the laser observation model
can be obtained as formula (7) shows. Among them, the ε is
one dimensional 0 mean Gaussian observation noise.

oi = H (S̃, ϕi)+ ε (7)

oi − ε = H (S̃, ϕi)+
∂H

∂ S̃
(S̃ − S) (8)

The equation (8) can be obtained by applying the
first-order Taylor expansion at S̃ to equation (7). Let var ()
denote the function to take covariance of its input random
variables, then equation (9) can be obtained by calculating the
covariance on the equation (8). Here δsi denotes the covari-
ance of S̃ conducted by the i-th laser beam. As

(
∂H (S̃,ϕi)
∂ S̃

)
is a 1 × 3 vector rather than a matrix, it is impossible to be
obtained directly by (9). Considering that the right side of (9)
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shows a compression of δsi, which is compression from a 3×3
matrix to 1 dimension, we choose entropy to represent the
localizability instead of the covariance δsi. Then equation (10)
can be obtained by calculating the entropy on both sides of
equation (9), where E () is the function of calculating the
entropy. Consequently, the entropy of S̃ obtained from the i-
th laser beam, denoted by EMi(S̃), can be obtained as shown
in (11).

var(oi − ε) =

(
∂H (S̃, ϕi)

∂ S̃

)
δsi

(
∂H (S̃, ϕi)

∂ S̃

)T
(9)

E(ri)+ E (ε) =
1
2
ln(|2πeδs|

∣∣∣∣∂H
∂ S̃

∂H

∂ S̃

T ∣∣∣∣)
=

1
2
ln(|2πeδs|)+

1
2
ln(

∣∣∣∣∂H
∂ S̃

∂H

∂ S̃

T ∣∣∣∣) (10)

EMi(S̃) = E(ri)+ E (ε)−
1
2
ln(

∣∣∣∣∂H
∂ S̃

∂H

∂ S̃

T ∣∣∣∣) (11)

As there are N laser beams that lead to the localization
result, the uncertainty of S̃ comes from all the localizations
using all the laser beams. Let δ̃sm denote the estimation of
covariance of S̃ by map matching. Assuming that the per-
ception of each laser beam is independent, then according
to the information fusion theory, the estimation of δ̃s after
the fusion of all the laser beams can be estimated as shown
in (12). Furthermore, the entropy after fusion, denoted by
EM(S̃), is shown in (13).

δ̃sm = (
1
N

∑
i=1···N

δ−1si )−1 (12)

EM(S̃) =
1
2
ln(2πe

∣∣∣∣∣ 1N ∑
i=1···N

δ−1si )−1
∣∣∣∣∣) (13)

3) THE UNCERTAINTY IN INFORMATION FUSION
The fusion process happens in the update process which
constrains the rising of the covariance according to the map
matching residual in Kalman filter and the weights in the
Monte Carlo localization. Fortunately, according to informa-
tion fusion theory, the optimal estimation of the covariance
would be obtained by formula (14), where δ̃sd is the estima-
tion of δ̃s by dead-reckoning and δ̃sm is the estimation of δ̃s
by map matching. Accordingly, the entropy can be obtained
by formula (15).

δ̃s = (
1
2
(δ̃−1sd + δ̃

−1
sm ))−1 (14)

E(S̃) =
1
2
ln(2πe(

∣∣∣∣12(δ̃−1sd + δ̃−1sm ))−1
∣∣∣∣) (15)

III. THE PREDICTOR OF LOCALIZABILITY BASED ON
DEEP LEARNING
There are many possible measurements of localizability,
in which covariance δ̃s is the most direct one. However, as it
was analyzed above, δsi is difficult to be predicted directly,
which makes δ̃sm and δ̃s also difficult to be predicted. For-
tunately, the entropy E(S̃) can be obtained by formula (15),

while Ed(S̃) can be obtained by formula (6). Consequently,
we choose E(S̃) to represent the localizability. However,
E(S̃) is still difficult to be calculated from formula (6) and
formula (15). As a result, an entropy predictor constructed by
a modularized Deep learning neural networkM is proposed.

Consider the uncertainty propagating in three processes,
the dead-reckoning, the map matching, and the informa-
tion fusion. This predictor is composed of three different
neural network modules accordingly. As shown in Fig. 1,
these three components include a Convolutional Neural Net-
work(CNN) module M1 modeling the propagation of uncer-
tainty in map matching, a recurrent neural network(RNN)
moduleM2 modeling the propagation of uncertainty in dead-
reckoning and a multi-layer perceptron moduleM3 modeling
the propagation of uncertainty in data fusion. Here we choose
CNN structure for M1 because according to formula (11)
∼ formula (13), the entropy EM(S̃) is mainly decided by(
∂H (S̃,ϕi)
∂ S̃

)
, which is a local feature suitable to be extracted

by CNN. Because according to formula(4)∼ formula(6),
Ed(S̃) is influenced by the prior covariance δ̃sk−1 and this
kind of influence would be properly modeled by RNN. So we
choose RNN structure forM2.

This predictor takes three inputs, which include Xk1 is the
Lidar perception data at time k , whose size is a 1×1080 vec-
tor, Xk2 includes the transitional displacement 1d at time k
and the angular displacement1θ between time k-1 to k . The
output of the predictor is Ek (S̃), which is the entropy of S̃ at
time k .

A. THE STRUCTURE OF MODULE M1
As shown in formula (10)∼ (13), the entropyEM(S̃) is greatly
impacted by ∂H

∂ S̃
which reflects the magnitude of the slope

at the contact point on the obstacles confronting the Lidar,
and such slope may exist in many places in a single frame of
perception data. Therefore, the entropy would be predicted by
a Convolutional Neural Networks (CNN) module M1 where
the convolution layers look for the combination of different
∂H
∂ S̃

and the fully connected layers model the data fusion in
formula (11)∼ (12). As a well-known CNN structure, Visual
Geometry Group(VGG) [24] has shown a good performance
on feature extraction, so that it has been adopted in M1.
As shown in Fig. 1, the input of M1 is Xk1 and the output
is an estimation of the entropy, which is denoted as Ek1(S̃).
Fig.2 shows the architecture of M1. Let X ik1(oi,ϕi) be

the perception data of the i-th laser beam at time k
then the perception data at time k would be denoted by
X ik1(x

1
k1, x

2
k1 · · · x

1080
k1 ). In this paper a Hokuyo UTM-30LX

Lidar is employed, consequently, we have N = 1080.
As shown in Fig. 2 the input layer ofM1 is directly connected
to Xk1 which is also drawn as a group of black dots at the
left end. There are 23 layers of hidden layers, which include
16 convolutional layers, 2 fully connected layers and 5 layers
of max pooling. The activation function of the convolutional
layer is a Rectified Linear Unit. In the first 12 layers of
the network, a small convolution kernel of 3 × 1 is used to
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FIGURE 1. Structure of the predictor.

extract the local features, while in the last 4 layers, a large
convolution kernel of 10×1 is used to extract macro features.
The activation functions are linear rectifier functions.

B. THE STRUCTURE OF MODULE M2 AND MODULE M3
According to formula (4) ∼ (5), δ̃sk is greatly impacted by
δ̃sk−1, 1d and 1θ , as is the entropy calculated from δ̃sk .
As a result, a Recurrent Neural Network (RNN) is employed
in module M2 to deal with this time correlation problem.
As shown in Fig. 3, M2 has 10 Long Short-Term Mem-
ory (LSTM) layers as its hidden layer while it has only 1 neu-
ron in the output layer to output an estimation of the entropy
which is denoted as Ek2(S̃). The first layer of M2 is set to
3 LSTM units while next 9 layers are set to 50. The output
layer employed a linear function as its activation function.

As it was analyzed, moduleM1 andmoduleM2 output two
estimations, Ek1(S̃) and Ek2(S̃), to the same entropy Ek (S̃).
Then a multi-layer perceptron M3 is employed to model
the data fusion applied on Ek1(S̃) and Ek2(S̃). Consequently,
M3 takes Ek1(S̃) and Ek2(S̃) as input and outputs the final
estimation of Ek (S̃). As shown in Fig. 4, M3 has 5 hidden
layers, where the first two have 256 neurons, the latter two
have 128 neurons and the last hidden layer has 64 neurons.
The linear rectification function (Rectified Linear Unit) is
chosen as the activation function for all the neurons in hidden
layers while a linear function is chosen for the output layer.

IV. DATASET COLLECTION AND TRAINING
In this paper, the dataset is collected in common indoor and
outdoor environments using Pioneer P3DX robot as shown
in Fig. 5. The scanning angle range of the UTM-30LX Lidar
is 270◦, the angular resolution is 0.25◦, and the maximum
detection distance is set to 3 meters. As shown in Table 2,
the dataset is collected from 6 types of environments, while
the total number of groups of the dataset is 12451. Some of the
typical environments are shown in Fig. 6. The Extensive out-
door scenes are generally empty except for some areas with
objects haphazardly arranged. Examples include playgrounds
and stadiums, et al. Each group of data includes the time
stamp k , Lidar perception data Xk1, the transitional displace-
ment 1d , the angular displacement 1θ , and the localization

TABLE 2. Detail of the data.

entropyEk (S̃). The localization entropy comes from the local-
ization covariance, which is from an AMCL (Augmented
Monte Carlo Localization) [21] localization package in ROS
(Robot Operating System).

A. TRAINING AND TESTING SETTINGS
The dataset has been divided into 2 subsets, which are subset
A and subset B. All the modules are trained separately for
each module was designed to model a different source of esti-
mation with different inputs. ModuleM1 models the estima-
tion from map matching taking Xk1 as input. Consequently,
M1 is trained with subset A, which includes Xk1 as input
and Ek (S̃) as the label. M2 is trained with subset B, which
includes Xk2 as input and Ek (S̃) as the label. As it’s stated,
module M1 is designed to model the propagation of uncer-
tainty in the map matching process. However, the AMCL
package only applies the map matching process while the
travel distance and the displacement of the orientation exceed
a threshold value. Thus, we need to extract the entropies
conducted by the map matching. Because dead-reckoning
results in a rising of the entropies, while the map matching
generally results in a decreasing of the entropies, subset B
is constructed by extracting all of the rising entropies, while
subset A is constructed by extracting all of the other entropies.
Fig. 7a shows a segment of entropies acquired from an exper-
iment where the red curve with a decreasing trend is used as
subset A, and the blue curve with an increasing trend is used
as subset B.

The histogram of all the entropies in dataset has been
shown in Fig. 7b where the horizontal axis shows the value
of the entropy, and the vertical axis shows the number of that
value. Please note that the width of each column in Fig.7b
is set to 1 for convenience. It can be found that the entropy
is ranged between −11.57 and 10.46, while the ratio of the
entropy with extremely big (value inside [3, 10.46]) or small
value (value inside [−11.57,−10]) is only 3.2%. This implies
that most of the data were acquired in a common case. In the
training process, the whole dataset, subset A, subset B were
all partitioned into a training set, a validation set, and a testing
set. In this paper, the training set occupied 64% of the dataset
while the validation set occupied 16% and the testing set
occupied 20%, respectively.M1,M2, andM3 are trained and
tested separately using subset A, subset B and all the data set
respectively. We use a NVIDIA RTX2080TI graphics card in
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FIGURE 2. Structure of convolutional neural network M1.

FIGURE 3. Structure of recurrent neural network M2.

training and testing under ubuntu16.04 and keras2.0.9. In the
following training, the back propagation learning algorithm
is adopted while the batch size is set to 20, the epoch is set
to 3000, the learning efficiency coefficient is set to 0.002 and
the mean square error is adopted as the loss function.

B. EXPERIMENT STUDY FOR THE STRUCTURE
OF M1 AND M2
In order to find the performance ofM1 with different number
of layers, we have designed a series of experiments. Some of
the results have been shown in Table 2. Here, M1_n refers
to M1 with n layers of neuron network. Please be noted that
when n = 22, 1 convolution layer has been added in front of
each of the last three max pooling layers of VGG 19, while
n = 25, 2 convolution layers have been added similarly. errt,

errv, errs represent the error percentages of M1 on training
set, validation set and testing set respectively.

It can be seen from table 3 that M1_19 has the best per-
formance whose error in training, validation and testing are
lowest. Consequently,M1_19 has been chosen forM1. As it
was proved in [24], many layers with smaller convolution
kernels instead of layers with larger convolution kernels can
reduce the parameters while improving the feature extraction
capability. Consequently, small convolution kernel size in
3 × 1 was chosen for most layers of M1. However, this
situation is a little different in our problem, in that not only
local features like slopemay impact the localizability, but also
some macro features like two perpendicular long walls may
impact as well. Because of that, we have chosen a larger con-
volution kernel, size in 10×1, for the last 4 layers ofM1 for a
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FIGURE 4. Structure of multi-layer perceptron M3.

FIGURE 5. The platform in use.

FIGURE 6. (a) Square ground. (b) Outdoor scenes. (c) Indoor long corridor.
(d) Extensive outdoor scenes. (e) Round ground. (f) Triangular ground.

larger receptive field. Table 4 has shown the error percentages
ofM1_19with different size of convolution kernel on training
set, validation set and testing set respectively. Please note

TABLE 3. Error rate of M1 with diffent layers.

TABLE 4. Error rate of M1 with diffent kernel size.

thatM1_19_m in the table denotes theM1_19 structure with
the kernel size in m×1. It can be found that M1_19_10 has
the lowest error rates which are, 0.55%, 6.36% 7.15% and
respectively. Consequently, we have chosen the structure
M1_19_10 forM1.

In order to find the performance of M2 with different
number of layers, we have also designed a series of exper-
iments. Some of the results have been shown in Table 2.
Here, M2_n refers to M2 with n layers of LSTM neuron
unit.

It can be found thatM2_11 has the lowest error rates which
are 2.15%, 5.09% and 1.72% respectively. Consequently,
11 layers have been chosen forM2.
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TABLE 5. Error rate of M2 with diffent layers.

C. PERFORMANCE OF THE PREDICTOR ON DATASET
As our predictor is composed of three modules and M1 was
trained separately, we show the performance separately too.
On subset A, the loss curve of M1 on the training set and
the validation set was shown in Fig. 8a, where the horizontal
axis is the number of epoch and the vertical axis is the value
of loss. Please note that only the loss in 1600 epochs were
included in the figure because the training has already con-
verged. It can be found thatM1’s loss decreased rapidly since
the 40th epoch. For better understanding of the performance,
we have shown the prediction values by M1 and the label
values on both the training set and the validation set in Fig.
8b, where the horizontal axis is the label value and the vertical
axis is the prediction values by M1. The black dash line in
the figure shows where the prediction values are equal to the
label values. Similarly, Fig. 8c showed M1’s prediction and
the label values on the testing set. It can be found that from
1000 epochs on, the training has been converged. It can be
found that from Fig. 8a most of the predictions are close to
the corresponding label values.

On subset B, the loss curve of M2 on the training set and
validation set were also shown in Fig. 9a. It can be found
thatM2’s loss decreased rapidly since the 15th epoch. Again,
we have also shown the prediction values by M2 and the
label values on both the training set and the validation set
in Fig. 9b, where the horizontal axis is the label value and the
vertical axis is the prediction values byM2. Similarly, Fig. 9c
showed M2’s prediction and the label values on the testing
set. It can be found that from 300 epochs on, the training has
been converged. It can be found that from Fig. 9a most of
the predictions are close to the corresponding label values.
Moreover,M2 shows better accuracy then that ofM1. This is
because AMCL package used in the data collection highly

FIGURE 7. (a) An example of segment of entropies in the training data
set. (b) The histogram of Entropy of the dataset.

relies on the result of dead-reckoning which is modelled
by M2.

On the whole data set, the loss curve of M on the train-
ing set and validation set were also shown in Fig. 10a.
It can be found that M ’s loss decreased rapidly since the
10th epoch. Again, we have also shown the prediction values
by M and the label values on both the training set and the
validation set in Fig. 10b, where the horizontal axis is the
label value and the vertical axis is the prediction values byM .
The average prediction error rates on the training set and the
validation set are 3.09% and 6.43% respectively. Similarly,
Fig. 10c showed M ’s prediction and the label values on the
testing set where the average error rate is 2.94%. It can
be found that from 1000 epochs on, the training has been
converged. It can be found that from Fig. 10a most of the
predictions are close to the corresponding label values.

V. EXPERIMENTAL STUDY
To further verify the performance of our predictor,
we employed two localizability prediction methods by Censi
and by Ruiz-Mayor, respectively for comparison. In this
section the robot was deployed in two environments that
have never been seen by the robot. In each experiment,
the robot was forced to moving along a given path to collect
the real data. Then the entropy calculated by the covariance
from AMCL package was treated as the ground truth. All
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FIGURE 8. (a) The loss curves of M1 on the training set and the validation
set. (b) M1’s predictions and the label values on the training set and
validation set. (c) M1’s predictions and the label values on the testing set.

the prediction methods were then employed to predict the
localizability for comparison.

A. COMPARISON IN AN INDOOR ENVIRONMENT
The first comparison was carried out in an indoor environ-
ment shown in Fig.11 where the red line showed the track of
the robot in experiment. Fig. 12 showed M ’s prediction and

FIGURE 9. (a) The loss curves of M2 on the training set and the validation
set. (b) M2’s predictions and the label values on the training set and
validation set. (c) M2’s predictions and the label values on testing set.

the corresponding label values, which is calculated from the
AMCL package. The average error rate of our predictor in
this experiment is 6.21%.

Similarly, we also calculated the localizability through
Censi’s method and Ruiz-mayor’s method. In Fig. 13. The red
curve showed the ground truth value, the black curve showed
the value by our predictor, the blue curve showed the value
by Censi’s method and the green curve showed the value by
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FIGURE 10. (a) The loss curves of M on the training set and the validation
set. (b) M’s predictions and the label values on the training set and
validation set. (c) M’s predictions and the label values on the testing set.

Ruiz-mayor’s method. Please note that Ruiz- mayor’s method
only predict the localizability using ambiguity instead of
entropy, which are quite different, but should show similar
trend.

B. COMPARISON IN AN OUTDOOR ENVIRONMENT
The second comparison was carried out in an outdoor envi-
ronment shown in Fig.14 where the red line showed the

FIGURE 11. Map of indoor environment and the track of the robot in
experiment.

FIGURE 12. M’s predictions and the label values in indoor environment.

FIGURE 13. Performance comparison in indoor environment.

given track of the robot in experiment. Fig. 15 showed M ’s
prediction and the corresponding label values. The average
error rate of our predictor in this experiment was 5.14%.
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FIGURE 14. Map of outdoor environment and the track of the robot in
experiment.

FIGURE 15. M’s predictions and the label values in outdoor experiment.

FIGURE 16. Performance comparison in outdoor environment.

Similarly, Fig. 16 showed the four curves of values by our
predictor, by Censi’s method, by Ruiz-mayor’s method and
by AMCL. It can be found that our method offer a better
prediction compare to the other two method too.

It can be found that compared to the other two methods,
our method offers a better prediction which is much closer
to the ground truth. This is because of two reasons, (1) the
other two methods only predict the localizability of map

TABLE 6. Error rate of our predictor and the models.

matching, while in contrast our approach has incorporated
the dead-reckoning result in to the localizability prediction.
(2) The method by Censi predicts the lower bound of the
covariance of localization, while the method by Ruiz-mayor
predicts the ambiguity of perception. In contrast our predictor
predicts the localizability based on the dataset directly while
the other two methods made the prediction in an indirect way.

Table 6 showed the error ratesM1,M2,M in the indoor and
outdoor environments respectively. It can be found that both
M1,M2 showed lower error rate in indoor environment than
that in outdoor environment. This is because the vibration
of the localization entropy in outdoor environment is bigger
than that in indoor environment which makes bigger error.
Moreover, the result of M2 in indoor environment is even
better than that of M . This is because the AMCL package
highly relies on the dead-reckoning, which may offer good
localization result in indoor environment and be well mod-
elled by M2. On the other hand, in outdoor environment,
the map matching may offer more contribution in the local-
ization result compared to the dead-reckoning. As a result,
M performs better thanM2 in outdoor.

VI. CONCLUSION
This paper mainly focused on the localizability prediction
for mobile robots. The proposed predictor composed of a
modularized Deep learning neural network which includes
three different neural network modules with the intuition that
the dataset in practice would lead to a more direct and more
accurate prediction of the localizability. The design of each
module is based on the analysis of the propagation of uncer-
tainty in map matching based localization. The experiment
result proved that our predictor offered a better prediction
compared to the exiting research.

A decrease of the accuracy in the experiment compared to
the accuracy of the testing data set has been found, whichmay
be caused by the inconsistency of the structure between the
network and the architecture of the localization algorithms.
Consequently, a better structure of the neural network would
be of interest in our future research. Moreover, better perfor-
mance from RNN neuron network module had been observed
which may come from the localization algorithm adopted in
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data collection, further research about this phenomenon is
in our future interest. Finally, in the proposed research, 2D
localization and Lidar are assumed which may not include
all the situations in practice. Consequently, more general
research about the localizability prediction would also be in
our future interest.
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