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ABSTRACT Edge cloud is a cloud computing system built on edge infrastructure. Task scheduling
optimization is the key technology to ensure the quality of service in edge cloud. However, the openness
of the edge cloud environment challenges the load balancing and profit optimization of task scheduling.
In this paper, we analyze the business process and optimization factors of task scheduling in edge cloud.
First, we propose a resource constrained task scheduling profit optimization algorithm (RCTSPO), which
consists of clustering preprocessing, classification, profit matrix construction and optimal scheduling strat-
egy calculation. Clustering preprocessing gathers similar tasks into one class and perform a classification on
the clustered tasks. Then construct the profit matrix for resource constrained task scheduling, and the optimal
task scheduling strategy is obtained based on the constructed profit matrix. Second, Petri nets are used to
construct the different components of edge cloud, such as resource, task, user request and virtual machine,
thus forming the task scheduling model of edge cloud. Third, the properties of task scheduling model are
verified by using the related theory and tools of Petri nets. Finally, several experiments are done to evaluate
the proposed method, the simulation results show that the algorithm not only achieves the maximum profit,

but also performs well in terms of time, reliability and load balancing of task scheduling.

INDEX TERMS Edge cloud, Petri nets, profit, resource constraints, task scheduling.

I. INTRODUCTION

Edge computing brings the advantages of low latency, small
network load and low data management cost to the Internet of
Things (IOT) [1]. Edge cloud is essentially a cloud computing
system built on the edge infrastructure, which brings stability
to the connected devices in the IOT network. By delivering
the cloud services to the edges of network in the proximity
to the users, the latency of transmission time can be reduced
and the heavy burden on the backhaul link is avoided [2].
With the application of edge cloud in key fields such as smart
city, the number of tasks has increased rapidly. A reasonable
and efficient task scheduling strategy can improve the per-
formance of the edge cloud [3]. In view of the social benefits
and economic value of cloud computing and edge computing,
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the research on task scheduling of edge cloud has become a
hot research field [4].

Edge cloud scheduling is divided into computation offload-
ing and task scheduling according to the operation level.
Computation offloading is used to transfer some tasks from
the edge to the cloud for processing based on the attributes
of task, such as energy consumption and calculation volume,
thus extending the life cycle of edge devices and improving
the task response time [5]. Task scheduling is used to allocate
tasks to the corresponding virtual machines for execution,
so as to optimize the performance of cloud, such as load
balancing, reliability, response time, and utility. With the
increase of tasks in the edge cloud, how to design an effective
task scheduling strategy under the limited virtual machines
has become a challenging problem.

However, the characteristics of edge cloud applications are
diversified, user requests are random, and virtual machine
resources are limited. The operating environment is more
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open, dynamic and complex, which makes the optimization
of task scheduling in edge cloud be more difficult. (1) In the
task scheduling process, load balancing of virtual machine is
a problem that cannot be ignored. Due to the heterogeneity
of physical devices in the edge cloud and the difference of
resource requests from a large number of users. Some virtual
machines may load imbalance, which may cause the waste of
resources and excessive energy consumption. (2) The profit
of task scheduling is an important factor that determines
the application of edge cloud. The workload and required
resources of each task are different, and the same type
resource may have different unit price. Therefore, the profit of
edge cloud is different under different task scheduling strate-
gies [6]. (3) The edge cloud is based on the edge virtualization
resources, which often includes many servers or devices that
work together. In addition to the diversity and uncertainty of
user requests, it is necessary to construct the task scheduling
model for describing the complex software structure of edge
cloud. In order to solve these problems, this paper proposes
a resource constrained task scheduling profit optimization
algorithm (RCTSPO) to maximize the profit of edge cloud,
and constructs the task scheduling model based on Petri nets.
The contributions of this paper are as follows:

(1) We design a clustering preprocessing and classification
to avoid the local optimization in task scheduling. It is used to
classify the tasks to achieve batch processing, thus improving
the efficiency of task scheduling.

(2) We propose a method to realize the load balancing and
profit optimization of task scheduling. The equal subgraphs
and their relationships are established between task and vir-
tual machine under resource constraints. A profit matrix is got
based on the profit of task scheduling. Finally, Kuhn-Munkres
(KM) is used to get the optimal matching with the best profit,
so0 as to maximize the profit and achieve the best load balance
of task scheduling in edge cloud.

(3) We construct a task scheduling model in edge cloud
based on Petri nets, which is used to model different com-
ponents of edge cloud, the internal logic and time attribute
are also considered. The theories of Petri nets are provided to
validate the correctness of proposed method.

(4) Several simulation experiments are carried out to verify
the effectiveness of the proposed method. The results demon-
strate its correctness and promise.

The rest of this paper is organized as follows. Section II
is the related work. Section III describes the task schedul-
ing framework and requirements. The RCTSPO algorithm
is proposed in Section IV. Section V constructs the task
scheduling model. Section VI is the experimental simulation.
While Section VII is the conclusion and future work.

Il. RELATED WORK

Edge cloud is a cloud computing platform built on edge
infrastructure. The “looking beyond the Internet” organized
by NSF in 2016 discussed the development trend and demand
of edge cloud [7]. AT & T released the “AT & T Edge Cloud
(AEC)-White Paper”, OpenStack [8] and other companies
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released the white papers related to edge cloud in 2018 to
elaborate on the definition, architecture, application scenar-
ios, main challenges and other issues of edge cloud com-
puting. Gartner’s top 10 strategic technology trends for
2020 points out that edge computing moves key applica-
tions and services closer to the people and devices that use
them [9]. Reference [10] explored the dynamic configuration
of service workflow for mobile e-commerce based on cloud
edge framework. Although the research of edge cloud has got
some achievements in architecture, model and other aspects,
it is still facing many challenges, such as software structure
design, edge cloud collaboration and migration [11].

Formal method has been applied in the field of computer
hardware and software. It helps to increase the software
developers’ understanding of the system and to correct the
errors in the design time. Many formal methods have been
used to model edge software system, such as Petri net,
Markov decision process. A formal model of fog computing
is established based on price time Petri net, the algorithm and
evaluation method of predicting task completion time are also
proposed in Ref. [12]. In Ref [13], a digital alarm system
based on fog calculation is designed to detect the displace-
ment of Nasogastric tube, the elements and their attributes are
described by using fuzzy Petri net. Reference [14] formally
verified the protocol against basic security properties by using
High Level Petri net (HLPN). Reference [15] formulated
the service migration problem for mobile edge computing
as a Markov Decision Process (MDP). The above literature
mainly designs the business processes of fog computing and
edge computing, without considering the profit optimization
of task scheduling in edge cloud.

The cooperation and interaction between cloud and edge
device can help reduce the energy consumption. Kaur K. et al.
proposed a multi-objective evolutionary algorithm to balance
the trade-off between energy efficiency and waiting time [16].
A load balancing technique which decreased the response
time and processing time of fogs to consumers has been pro-
posed in Ref [17]. A multi-objective evolutionary algorithm
using Tchebycheff decomposition is proposed in Ref. [18],
which is used to analyze the flow scheduling and routing in
SDN. Reference [19] proposed a heuristic algorithm approx-
imating the optimal solution to reduce brown energy con-
sumption. In Ref. [20], ant colony algorithm is proposed to
achieve load balancing and profit in cloud task scheduling.
Aziza and Krichen [21] used Genetic Algorithm (GA) to
estimate the time needed to run a group of tasks in task
scheduling of cloud, so as to reduce the processing cost.
Reference [22] proposed a data-intensive service edge
deployment scheme to optimize response time for service
deployment based on Genetic Algorithm. However, ant
colony algorithm and genetic algorithm need to train the data
first, and the results are uncertain.

The task scheduling in edge cloud often has a large num-
ber of tasks. Clustering algorithm can classify tasks and
maximize the similarity between data samples within the
same cluster [23]. Reference [24] proposed a new matrix
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factorization model to analyze the deep features of edge
computing services and users based on deep features learn-
ing. Items with similar features are classified into one class
by using K-means algorithm. Reference [25] proposed a
dynamic grouping through K-implies which suits well for
dynamic topology qualities of Vehicular ad-hoc Network.
An algorithm for IoT devices’ computation offloading deci-
sions is proposed in Ref [26]. The initial clustering center
of K-means clustering algorithm chooses the point under
the high density as the initial clustering center to achieve
better clustering effect [27]. When the number of tasks is
far greater than the number of virtual machines, the polling
mechanism is used to establish the equal subgraph of task and
virtual machine. KM algorithm finds the matching strategy
of maximum weights in complete matching. In Ref. [28],
the task scheduling in the cloud is transformed into a bipartite
graph matching problem, and the optimal bipartite graph
search algorithm KM is used to calculate the task scheduling
strategy with maximum profit. However, KM algorithm needs
to establish equal subgraph, and the number of tasks in cloud
is greater than the number of virtual machines. If polling
mechanism is used to establish equal subgraph, it is easy to
fall into the local optimization.

To sum up, ACO, GA and KM algorithms do not con-
sider the characteristics of the large number of tasks in the
edge cloud, and do not preprocess the tasks to improve the
efficiency of task scheduling. The selection of initial clus-
tering centers of traditional K-means clustering is random,
and the clustering results are uncertain. This paper proposes
a RCTSPO algorithm to solve the uncertainty of clustering
results, which selects the initial clustering center in the high-
density region to achieve K-means clustering. The classifica-
tion avoids the local optimization of tasks in equal subgraph
in task scheduling. In order to avoid being occupied for a
long time due to the lack of resources provided by the virtual
machine, resource constraints are added in constructing the
equal subgraph. KM algorithm can maximize the profit of
task scheduling. Furthermore, we construct a formal model
to characterize the task scheduling process in edge cloud.

lIl. THE FRAMEWORK AND REQUIREMENTS OF TASK
SCHEDULING IN EDGE CLOUD

A. SYSTEM FRAMEWORK

The edge cloud architecture is a three-tier network structure,
as shown in Figure 1. The bottom layer is the terminal device
of the end user, mainly composed of sensors, collectors,
mobile phones, PC, smart watches, etc. The middle layer
is the edge computing, mainly composed of edge devices
(such as routers, gateways, small servers, etc.) with a certain
computing capabilities. The top layer is the cloud comput-
ing center, mainly composed of virtual machines. The end
user will initiate the application requirement of edge cloud,
which consists of a series of tasks and their relationships.
The edge layer has a certain amount of computing resources
to handle simple tasks. The cloud computing center layer
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has virtual machine resources that can handle complex tasks.
The implementation process of edge cloud application is to
decide that tasks are executed by different layers (terminal,
edge or cloud) according to task offloading strategy. The
cloud dispatching center receives the edge cloud application
requirements and the set of task to be processed, and assigns
the tasks to the corresponding virtual machine for execution
according to the task scheduling strategy.

The number of user requests submitted to the edge cloud
is increasing gradually, it needs an effective task schedul-
ing strategy to maximize the profit of edge cloud. Task
scheduling is mainly allocating the tasks to be executed to
virtual machines based on the optimization objectives. For
optimizing and modeling resource constrained task schedul-
ing in edge cloud, this paper intends to take the following
two measures: (1) We propose a profit optimization algo-
rithm for resource constrained task scheduling in edge cloud.
(2)We construct a formal model of task, user request, vir-
tual machine and scheduling center by using Petri nets, thus
improving the model reusability.

The specific framework is shown in Figure 1, which is
divided into three steps.

(1) Optimization algorithm: The tasks are clustered accord-
ing to the related parameters (Memory, bandwidth, comput-
ing power) and classified to avoid local optimization. The
resource constraints are considered to achieve load balancing
of task scheduling, thus avoiding the idle resources. The
equal subgraph is also established with scheduling profit as
the weight, KM algorithm is used to calculate the optimal
scheduling strategy.

(2) Model construction: Based on the execution results of
the scheduling algorithm, the basic elements of edge cloud
such as tasks, user requests, scheduling processes, and virtual
machines are modeled by using Petri nets. Then, according
to the actual requirements, the interface of the model is used
to match the model of the basic elements to form the task
scheduling model. Finally, the effectiveness and correctness
of the constructed model are analyzed with the help of related
tools of Petri nets.

(3) Simulation analysis: Aiming at the application scope
and effectiveness of the proposed method, we design several
simulation experiments to analyze and compare the RCTSPO
algorithm with other scheduling methods, thus illustrating the
effectiveness of the proposed method.

B. TASK SCHEDULING REQUIREMENT
The resource constrained task scheduling in edge cloud is
given in the following, which includes the set of task, the set
of virtual machine, the set of user request and its attributes.
The user request consists of the set of task and relationships
between tasks. Task has attributes such as length, comput-
ing power and memory capacity. The virtual machine has
attributes such as computing power and memory capacity.
Definition 1: The user request is a 2-tuple Rq;, =
(TK;, RL;), TK; ; represents the jth task of Rg;. RL;: TK;x
TK; —{>, +, ||, n} is the relationship functions between

VOLUME 8, 2020



L. Chen et al.: Resource Constrained Profit Optimization Method for Task Scheduling in Edge Cloud

IEEE Access

Terminal device layer

pha
/@

Edge computlng layer| ™™
@ B8 @ &
\éé e

f - _
“o0 b R Eee- A

Cloud computing center layer

\/\

User request Computation offloading

\—/T4

ask scheduling

] !

L, — —

Modeling cloud computing

- Modeling task
Resource-constrained

task scheduling profit
optimization
algorithm

v \

Cluster
preprocessing

RCTSPO o
/
Optimal :
o Profit matrix| task schedul '
1

Classification p
construction | ing strategy
calculation

Modeling virtual machine b,
: Properties
H analysis
N o J
e
Modelmg .
-
-~ m
Reliabilit
Simulation

Running
time

Load
balancing

FIGURE 1. System framework.

tasks, >, +, ||, n represent the sequence, selection, parallel
and repeated relationships. Repeated execution means that
the task is called multiple times, and n should be limited. Let
Rq be the set of user requests.

Definition 2: The task is a 6-tuple 7K; ;
Tcomplj’Tra l]’Thw )]’Tdeadlme . } Ttd ijs
e, T? Vi Tde“dl’”e,,j represent the number, length
(millions of instructions), computing power (millions of
instructions per second), memory capacity (MB), network
bandwidth (MB/s) and the deadline of task (ms). TK is the
set of all tasks.

Definition 3: The virtual machine is a 4-tuple VM; = {V,,
ycomp. yram . ybw, }. yid, ycomp, yram, ybw, represent the
number of virtual machine, computing power (Millions of
instructions per second, MIPS), memory capacity (MB) and
network bandwidth capacity (MB/s) of virtual machine VM;.
Let VM be the set of all virtual machines in the edge cloud.

{Tid Tlength .

Tlength . Tcnm

C. PROBLEM DESCRIPTION

The profit of task scheduling is equal to the difference
between the expense paid by the user and the cost. The cost
of task scheduling is calculated by the resource size and
time provided by the virtual machine. The value of a task is
determined by the resources and the time it takes. It can be
got by using Formula (1).

value;j = (T{edne(@* /4" + p* TP + *T™)

ey
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a, b and c represent the price weight of memory, bandwidth
and computing power. At the same time, the resources pro-
vided by the virtual machine are different, so the estimation
value of the edge cloud for the virtual machine is shown in
Formula (2).

length

costijk = (—coms wmp Y (a* VM

VM

+H* VMDY + VMY (2)
In order to maximize the profit, the objective function of
the resource constrained task scheduling in edge cloud is

shown in Formula (3).

[Rql,|Rq;|,|IVM |
MAXprofit= Y w(value;j — cost;)
i=0,j=0,k=0

LT < VMP K&T!)Y < VMPY&&T™ < VM™

€[0, [Rql), j€l0, [RgiD), k[0, [VM]),w € {0, 1}
(€)

When w is equal to 1, TK executes on the VM. When w
is equal to 0, 7K is not executed on the VM. The objective
function is to maximize the profit of task scheduling under
resource constraints, which can be modified by adjusting the
profit weight.
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IV. TASK SCHEDULING ALGORITHM

A. TASK SCHEDULING PROCESS

This section will give the implementation process of the
RCTSPO algorithm, which is shown in Figure 2. The input
of RCTSPO algorithm is the task scheduling requirements of
resource constrained edge cloud, and the output is the task
scheduling strategy with optimal profit.

Step 1: Cluster preprocessing: K-means clustering is
improved for tasks according to the parameters 77", ;, b, j
and T, ;. The whole virtual machine is divided into one
class, and the task is divided into K class. The K initial value
of clustering is determined by the number of tasks (|7K|) and
the number of virtual machines (|JVM|) (K = |TK|/|VM]|).
The value of k can be adjusted based on the simulation
results.

Step 2: Classification: The clustering results are evenly
distributed to K task sets according to the different task
resource requirements. (K is the ratio of the number of tasks
to the number of virtual machines.)

Step 3: Constructing the profit matrix: Establishing the
matrix between task and virtual machine with 7%, ; as row
coordinate and VM, as vertical coordinate. TK; j is executed
on the VM, the profit of this task scheduling is viewed
as the value of the corresponding element in the profit
matrix.

Step 4: Calculating the optimal task scheduling strat-
egy: The profit matrix of Step 3 is taken as the input of
KM algorithm, and find the matching with the best
profit.

B. CLUSTER PREPROCESSING OF TASK SCHEDULING

In the first step of RCTSPO algorithm, K-means algorithm is
used to dynamically find the initial clustering center. It calcu-
lates the distance between two data points in the task set by
using Formula (4), and stores it in the matrix with the related
row of task and the related column of virtual machine. The
matrix is sorted in ascending order. The two data points with
the smallest distance in the former K are selected as the initial
clustering center m;(i = 0, ..., K). After selecting K initial
clustering centers, the former n/K data points closest to the
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cluster center are classified into one cluster.
distancejy,e.f
= =Tyl = Tip T T
4

Each cluster has its center, which is the cluster center. The
cluster center is determined by Formula (5).

ITK |

1

clusterCenterj = ——
ITK| &

=

X \/(pointimm)z —|—(p0int]i3W)2 + (pointl?()m[’)Z
J€10,K) (5)

Point™;, Point®”; and Pointfomp represent the memory
attribute, bandwidth attribute and computing power attribute
of the ith point to be clustered.

The pseudo-code of clustering preprocessing is illustrated
in Algorithm 1.

Step 1 is used to determine the initial clustering center
according to the above algorithm. Step 4 calculates the dis-
tance from the task set to the clustering center according
to Formula (4), and selects the n/K nodes closest to the
clustering center. Step 5 calculates the new clustering center
by using Formula (5).

According to the criteria of |CenterOld-CenterNew| <0.1,
(CenterOld represents the old cluster center, CenterNew rep-
resents the new cluster center). If the criterion is satisfied,
the clustering process is completed. Otherwise, clustering
continues to execute.

C. CLASSIFICATION

Tasks in the task clusters have the similar requirements for
resources, but the resources provided by virtual machines
are inconsistent. If a virtual machine with high performance
is used to realize the tasks with light workload, virtual
machine resources are wasted. The task with heavy workload
is assigned to the virtual machine with low performance,
which makes the task not be completed within the deadline.
Therefore, it is necessary to improve this problem.
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Algorithm 1 Cluster Preprocessing

Input: Task and virtual machine information

Output: Clustering information for tasks and virtual
machines

1: Determining the initial cluster center according to the
above algorithmic idea.

2: Set the Boolean flag to true.

3: while flag is true do

4: Calculating the distance from the remaining nodes to
the cluster center according to Formula (4), and select the
nearest n/k nodes to the cluster;

5:  Recalculating the average value of the data objects in
each cluster according to Formula (5), and determine a new
cluster center;

6: if |CenterOld-CenterNew| <0.01 then

7 Set the Boolean flag with false.
8: else

9: Set the Boolean flag with true.
10: end if

11:end while

To solve this problem, this paper classifies tasks according
to the required resources of tasks. For example, if there
are three task classes after clustering, task class A needs
more resources, task class B needs medium resources, and
task class C needs less resources. According to the num-
ber of provided resources, virtual machines can also be
divided into three types: more, medium and less. After the
task is classified. In task class A, the required resources
of tasks are also divided into more, medium and less.
Task class B and task class C is the same as task
class A.

Algorithm 2 Classification
Input: Task clustering result
Output: Mixed task clustering
1: Create K empty clusters clusterSet.
2:for(Cluster cluster: clustertaskSet) do
3: Initializing K cluster centers.
4: end for
5:for(Cluster cluster:clusterSet) do
6: for(Cluster clustertask:clustertaskSet) do
7 Add the task to the new set.
8: end for
9:end for
10: Calculate the new cluster center according to For-
mula (5)

The pseudo-code of classification is shown in Algorithm 2.
Firstly, K empty clustering sets are created and K clus-
tering centers are initialized. The tasks in the cluster
set are successively distributed to new K cluster sets.
Finally, the new clustering center is calculated based on
Formula (5).
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D. PROFIT MATRIX CONSTRUCTION

According to Formula (4), the distance between cluster cen-
ters is calculated, and the profit matrix is constructed by
selecting the group with the smallest distance between task
class and virtual machine class. Profit matrix (p[Tid, VMid])
is a matrix with task as row and virtual machine as column.
The profit of task scheduling is got by using Formula (6).

profit; ;) = value;j — costjj i
= (Ti‘,ge“dlme * (a * T,-fj”" +bx* Tl-?/”’ +c* Tf;’mp )
length
— (=LY s (@ VM + b % VMDY

LJ
+cx VM) (6)

Calculating the value of profit matrix in p[(i,)), k] =
profit; j .. If the required resources of task 7K; ; are greater
than the provided resources of virtual machine VM, then
pl@,j), k] =0.

The pseudo-code of the profit matrix is illustrated in
Algorithm 3. When the related parameters of the task are
less than the related parameters of virtual machine, the profit
of the current task scheduling is calculated according
to Formula (6).

Algorithm 3 Profit Matrix Construction
Input: the related parameters of task set and virtual
machine set
Output: weight matrix
1:fori = 0:m do
2:  forj=0:|Rqj| do
3: for k = 0:n do
4. (T ; <VM™" &&T P ; <VMO™P )
&&wai,j <VMka)

5: Calculate the task scheduling profit assignment
to matrix according to Formula (6).

6 else

7 Matrix value assigned to 0

8 end if

9: end for

10: end for

11:end for

E. THE OPTIMIZATION OF SCHEDULING STRATEGY

The profit matrix is represented by bipartite graph G =< V,
E >. The rows and columns of the matrix are formed
into V, and the matrix value is E. In this paper, the KM
(Kuhn-Munkres) optimal search algorithm is used to solve
the optimal matching of tasks and virtual machines in task
scheduling. In a bipartite graph, the left vertex is task, and
the right vertex is virtual machine. Its improved algorithm
(KM algorithm) assigns the left vertex as the maximum value
in the profit matrix, and the right vertex is 0. If there is a
best matching, it will continue. Otherwise, the index value
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is modified and the KM algorithm is used again. Finally, the
best matching results are obtained.

F. ALGORITHM IMPLEMENTATION

The pseudo-code of the RSPOTS algorithm is illustrated in
Algorithm 4. First, Algorithm 1 is used to cluster tasks and
virtual machines to reduce the search scope and achieve
the global optimization. Second, the tasks with different
requirements are classified reasonably (Algorithm 2). Third,
the profit matrix is determined, and the profit matrix is
obtained (Algorithm 3). Finally, the profit matrix is used as
the input of KM algorithm to achieve the optimal matching
of task and virtual machine with profit maximization.

Algorithm 4 Implementation Steps of RCTSPO Algorithm
Input: Task and virtual machine
Output: Task scheduling strategy
1: Clustering preprocessing is executed by using Algo-
rithm 1, and clustering information is obtained.
2: The clustering results are classified by Algorithm (2).
3: Determining the weighted matrix of clustering informa-
tion and getting the weight matrix by Algorithm (3).
4: The profit matrix is calculated from the optimal schedul-
ing strategy, and the task scheduling strategy with the
maximum profit is obtained.

G. ALGORITHM COMPLEXITY ANALYSIS

The complexity analysis of RCTSPO algorithm is analyzed
from the clustering preprocessing algorithm, classification
algorithm and the optimal scheduling strategy. We will ana-
lyze from the time complexity and space complexity.

The improvement of clustering preprocessing algorithm is
the selection of initial clustering center. The time complexity
is O(n), the space complexity is O(a). n is the number of
task, and a is a constant. k is the number of cluster, and
k = (n/|VM]). So the time complexity of K-means algorithm
is O(I*n*n*m/|VM]|), and the space complexity is O(n*m).
Where m is the number of attributes of each element, and
I is the number of iterations. / and m can be regarded
as constants, so the time and space complexity is reduced
to O(n%/|VM ).

Classification algorithm. It needs the extra space to
store classification results, and the space complexity
is O(n). The system needs to traverse the task set
twice. The time complexity of classification algorithm
is O(k*(n/k)).

The optimal task scheduling strategy needs to find the aug-
menting path for O(n) times, and each augmentation needs
to modify the top mark at most O(n) times. The complexity
of modifying the top scale is O(n?). The time complexity
is O(n*). The space complexity of the code is O(n*2), which
is O(n).

Therefore, the time and space complexity of the proposed
RCTSPO algorithm are O(n*) and O(n*/|VM|) respectively.

118644

! o
Din P ab N_~sPew P oe

FIGURE 3. Modeling task.

V. TASK SCHEDULING MODEL

This section focuses on the requirements and characteris-
tics of the edge cloud, and constructs the task scheduling
model. The task scheduling model is constructed based on
the scheduling strategy. The scheduling strategy is abstracted
as an input to the task scheduling model. The model can be
used to describe the execution process of edge cloud.

As a formal model with rich mathematical basis, Petri net
can be widely used to describe the system with concurrent,
asynchronous and distributed characteristics [29]. Therefore,
Petri net is very suitable for describing a loosely coupled
distributed system such as edge computing [30].

We model the basic components of edge cloud based on the
requirements, then construct the task scheduling model. In the
modeling process, only some basic concepts are introduced,
the other concepts can refer to Ref [31]. In order to distinguish
the input interface and output interface, the input interface is
marked with superscript 7, and the output interface is marked
with superscript O.

A. MODELING RESOURSE

The task scheduling model abstracts all resources and infor-
mation into as an individual d; = (it, st, RW;), ite{T, V,C,d}
indicates the object type described by the individual, T, V,
C, d represent task, virtual machine, scheduling strategy and
data package. st represents the location of the individual, such
as the individual d T,-, i = (T,(i,j), RW; ;) corresponds to task
TKi,j: RWi,j — (Tlength’i,j’ T com, ijs Trami’j, wai,j: Tdeadlinei’j)
describes the required task length, computing power, mem-
ory capacity, network bandwidth and task deadline. When
it is equal to V, RW; = (Vo V@, vy indicates the
computing power, memory capacity and network bandwidth
capacity of virtual machine. When iz is equal to C, RW;; is
the scheduling virtual machine of task TK; ;. When it is equal
to d, RWj is the information carried by packets. The common
packets in the system are abstracted into individual ¢. If there
is no special explanation, all individuals in task scheduling
model are ¢.

B. MODELING TASK
The task scheduling model of task 7TK; ; is shown in Figure 3.
The specific operation process is as follows:

(1)Place py is used to store the execution mode of the
task. Place pg; stores the individuals of virtual machine
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FIGURE 4. Modeling user request.

(Mo(TK; jepsa) = d%ij = (d] ' dY)) assigned by the task
according to the above RCTSPO algorithm, assuming that the
scheduling strategy assigns task 7K;; to the virtual machine
VMy).

(2) After obtaining the input parameter p’;,, the task indi-
vidual is put into the waiting queue p?,; of virtual machine
according to the task scheduling result. If the results of the
task are fed back (M (p’ o) # V), then fire the transition 7,4,
to make the task be in the termination position (p.), and the
execution result is sent to the output interface p©,,.

(3) pa is used to control the deadline of task, ct(py) =
Tdeadline, . Tf the task cannot realize the function within the
deadline (M (p;) # ¥), transition #,4 is fired to make the task
be in the timeout position.

C. MODELING USER REQUEST

The model of user request Rg; is shown in Figure 4. The
model mainly describes the tasks and their relationships
in the user request, then dynamically outputs the tasks
to be scheduled and the received execution results of the
tasks.

(1) The transition ¢; and place p; are introduced to describe
the beginning operation and location of user request, and the
whole user request is initialized according to the characteris-
tics of the task. The transition 7, and place p, are introduced
to describe the termination operation and location of user
request respectively, and the corresponding output is synthe-
sized according to the relationship between tasks. *py = @,
P; =15ty = ps, t; = {Paj|V TK;x € TK;, RL(TK,
TK;j) #> }, 17 = pe, Po = te, °te = {p;I¥V TK; € TK;,
RI(TKij, TKix) #>}, pg =9, *tar = {pa, pc}. 13, = Par-

(2) Each task is modeled as a dotted box, pi,; and pye;
represent the beginning and termination of the task. p.o;
and p,p; represent the input of operating results and the
output of task scheduling. Transitions fy, fsj, s, tsf repre-
sent the pages executed by tasks TK;;, TK;j, TK;, TK;,
respectively.

3 pgj and pij are used to dynamically store the task set
and results of user requests.
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D. MODELING SCHEDULING CENTER
The scheduling center is used to connect user requests with
virtual machines. The model is shown in Figure 5.

(1) Firstly, the scheduling strategy is used to assign the
tasks. If a task (M (poj,;) # ¥) of user request Rg; is submitted,
then invoke transition #,; to store the task in the place py;
and wait for further classification. Transition f;; is fired to
configure all tasks to the cache according to their types. Place
ppi is introduced to represent the set of tasks realized by the
virtual machine vm;.

(2)The transition #p; is introduced to represent the execu-
tion page of the virtual machine. If there is a virtual machine
vm; which feedbacks a set of tasks péi realized their function,
the transition #,; is fired to summarize the results to place p,;.
Then the transition f,; is started and #; feedbacks the results
to the corresponding interface of user request.

E. MODELING VIRTUAL MACHINE

The virtual machine realizes the function of the tasks
and transmits the results to the scheduling center. The
task scheduling model of virtual machine vmy is shown
in Figure 6. (1) pp is used to store the queuing task of virtual
machine. (2) If the virtual machine is idle (M (p;) # 0), then
fire the transition #; to select a task TK;; from the place
pl, according to the queuing order, and make it be in the
running position pj (ct(pins) = dw jltsy). Transition t,, rep-
resents the execution process of tasks in virtual machine layer.
(3) Releasing the virtual machine if the task execution is
finished.

F. INSTANTIATION OF SPECIFIC REQUIREMENTS
The task scheduling model is modeled as follows:

(1) According to the properties and relations of tasks,
the scheduling model of all tasks and user requests in the
system is constructed, because the model mainly considers
the execution process of tasks. Set Mo(ps) = ¢

(2) According to the properties of virtual machine,
the scheduling model of all virtual machines is constructed,
and the initial resource distribution is set.
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FIGURE 6. Modeling virtual machine.

(3) Based on the relationship between user request and
virtual machine, we can construct the model of scheduling
center, the same place and transition is merged.

Task scheduling model is mainly used to model virtual
machine, task, and the relationship between tasks. Place, tran-
sition and interface describe the location, possible operation
and input / output parameters of components.

Anyx € (PUT),*x = {yly € (PUT)A(Gx)e F} and
x* ={yly e PUT) A (x,y) € F} correspond to the input
and output of x.

Because the place has time factor, the concept of waiting
time is introduced to place. Waiting time 7§ is an attribute
of the place, which is used to explain how long the system
can use the individuals stored in the place. TS(pi) = m
indicates that the model must wait m time units before using
the individual in place pi. A tuple S = (M,TS) is called a
state of task scheduling model, where M is a marking. And
TS is the set of waiting time of all places under marking M.
Initial state So = (Mo, TSo), where TSy is a zero vector. The
state is used to describe the resource distribution, such as the
available resources, the position of each object.

Because Ap(f) and Ay (¢) of model have the vari-
ables, the values of these variables are uncertain. AT () <
di,dr,...,dn > and AF(p,t) < di,dr,...,dn > are
the values got by replacing formulas AT (¢) and the predi-
cates AF(p,t) of input arc with individuals di, da, ..., dn.
If A7(t) < dy,dy,...,dn >= true, then t <
di,dy,...,dn > is called a feasible replacement of ¢. All
the feasible replacements of ¢ under S are denoted by set
ET(S).HS) = {t <di,da,...,dn > |*tin°tf = ALt <
dy,d, ..., dn > is afeasible replacements of ¢} is called the
greatest firing set of S. Because each transition ¢+ may have
several feasible replacements, H(S) is not unique.

The process that S reaches S’ by firing a feasible replace-
ment i < dy,do,...,dn > of t; is denoted by S
[ti < di,dr,...,dn > §’. S is called the reachable
state of S. If there is a firing sequence Hi, H», ..., Hk and
state sequence Sp, 2, ..., Sk, which makes S [(H], w1) >
Si1[(Hz, w2) > M, ...Sk — 1[(Hg, wk) > Sk, then Sk is a
reachable state from S. All the possibly reachable states of S
are denoted by R(S).

G. PROPERTY ANALYSIS

The task scheduling model mainly describes the functional
requirements of the edge cloud, so it is necessary to ana-
lyze the structural correctness of task scheduling model.
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In addition, the components are marked in front of the node,
task, transition and place. For example, the beginning transi-
tion #; of task TK; ; is expressed as TK; jots.

Theorem 1: Let the task scheduling model be 2, R(2) is
the corresponding set of reachable states, then:

(1)VTK;j € Rq;, 3S" € R(Q2), then TK ; jot5 € FT(S")

(2) If the system has K available virtual machines, V1 <
k < K, there is 35 € R(2), which makes |[M'(VM ;opp)| = 1

Proof: (1) Recursive method, VTK;; €TK, according
to the relationships between TK;; and other tasks in the
execution process, it can be divided into two cases.

Case A: The forward set of task TK; ; is Fork(TK; ;) = @.
According to the modeling process of virtual machine, 7K ; jo
pfn € t7. Because t; € FT(Sp), there is S1 € R(£2), which
makes |M(TK jo pfn)| = 1. Because °*TK; jot; = TK,-,./.pfn,
there is S € R(S1), TK; jots € FT(S>2). Let S’ =8, we can
get 38" € R(2), which makes TK; .ty € FT(S’) when
Fork(TKl-,j) =0.

Case B: The forward set of 7K j is Fork(TK; ;) # . Let
VTK ;i € Fork(TK,;j), 3S" € R(Q), which makes TK yof; €
FT(S"), we can get that TK; ; meets the sub proposition (1).
Let Fork(TK;j) = {TK;k, TK;¢, ..., TK;g}. According to
the assumption of the proposition, all forward tasks of 7K;
are possible to be executed. So there is 1 € R(€2), which

makes [M{(TK;kep%oe)l = IMi(TK;fep%oe)l = ... =
IM\(TK . gop©oe)| = 1.
Because RL(TK ; x, TK;j) = ... = RL(TK; 4, TK j) =>.

According to the modeling process of the relationships
between tasks, we can get that there is a corresponding
transition in the model, which is used to summarize the
execution results of 7K ,..., TK; ¢z to TK; ;. That is, there
is $ € R(Sp) that makes |M2(TK,-,j.p,1.n)| #0. Because °
TK;jet; = TK;jep! . there is S3 € R(S»), which makes
TK;j o ty € FT(S3). Set ' = S3, 38" € R(R), which
makes TK,’J ol € FT(S/) if FOI"k(TKi’j) #* @.

To sum up, the sub proposition (1) is proved.

Similarly, the sub proposition (2) is also established.

Theorem 1 shows that any virtual machine can be invoked
and a task may be executed in task scheduling model. That is,
all virtual machines and tasks can be invoked in the model.

Theorem 2: Let the task scheduling model be €2, R(2) is
the set of reachable states. V TK; ; €TK, ¥V VM €VM, if the
scheduling algorithm assigns 7K; ; to VM, then:

(1)3S’e R(Q), which makes d”; ; € M(VMyaph)

(2)35” € R(2), which makes d’; j € M(p©,; ;)

Proof: Because TK;; is assigned to VM; by using
the scheduling algorithm, according to the task scheduling
model, we can get Mo(TKjepsa) = dij = (d’;j,d").
According to Theorem 1, there is S| € R(£2), which makes
TK  jots € FT(S"). Because TK ; jots = p°ap. So there is S5 €
R(S1), which makes dlg. € My(TK ; jop®ab) = M2(Rqie Pabi)-
Because Rq;,p,;= Rq;othi,and Rgjety;= Rq;,p°»i- So there is
S3 € R(S»), which makes dlS € M3(Rq;sp%oi) = M3(poi.i).
Because p;i’i = to; and t); = py,;. There is S4 € R(S3), which
makes df} € My(pyj). Because p;j = t; and tl; = {pwl,
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TABLE 1. Parameters of task and virtual machine.

Attributes/ Unit Task Virtual Machine
memory/MB [1024,2048] [1024,3072]
computing power / (million [100,600] [500,1000]
instructions per second)
bandwidth /(MB/S) [1000,3000] [2000,4000]
length / (million instructions) | [3024,11048] none
time limit /(MS) [90,330] none

Pw2, - -.}. There is S5 € R(S4), which makes d’; ; € Ms(pyi).
Because py, = ty and £5, = ppi. There is S € R(Ss),
which makes d/;; € Mg(ppk) = Me(VMeplhy). Set S’ = Se,
sub proposition (1) is proved.

Similarly, the sub proposition (2) is also established.

Theorem 2 shows that task scheduling model can correctly
describe the process that tasks invoke the virtual machine and
feedback the execution results of virtual machine. Therefore,
task scheduling model can effectively describe the execution
logic between tasks and virtual machines.

VI. EXPERIMENTAL SIMULATION AND ANALYSIS
In this section, the performance and applicability of the pro-
posed RCTSPO algorithm will be evaluated.

A. EXPERIMENT SETUP

Due to the lack of a unified standard library, Cloudsim
is used to automatically generate task scheduling require-
ments for the edge cloud, including task set, user request
set, virtual machine set, etc [32]. One of the advantages
of using Cloudsim is that we can set different parameters
based on the actual requirement. In the dataCenterBroker
class, we rewrites the bindcloudlettovm (cloudletlist, vinlist)
method to realize the core function of RCTSPO algorithm.

According to the task scheduling requirements, we ran-
domly generate the parameters of the task and virtual
machine, which are shown in Table 1.

The proposed RCTSPO algorithm aims to maximize the
profit of resource constrained task scheduling in edge cloud.
This paper intends to evaluate the algorithm from the total
time, reliability, profit and load balancing of task scheduling.

Total time of task scheduling: Makespan represents the
total time of task scheduling. Makespan is equal to the maxi-
mum working time of all virtual machines.

Reliability of task scheduling: The proportion of tasks
completed in T9¢4d!ine divided by the total tasks.

The profit of task scheduling: Calculating the total profit
of task scheduling according to Formula (7), that is, the sum
of all profits for realizing the tasks [28].

[Rql,|Rq;l,|VM |
Total profit = Z profiti j i
i=0,j=0,k=0

s.t.Time;j < Tl.d]?“d””e )
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Load balancing: The standard deviation of the working
time of the virtual machines represents the load balancing of
virtual machines [33]. According to Formula (8), it can get:

1
=i Dy TP @

PT; represents the working time of virtual machine J in
task scheduling, avg(PT) is the average time of all virtual
machines. The smaller the standard deviation, the closer the
working time of different virtual machines, and the better the
load balance of task scheduling.

The comparison algorithms used in this paper are FCFS
(First Come First Serve), MIN-MIN [34], ACO (Ant Colony
Algorithm), GA (Genetic Algorithm) and KM algorithm. It is
assumed that task scheduling can be completed only if the
resource constraints are satisfied.

B. IMPACT OF CLUSTERING

Experiments 1 and 2 are done to get the optimal clustering
value K. In order to weaken the influence of the unit price of
different resource types on profits, we set @ = b = c in these
two experiments.

1) IMPACT OF CLUSTERING K VALUE

Experiment 1: The RCTSPO algorithm proposed in this paper
converts the ratio of the number of tasks to the number of
virtual machines into the K value of clustering. In order to
evaluate the performance of RCTSPO algorithm when the
number of virtual machines is fixed while the number of
tasks is dynamically changing (The values of clustering K
are different). The completion time, reliability, load balancing
and total profit of task scheduling in the evaluation criteria are
compared to get the best clustering value K.

The experimental steps of Experiment 1 are as follows.

Step 1: Assuming that the number of virtual machines is
10, and the number of tasks is 30, 40, 50, 60, 70, 80, 90, 100
(that is, cluster value K is 3,4, 5,6, 7, 8,9, 10).

Step 2: Setting the initial profit weighttoa = b = ¢ = 3.
The purpose of this experiment is to find the best clustering
value K, so the profit weight is the same by default.

Step 3: Comparing the performance of RCTSPO algorithm
and FCFS, MIN-MIN, ACO, GA and KM algorithm in task
scheduling of edge cloud.

Step 4: Calculating the completion time, reliability,
total profit and load balancing under task scheduling
strategies.

The results of Experiment 1 are shown in Figure 7(a)-(d),
we can observe: (1) The number of virtual machines remains
unchanged when the number of tasks increases gradu-
ally, and the deadline of task is fixed. The running time
of virtual machine increases gradually, Figure 7(a) and
Figure 7(c) show an upward trend, and Figure 7(b) shows
a downward trend. That is because the waiting time is too
long, it is easy to increase the number of tasks exceed
the deadline, which makes the reliability of task scheduling
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FIGURE 7. Optimal clustering k value for task scheduling.

decrease, while the task scheduling time and profit increase.
(2) The load balancing of task scheduling is fluctuating.
When the number of tasks is 50, the load balance of
task scheduling is optimal. (3) The clustering value K
is 5, RCTSPO is better than the compared algorithm in
completion time, reliability, total profit and load balanc-
ing of task scheduling, and the best clustering value K
is 5.
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2) IMPACT OF THE NUMBER OF TASKS

Experiment 2: Because RCTSPO algorithm includes the
K-means clustering algorithm, Experiment 2 is done to get the
optimal clustering value K. In order to distinguish the results
of the clustering algorithm in task scheduling, we will design
the experiment to analyze the impact of the number of tasks
on the performance of task scheduling.

The steps of Experiment 2 are as follows:

Step 1: With the optimal value K (k = 5), the weight of
profit is initialized as: a = b = ¢ = 3.

Step 2: The number of tasks is 10, 100, and 1000, the num-
ber of virtual machines is 1/5 of the number of tasks.

Step3: Compare RCTSPO algorithm with FCFS, MIN-
MIN, ACO, GA, and KM on completion time, reliability, total
profit, and load balancing performance of task scheduling.

The results of Experiment 2 are shown in Figure 8(a)-(d):
When the task is 10, RCTSPO algorithm does not show the
great advantages in completion time, reliability, total profit
and load balancing of task scheduling. When the number of
tasks increases to 100 and 1000, the performance of RCTSPO
algorithm is better than other algorithms. This is because the
clustering algorithm of RCTSPO is suitable for large data
volume. When the data volume is small, the clustering results
are not obvious. It can draw that RCTSPO algorithm is more
suitable for the large number of tasks.

C. PROFIT MAXIMIZATION OF TASK SCHEDULING

1) IMPACT OF WEIGHT ON TASK SCHEDULING PROFIT
Experiment 3: Because user must pay for cloud provider in
task scheduling, we add the profit weights in Formula (3). The
profit weights of ram, bw, and comp in Formula (3) are a, b,
¢,and a4+ b+ c = 9. We will design an experiment to find
the optimal profit weight of task scheduling under different
profit weights of RCTSPO.

The steps of Experiment 3 are as follows:

Step 1: The number of tasks is set to 100, 200, 300, 400, and
500, respectively. The number of virtual machines is 1/5 of
the number of tasks (that is, the optimal clustering value K).

Step 2: The profit weights are settoa =b=c=3;a =17,
b=c=la=c=1,b=7,anda=b=1,c=17.

Step 3: RCTSPO algorithm is used to calculate the task
scheduling strategy respectively. Calculating the total profit
under all task scheduling strategies.

The results of Experiment 3 are shown in Figure 9, we can
observe: The profit of RCTSPO algorithm also shows an
upward trend with the number of tasks increasing. The profit
of task scheduling under different profit weights increases
with the number of tasks increasing. When the profit weight
isa = c = 1 and b = 7, the profit of task scheduling is larger
than others. This is because the bandwidth resources are more
important than memory and computing power.

2) THE RESULTS OF DIFFERENT ALGORITHMS
Experiment 4: The optimal profit weight of task scheduling
based on Experiment 3 is a=c=1, b=7. In order to
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FIGURE 8. Impact of the number of tasks on task scheduling.

verify that RCTSPO algorithm has better performance in task
scheduling than the compared algorithm under the best profit
weight and the best clustering value K.

The steps of Experiment 4 are as follows:

Step 1: The number of tasks is 100, 200, 300, 400, 500.
The number of virtual machines is 1/5 of the number of tasks
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(that is, the optimal clustering value K). The profit weight is
a=b=1,c=1.

Step 2: RCTSPO algorithm and FCFS, MIN-MIN, ACO,
GA and KM are used to calculate the task scheduling strategy
respectively.

Step 3: Calculating the total profit under all task scheduling
strategies.

The results of Experiment 4 are shown in Figure 10, we can
observe: (1) The total profit of task scheduling of all algo-
rithms increases with the number of tasks increasing. As the
number of tasks increases, the RCTSPO algorithm gets more
profit than the compared algorithms. (2) The increase of the
number of completed tasks makes the total profit increase.
When the number of tasks is small, the difference of total
profit of each scheduling algorithm is not large. When the
number of tasks increases gradually, the number of completed
tasks is different by using the different algorithms, and the
difference between them is larger. (3) RCTSPO and KM
algorithms can get the higher total profit of task scheduling,
followed by FCFS and MIN-MIN algorithms, and ACO and
GA algorithms are the less. The total profit of task schedul-
ing using RCTSPO algorithm is always greater than that of
KM algorithm, which proves the advantage of the proposed
RCTSPO algorithm.

D. LOAD BALANCING OF TASK SCHEDULING

1) LOAD BALANCING UNDER DIFFERENT PROFIT WEIGHTS
Experiment 5: This paper designs the profit weight in
objective function, which is the unit price of resource.
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Different profit weights play an important role in resource
constrained task scheduling. We will analyze the optimal
profit weight of RCTSPO algorithm in load balancing of task
scheduling.

The steps of Experiment 5 are as follows:

Step 1: The number of tasks is 100, 200, 300, 400, 500.
The number of virtual machines is 1/5 of the number of tasks
(that is, the best clustering value K).

Step 2: The profit weight is a=b=c=3; a=17,
b=c=lja=c=1,b=7and a=b=1,c =7, respec-
tively.

Step 3: RCTSPO algorithm is used to calculate the task
scheduling strategy. Calculating the total profit under all task
scheduling strategies.

The results of Experiment 5 are shown in Figure 11, we can
observe: The profit weight is a=b=c=3;a=7,b =
c=1;b="7,a=c=1;a=b=1,c ="7. The average stan-
dard deviation of execution time on virtual machine is
6.27, 3.57, 8.29 and 6.12 respectively. It can get that
the performance of RCTSPO algorithm in load balancing
of task scheduling is the best when the profit weight is
a="7,b=c =1, which is better than that of other profit
weights. It can get that RCTSPO algorithm focuses more on
memory and load balancing in task scheduling.

2) LOAD BALANCING OF DIFFERENT ALGORITHMS
Experiment 6: According to Experiment 5, the optimal profit
weight of load balancing on task schedulingisa = 7, b =
¢ = 1. In order to verify that RCTSPO algorithm has better
performance in task scheduling and load balancing than the
compared algorithm with the best profit weight and the best
clustering value K.

The steps of Experiment 6 are as follows:

Step 1: The number of tasks is 100, 200, 300, 400, 500.
The number of virtual machines is 1/5 of the number of tasks
(that is, the best clustering value K). The profit weight is set
toa=7b=c=1.

Step 2: RCTSPO algorithm and FCFS, MIN-MIN, ACO,
GA and KM are used to calculate the task scheduling strategy
respectively.

Step 3: Calculating the load balancing under all task
scheduling strategies.

The results of Experiment 6 are shown in Figure 12,
we can observe: (1) The workload imbalance of the compared
algorithm increases with the number of tasks increasing, but
RCTSPO algorithm shows a downward trend. It can get that
RCTSPO algorithm is suitable for task scheduling with a
large number of tasks in terms of load balancing. RCTSPO
algorithm is better than compared algorithm in load balancing
of task scheduling. (2) As the KM algorithm aims to find the
maximum weight matching under perfect matching. There-
fore, KM algorithm is better than other algorithms in load bal-
ancing of task scheduling. In RCTSPO algorithm, resource
constraints are added, tasks are clustered and requirements
are matched to avoid the idle resources. (3) It can get that
RCTSPO algorithm has the best effect on load balancing
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in task scheduling. Experiment results show that RCTSPO
algorithm is superior to the other algorithms in load balancing
of task scheduling.

E. STATE SPACE ANALYSIS

Experiment 7: This paper verifies the properties of task
scheduling model by using the related tools of Petri net,
including the correctness of user request, task scheduling
process and so on. Therefore, it is necessary to analyze the
changing rules of the state space of the task scheduling model.

The purpose of Experiment 7 is to analyze the changing
rules of the state space of task scheduling model. The specific
experimental steps are as follows.

(1) Randomly generating 200 user requests, each use
request has 10-30 tasks, the attributes and relationships
between tasks are randomly generated. 200 user requests are
divided into 4 groups (each group has 50 user requests).
Randomly generating 100 virtual machines.

(2) Taking 10 virtual machines as the initial resources and
adding 10 virtual machines (10VM, 20VM, 30VM, 40VM,
50VM) each time. The task scheduling model of each user
request is constructed according to the attributes of task, user
request and virtual machine respectively. Finally, we will
calculate the size of state space of the model, as shown
in Figure 13(a).

(3) Let each group have 25 virtual machines, the system
will select 10 user requests to construct the initial require-
ment, then add 10 user requests (10U, 20U, 30U, 40U, 50U)
each time. Constructing the task scheduling model for each
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user request and calculating the size of state space of the
constructed model, which is shown in Figure 13(b).

The results of Experiment 7 are shown in Figure 13, we can
draw: (1) As shown in Figure 13(a), the number of reachable
states of the model decreases with the increase of virtual
machines. The reason is that the increase of virtual machines
makes more tasks run concurrently, thus reducing the number
of states in the task scheduling model. The increase of the
attributes of the virtual machine also affects the reduction
speed of state space. Such as the state space of R/ only
reduces 10.65% at 20VM, while the state space of R/ is
reduced by 55% at 30VM. The reason is that the first 10 vir-
tual machines provides the fewer resources. (2) As shown
in Figure 13(b), when the number of user requests gradually
increases, the number of reachable states of task scheduling
model tends to increase. The reason is that new user request
makes the number of tasks executed on the virtual machine
increase. In addition, the attributes of the task are different,
so the increase of the number of user requests will make more
tasks asynchronously execute, which increases the reachable
states of the model. In addition, the number of states is related
to the execution process. Such as the number of states of R/
and R3 is less, while the number of R2 and R3 is more. It gets
that the number of parallel tasks in the first two user requests
are more, which make the number of reachable states increase
slowly.

According to the results of Experiments, when the value
K of task clustering is 5, RCTSPO algorithm has better in
time, reliability, profit and load balance of task scheduling.
With the number of tasks increases, the scheduling results
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are better. It can draw that RCTSPO algorithm can greatly
improve the scheduling performance. At the same time,
the influence of different unit price of resource on task
scheduling profit and load balance is analyzed. It can draw
that RCTSPO algorithm is applicable to the case which has a
large number of tasks in task scheduling.

VIl. SUMMARY AND FUTURE EXPECTATION

In this paper, a resource constrained cloud task scheduling
algorithm is proposed to solve the problems of resource con-
straints, and profit optimization in the task scheduling process
of edge cloud. Based on the task scheduling strategy calcu-
lated by using the proposed algorithm, the task scheduling
model of edge cloud is constructed to describe its business
process and characteristics. First, RCTSPO algorithm uses
the improved K-means algorithm to cluster tasks and virtual
machines. It can reduce the search scope and achieve global
optimization, the resource constraints is also considered in the
task scheduling process to achieve load balancing. Second,
RCTSPO algorithm gets the best matching using the KM
algorithm and profit matrix to improve the profit of task
scheduling. Third, according to the task scheduling strategy
and business process, a formal model of task, virtual machine,
user request and scheduling center is constructed based on
Petri net, which is used to analyze the related properties of
task scheduling process. The simulation results show that the
proposed RCTSPO algorithm has better effectiveness on load
balancing and profit.

The algorithm in this paper does not consider the resource
utilization and energy consumption of task scheduling. In the
future work, we will study the resource utilization and energy
consumption of task scheduling.
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