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ABSTRACT In this paper, we explore the consensus control scheme of stochastic perturbed nonlinear
multi-agent systems with impulsive protocol and comparison system method. The effective variable
impulsive consensus method is used to remove the restriction of fixed impulsive instants, which is more
reliable and flexible in practical applications. From the theory of impulsive differential system, comparison
system and stochastic differential system, some sufficient consensus conditions are derived and the relation
between the system parameters and impulsive time window is analyzed extensively. The effectiveness of the
proposed control method is confirmed by the numerical simulations finally.

INDEX TERMS Multi-agent systems, consensus, impulsive control, stochastic perturbation, comparison
system.

I. INTRODUCTION
The consensus (or synchronization) topic of multi-agent sys-
tems (MAS) has obtained wide attention due to the potential
and meaningful application in past few years, especially
in the fields of mathematics, physics, engineering, biology,
and so forth [1]–[5]. In general, the consensus scheme of
MAS consists of leaderless [6]–[8] and leader-following
schemes [9]–[11]. For the leader-following consensus,
it requires other nodes to follow the leader asymptotically.
In many practical systems, it is of great significance to
design distributed controller for leader-following consensus
of MAS.

So far, lots of effective protocols are proposed to
achieve the consensus of MAS, such as sliding mode
control [12], [13], event-triggered control [14], [15], fault-
tolerant control [16], [17], adaptive control [18], [19], etc.
Impulsive control is a representative discontinuous control
scheme, which can relieve the information transmission
burden greatly [20]–[23]. The system states of the fol-
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lowers can achieve the instantaneous change at impulsive
instants [24]–[28]. In recent years, many interesting and
meaningful results on impulsive consensus of MAS have
been reported. For instance, the odd variable impulsive
consensus of MAS via adaptive control and comparison
system method was studied in [29]. Ref. [30] investigated
the asymptotic synchronization of MAS via adaptive control
and variable impulsive protocol. Ref. [31] studied exponential
synchronization of delayed perturbed complex networks
with adaptive and impulsive protocol. Moreover, in the real
world, the perturbations such as source, quantization and
channel noise frequently limit the evaluations or informa-
tion exchange [32]. In many cases, external perturbations
correspond to some great uncertainties, and can be taken as
random effects to the real systems [33], [34]. From the papers
mentioned above, the stochastic disturbances are important
and realistic in the consensus process of MAS.

As we know, the impulsive instants are often predesigned
and independent in existing application, which means the
impulsive instants were usually fixed. However, due to the
internal and external constraints, it is hard to ensure the exact
impulsive instants imposed at expected time exactly, and
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it often occurs fluctuation between the actual instants and
expected one. This kind of impulse constraint wildly exists in
real system and it is very significant to study the consensus
of nonlinear MAS with impulsive time windows [35]. There
are some research works about impulsive time windows,
such as hybrid neural networks [36], Hopfield-type neural
networks [37], stabilization of linear systems [38], coupled
delayed switched neural networks [39], delayed impul-
sive functional differential systems [40], general nonlinear
systems [41], sandwich control systems [42], and linear
delayed impulsive differential systems [43]. It should be
noticed that all of the above literatures are not related with
comparison systems directly. However, for impulsive control
systems, comparison system method shows an excellent role
in the stability and stabilization analysis [44]–[46]. The best
advantage of the comparison system method is the simplified
system model, which is better than the existing Lyapunov
stability-based methods to some extent. There are some
research works to address control schemes with variable
impulsive control and comparison system method [47]–[49].
However, owing to the analytical complexity of stochastic
impulsive control system, there are few existing results to
investigate the consensus of stochastic perturbed MAS with
variable impulsive control.

The main motivation of this works is to explore the
variable impulsive consensus of stochastic perturbed MAS
via comparison system method. By using stochastic ana-
lytical approach and comparison system approach, some
sufficient consensus conditions are derived for achieving
the consensus of stochastic perturbed MAS via variable
impulsive control. As far as the authors know, there is few
results combining comparison system approach with the
variable impulsive consensus of stochastic perturbed MAS.
The proposed comparison system approach can change the
dynamical analysis of high-order system into the scalar one,
which simplifies the analysis complexity of the consensus
scheme. Compared to the existing common impulsive control
approach, the variable impulsive control techniques allow
a certain imposing error of impulsive input, which is more
robust, credible, practical and flexible in real system.

The organization of this literature is given as follows.
Section 2 and Section 3 introduce the basic theory of
impulsive control system and problem formulation respec-
tively. In Section 4, main results for impulsive consensus
of stochastic perturbed MAS are discussed. The numerical
simulation examples are presented to verify the feasibility of
the main results in Section 5. Finally, the conclusion of this
paper is drawn in Section 6.

II. BASIC THEORY OF IMPULSIVE CONTROL SYSTEM
Consider the following stochastic impulsive control system,
dx(t)= f1(t, x)dt+f2(t, x)dw(t), t 6= tk ,
1x(tk )=x(t

+

k )−x(t
−

k )=U (k, x), k ∈N= 1, 2, . . .
x(t+0 ) = x(t0), t0 ≥ 0.

(1)

Let Rn be n-dimensional Euclidean space, Rn×m be an n×m
matrix, R+={x ∈ R|x ≥ 0}, C1,2(R+ × Rn

→ R+) be
the family of all nonnegative functions from R+ × Rn to
R+ which are once continuously differentiable in the first
variable and twice in the second one. The time sequence {tk}
satisfies 0 ≤ t0 < t1 < · · · < tk < · · · , lim

k→∞
tk = ∞,

k ∈ N. x ∈ Rn is the state vector, f1 : R+ × Rn
→ Rn, f2 :

R+ ×Rn
→ Rn×m. w(t) = [w1(t), · · · ,wm(t)]T ∈ Rm is the

Brownian motion. For each V (t, x) ∈ C1,2(R+×Rn
→ R+),

and an operator L is defined from R+ × Rn to R by

LV (t, x) = Vt (t, x)+ Vx(t, x)f1(t, x)

+
1
2
trace[f T2 (t, x)Vxx(t, x)f2(t, x)],

where

Vt (t, x)Vt (t)
.
= ∂V (t, x)/∂t,

Vx(t, x)Vx(t)
.
= (∂V (t, x)/∂x1, · · · , ∂V (t, x)/∂xn),

Vxx(t, x)Vxx(t)
.
= (∂V (t, x)/∂xi∂xj)n×n.

Assumption 1: U (k, 0) = 0, f1(t, 0) = 0, f2(t, 0) = 0 for
all k ∈ N.
Definition 1 [50]: Let V (t, x) ∈ C1,2(R+ × Rn

→ R+),
the following inequalities

Vt (t) ≤ g(t,V (t, x)), t 6= tk ,
LV (t, x) ≤ g(t,V (t, x)), t 6= tk ,
V (t, x + U (t, x)) ≤ ϕk (V (t, x)), t = tk ,

(2)

hold, where g : R+ × R+ → R is continuous for t ∈
(tk−1, tk ], k ∈ N, and ϕk : R+ → R+ is nondecreasing.
Then the system

ω̇ = g(t, ω), t 6= tk ,
ω(t+k ) = ϕk (ω(tk )), k ∈ N,
ω(t+0 ) = ω0 ≥ 0

(3)

is called the comparison system of (1).
Definition 2: A function α(ν) belongs to class K if α ∈

C(R+→ R+) with α(0) = 0 is strictly increasing in ν.
Lemma 1 [50]: Assume that Assumption 1 holds. For (1)

and it is comparison system (3), if there exists a V (t, x) ∈
C1,2(R+ × Rn

→ R+) such that
(H1) β(‖x‖) ≤ V (t, x) ≤ α(‖x‖) on R+ × S(ρ) where

α(·), β(·) ∈ K. S(ρ) = {x ∈ Rn
| ‖x‖ < ρ}.

(H2) LV (t, x) ≤ g(t,V (t, x)), t 6= tk .
(H3) There exists a ρ0 > 0 such that x ∈ S(ρ0) implies

that x + U (k, x) ∈ S(ρ0) for all k and V (t, x +
U (t, x)) ≤ ϕk (V (t, x)), t = tk , x ∈ S(ρ0).

Then the stability of comparison system (3) implies the
stochastic stability of system (1) correspondingly.
Lemma 2 [50]: Assume that Assumption 1 holds. Let

g(t, ω) = λ̇(t)ω, λ ∈ C1(R+ → R+), ϕk (ω) = dkω,
dk ≥ 0 for all k , then system (1) is asymptotically stable if
the following conditions hold,

λ(tk+1)+ ln(γ dk ) ≤ λ(tk ), (4)
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where k ∈ N, γ > 1, and

λ̇(t) ≥ 0. (5)

Remark 1: Lemma 1 builds a theoretical linkage between
the general control system (1) and the scalar system (3).
In order to decrease the complexity of theoretical analysis,
the analysis of high-order system (1) is replaced by (3).
If the impulsive control parameters (impulsive instants {tk}
and control gain coefficients dk ≥ 0) satisfy conditions (4)
and (5), the asymptotical stability of (1) can be realized.

Note that the impulsive instants {tk} in Lemma 2 should
be preassigned ahead of time. However, due to the internal
and external constraints, the actual system hardly impose
impulsive input at predetermined instant correctly. This paper
use the variable impulsive control method to get larger
consensus region compared with the common impulsive one.
The description for the impulsive time windows is shown
in Fig. 1.

FIGURE 1. The diagram of variable impulsive control instants and
impulsive time window.

Assumption 2: Consider the following inequality,

τ lk−1 < tk−1 < τ rk−1 < τ lk < tk < τ rk < τ lk+1 < tk+1
< τ rk+1, k ∈ N,

where τ lk = τk − rk (τ rk = τk + rk ) and rk denotes the left
(right) endpoints and the radius of the k-th time window. {τk}
indicate the centers of the impulsive time window.

The following Lemmas 3 and 4 are helpful to realize the
consensus scheme via variable impulsive control.
Lemma 3: Assume that Assumptions 1 and 2 hold. Let

g(t, ω) = λ̇(t)ω, λ ∈ C1(R+ → R+), ϕk (ω) = dkω,
dk ≥ 0 for all k , then system (1) is asymptotically stable if
the following conditions hold

λ(τ lk+1)+ ln(γ dk ) ≤ λ(τ lk ), (6)

where k ∈ N, γ > 1, and

λ̇(t) ≥ 0. (7)

Proof: From g(t, ω) = λ̇(t)ω and ϕk (ω) = dkω,
the comparison system is changed into the following form:

ω̇ = λ̇(t)ω, t 6= tk ,
ω(t+k ) = dkω(tk ),
ω(t+0 ) = ω0 ≥ 0.

(8)

Next, we discuss the solution ω(t, t0, u0) of system (8)

For t ∈ (t0, t1], one has

ω(t) = ω0 exp(λ(t)− λ(t0)),

which leads to

ω(t1) = ω0 exp(λ(t1)− λ(t0)).

For t ∈ (t1, t2],

ω(t) = ω(t+1 ) exp(λ(t)− λ(t1))

= d1ω(t1) exp(λ(t)− λ(t1))

= ω0d1 exp(λ(t1)− λ(t0)) exp(λ(t)− λ(t1))

= ω0d1 exp(λ(t)− λ(t0)).

In general, for t ∈ (tk , tk+1],

ω(t, t0, u0) = ω0

∏
t0<tk<t

dk exp(λ(t)− λ(t0)). (9)

Since λ̇(t) ≥ 0, it follows from (6) and (9) that

ω(t, t0, u0)

= ω0

∏
t0<tk<t

dk exp(λ(t)− λ(t0))

≤ ω0

∏
t0<tk<t

(
1
γ
exp(λ(τ lk )− λ(τ

l
k+1))

)
exp(λ(t)− λ(t0))

≤ ω0(
1
γ k

exp(λ(τ l1)− λ(τ
l
2)) exp(λ(τ

l
2)− λ(τ

l
3))

· · · exp(λ(τ lk )− λ(τ
l
k+1))) exp(λ(tk+1)− λ(t0))

=
ω0

γ k
exp(λ(τ l1)− λ(τ

l
k+1)) exp(λ(tk+1)− λ(t0))

=
ω0

γ k
exp(λ(τ l1)− λ(t0)) exp(λ(tk+1)− λ(τ

l
k+1)).

Note that ω0 exp(λ(τ l1) − λ(t0)) exp(λ(tk+1) − λ(τ lk+1)) is
finite, and 1/γ k → 0 as k →∞, it has lim

t→∞
ω(t, t0, u0) = 0.

It is easy to conclude from Lemma 1 that system (1) is
asymptotically stable. �

In the proof of Lemma 3, the consensus condition is
described by the left endpoints of the adjacent impulsive time
windows t ∈ (τk − rk , τk+1− rk+1] = (τ lk , τ

l
k+1], k ∈ N. The

following Lemma 4 will discuss the centers of the adjacent
impulsive time windows t ∈ (τk−1, τk ].
Lemma 4: Assume that Assumptions 1 and 2 hold. Let

g(t, ω) = λ̇(t)ω, λ ∈ C1(R+ → R+), ϕk (ω) = dkω,
dk ≥ 0 for all k , then system (1) is asymptotically stable if
the following conditions hold,

λ(τk+1)+ ln(γ dk ) ≤ λ(τk ), (10)

where k ∈ N, γ > 1, and

λ̇(t) ≥ 0. (11)

Proof: From g(t, ω) = λ̇(t)ω and ϕk (ω) = dkω,
the comparison system is changed into the following form:

ω̇ = λ̇(t)ω, t 6= tk ,
ω(t+k ) = dkω(tk ),
ω(t+0 ) = ω0 ≥ 0.

(12)
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Obviously, any solution ω(t, t0, u0) of system (12) is given
by

ω(t, t0, u0) = ω0

∏
t0<tk<t

dk exp(λ(t)− λ(t0)),

for t ∈ (tk , tk+1], (13)

Since λ̇(t) ≥ 0, it follows from (10) and (13) that

ω(t, t0, u0)

= ω0

∏
t0<tk<t

dk exp(λ(t)− λ(t0))

≤ ω0

∏
t0<tk<t

(
1
γ
exp(λ(τk )− λ(τk+1))

)
exp(λ(t)− λ(t0))

≤ ω0(
1
γ k

exp(λ(τ1)− λ(τ2)) exp(λ(τ2)− λ(τ3))

· · · exp(λ(τk )− λ(τk+1))) exp(λ(tk+1)− λ(t0))

=
ω0

γ k
exp(λ(τ1)− λ(τk+1)) exp(λ(tk+1)− λ(t0))

=
ω0

γ k
exp(λ(τ1)− λ(t0)) exp(λ(tk+1)− λ(τk+1)).

Note that ω0 exp(λ(τ1) − λ(t0)) exp(λ(tk+1) − λ(τk+1)) is
finite, and 1/γ k → 0 as k →∞, it has lim

t→∞
ω(t, t0, u0) = 0.

It is easy to conclude from Lemma 1 that system (1) is
asymptotically stable. �
Remark 2: As shown in Lemma 2, the impulsive instants
{tk} should be predetermined ahead of time to realize
the asymptotical stability of impulsive control system (1).
By comparison, Lemmas 3 and 4 just need the impulsive
instants {tk} exert within a time interval (impulsive time
window).

III. PROBLEM FORMULATION
In this paper, directed graph G = (V, E,A) denotes the
communication graph among the agents. V = {v1, . . . , vN }
and E ∈ (V × V) denote the finite set of N nodes and
the set of edges or arcs. A = [aij] ∈ RN×N denotes the
associate adjacency matrix. aij > 0 if (vj, vi) ∈ E , otherwise
aij = 0, where (vj, vi) means an edge rooted at node j and
ended at node i. aii = 0(i ∈ N) means that there are no
self-loops. Ni = {j|(vj, vi) ∈ E} denotes the set of neighbors
of node i. di =

∑N
j=1 aij is the in-degree of node i and

D = diag{di} ∈ RN×N is the corresponding in-degree matrix.
The Laplacian matrix is defined as L = D − A. For a
directed graph, a sequence of successive edges in the form
{(vi, vk ), (vk , vl), . . . , (vm, vj)} is a direct path from node i to
node j. A directed graph is called strongly connected iff there
exists a directed path from i to j for any nodes vi and vj.
Consider the leader node as

ẋ0(t) = Ax0(t)+ ψ(x0(t)), (14)

where x0 = [x01, x02, . . . , x0n]T ∈ Rn is the state vector.
A ∈ Rn×n is a known matrix, ψ : Rn

→ Rn is the nonlinear
function.

Consider the stochastic perturbed MAS with N agents via
impulsive control method is described by

dxi(t) = (Axi(t)+ ψ(xi(t)))dt
+ϑi(t, δi(t))dw(t), t 6= tk ,

1xi(tk ) = xi(t
+

k )− xi(t
−

k ) = ui(tk ), k ∈ N,
(15)

where xi = [xi1, xi2, . . . , xin]T ∈ Rn is the state vector.
1xi(tk ) is the state jump of the follower node i at impulsive
instant tk . {tk} is the impulsive sequence. Let the state be the
left continuous (i.e., xi(tk ) = xi(t

−

k )). δi = xi(t) − x0(t) is
the consensus error, and the matrix ϑi : R+ × Rn

→ Rn×m

satisfies the subsequent Assumption.
Assumption 3: ϑi(t, δi(t)) satisfies the linear growth

condition with the initial condition ϑ(t, 0) = 0. Moreover,
ϑi(t, δi(t)) satisfies the following inequality condition with
known constant matrix 6,

trace[ϑTi (t, δi(t))ϑi(t, δi(t))] ≤ ‖6δi(t)‖
2 . (16)

Assumption 4: The function ψ : Rn
→ Rn satisfies the

following condition

‖ψ(x1) − ψ(x2)‖ ≤ l ‖x1 − x2‖ . (17)

where l > 0 is the known positive constant.
From (14) and (15), the error system is obtained as

dδi(t) = (Aδi(t)+ ψ(xi(t))− ψ(x0(t)))dt
+ϑi(t, δi(t))dw(t), t 6= tk ,

1δi(tk ) = δi(t
+

k )− δi(tk ) = ui(tk ), k ∈ N.
(18)

In order to achieve the consensus goal, the following
impulsive controller is designed,

ui(tk ) = bk (
∑
j∈Ni

aij(xi(tk )− xj(tk ))

+ci(xi(tk )− x0(tk ))), k ∈ N, (19)

where bk is the control gain coefficient, ci ≥ 0 is the edge
weight from the leader to the follower. If there is an edge from
the leader to the follower, it has ci > 0 and C = diag{ci} ∈
RN×N .
Assumption 5: The graph contains a spanning tree and the

leader node 0 is the root node.
By (19) and the properties of Kronecker product, sys-

tem (18) is rewritten as
dδ(t) = ((IN ⊗ A)δ(t)+ ψ̄(x(t), x̄0(t)))dt

+ϑ(t, δ(t))dw̄(t), t 6= tk ,
1δ(tk ) = bk ((L + C)⊗ In)δ(tk ), k ∈ N,

(20)

where δ(t) = [δT1 (t), . . . , δ
T
N (t)]

T , w̄(t) = 1N ⊗ w(t), x(t) =
[xT1 (t), . . . , x

T
N (t)]

T , x̄0(t) = 1N ⊗ x0(t), ϑ(t, δ(t)) =
diag{ϑi(t, δi(t))}, ψ̄(x(t), x̄0(t)) = [ψT (x1(t)) − ψT (x0(t)),
. . . , ψT (xN (t))− ψT (x0(t))]T .

The goal of this paper is to design the controller for the
stochastic perturbed MAS, which can assure all follower
nodes synchronize asymptotically in mean square case to the
leader for any initial condition, i.e., lim

t→∞
E(‖δ(t)‖2) = 0.

113186 VOLUME 8, 2020



J. Xiao et al.: Leader-Following Consensus of Stochastic Perturbed MAS

IV. VARIABLE IMPULSIVE CONSENSUS OF STOCHASTIC
PERTURBED MULTI-AGENT SYSTEMS
Before starting the impulsive consensus problem of stochastic
perturbed MAS, we first give the consensus conditions with
fixed impulsive instants (correspond to Lemma 2).
Theorem 1: If Assumptions 1-5 hold, and there exists ξ > 1

such that

(λA + 2l + λ6)(tk+1 − tk )+ ln(λkξ ) < 0, (21)

where λA and λk are the maximum eigenvalue of A+AT and
(bk (L + C) + IN )T (bk (L + C) + IN ), λ6 is the maximum
eigenvalue of 6T6 respectively. Then the consensus of
multi-agent system (15) can be achieved.

Proof: Firstly, we will find out whether system (20)
satisfies the conditions of Lemma 1. Let the Lyapunov
function be V (t) = δT δ, it is easy to find that, (H1) of
Lemma 1 holds with β(δ) = λ1 ‖δ‖

2 and α(δ) = λ2 ‖δ‖
2,

where λ1 ∈ (0, 1) and λ2 > 0.

LV (t) = Vt (t)+ Vδ(t)((IN ⊗ A)δ + ψ̄(x(t), x̄0(t)))

+
1
2
trace[ϑT (t, δ)Vδδ(t, δ)ϑ(t, δ)]

= δT (IN ⊗ (A+ AT ))δ + 2δT ψ̄(x, x̄0)

+trace[ϑT (t, δ)ϑ(t, δ)]. (22)

From Assumption 3, it can yield

trace[ϑT (t, δ)ϑ(t, δ)] ≤ δT6T6δ ≤ λ6V (t).

Then, it can get

LV (t) = δT (IN ⊗ (A+ AT ))δ + 2δT ψ̄(x, x̄0)

+trace[ϑT (t, δ)ϑ(t, δ)]

≤ (λA + 2l + λ6)V (t).

Hence, (H2) of Lemma 1 is satisfied with g(t, ω) = (λA +
2l + λ6)ω.

Given any ρ0 > 0 and δ ∈ S(ρ0), one gets

‖δ + U (k, δ)‖

≤ ‖δ + bk ((L + C)⊗ In)δ‖

= ‖(bk ((L + C)⊗ In)+ InN )δ‖

=

√
δT ((bk (L + C)+ IN )T (bk (L + C)+ IN )⊗ In)δ

≤

√
λk ‖δ‖ ≤ ‖δ‖ . (23)

From ‖δ + U (k, δ)‖ ≤ ‖δ‖, it has δ + U (k, δ) ∈ S(ρ0).
When t = tk , one can get

E(V (t+k )) = E(δT (t+k )δ(t
+

k ))

= E(((bk ((L + C)⊗ In)+ InN )δ(tk ))T

((bk ((L + C)⊗ In)+ InN )δ(tk )))

= E(δT (tk )((bk (L + C)+ IN )T

(bk (L + C)+ IN )⊗ In)δ(tk ))

≤ λkE(V (tk )).

Note that (H3) in Lemma 1 holds with ϕk (ω) = λkω, and
λ1 ‖δ‖

2
≤ V (δ) ≤ λ2 ‖δ‖

2 . From Lemma 1, it yields

that the asymptotic stability of system (15) is proven by the
asymptotic stability of the following comparison system:

ω̇ = (λA + 2l + λ6)ω, t 6= tk ,
ω(t+k ) = λkω(tk ),
ω(t+0 ) = ω0 ≥ 0.

From λ̇(t) = λA + 2l + λ6 ≥ 0, it has λ(tk+1) =
(λA + 2l + λ6)tk+1 and λ(tk ) = (λA + 2l + λ6)tk , which
shows (21) is equivalent to (4) in Lemma 2. Then system (20)
is asymptotically stable, which implies that the multi-agent
systems (15) can realize consensus. �
In the following, it takes the impulsive time window into

the consideration, and the consensus of stochastic perturbed
MAS with left endpoints and the centers of the time windows
(correspond to Lemmas 3 and 4) will be given respectively.
Theorem 2: If Assumptions 1-5 hold, and there exists ξ > 1

such that

(λA + 2l + λ6)(τ lk+1 − τ
l
k )+ ln(λkξ ) < 0, (24)

where λA, λk and λ6 have the same meanings in Theorem 1.
Then the consensus of stochastic perturbed multi-agent
systems (15) can be achieved.

Proof: Let the Lyapunov function be V (t) = δT δ, and
similar to (22) in Theorem 1, for t ∈ (tk−1, tk ], one get

LV (t) ≤ (λA + 2l + λ6)V (t).

Thus, (H2) in Lemma 1 holds with g(t, ω) = (λA+2l+λ6)ω.
Similar to (23) in Theorem 1, for any ρ0 > 0 and δ ∈ S(ρ0),

one gets

‖δ + U (k, δ)‖ ≤ ‖δ‖ .

From ‖δ + U (k, δ)‖ ≤ ‖δ‖, it has δ + U (k, δ) ∈ S(ρ0)
When t = tk , one can get

E(V (t+k )) = E(δT (t+k )δ(t
+

k ))

= E(((bk ((L + C)⊗ In)+ InN )δ(tk ))T

×((bk ((L + C)⊗ In)+ InN )δ(tk )))

= E(δT (tk )((bk (L + C)+ IN )T

×(bk (L + C)+ IN )⊗ In)δ(tk ))

≤ λkE(V (tk )).

Thus, (H3) in Lemma 1 holds with ϕk (ω) = λkω, and (H1)
in Lemma 1 also holds with β(δ) = λ1 ‖δ‖

2 and α(δ) =
λ2 ‖δ‖

2, where λ1 ∈ (0, 1) and λ2 > 0. From Lemma 1,
it yields that the asymptotic stability of system (20) is proven
by the asymptotic stability of the following comparison
system: 

ω̇ = (λA + 2l + λ6)ω, t 6= tk ,
ω(t+k ) = λkω(tk ),
ω(t+0 ) = ω0 ≥ 0.

From λ̇(t) = λA + 2l + λ6 ≥ 0, λ(τ lk+1) = (λA + 2l +
λ6)τ lk+1 and λ(τ

l
k ) = (λA + 2l + λ6)τ lk are obtained easily,

which shows (24) is equivalent to (6) in Lemma 3. Then
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the origin of (20) is asymptotically stable, which implies
that the consensus of stochastic perturbed MAS (15) can be
achieved. �
Theorem 3: If Assumptions 1-5 hold and there exists ξ > 1

such that

(λA + 2l + λ6)(τk+1 − τk )+ ln(λkξ ) < 0, (25)

where λA, λk , and λ6 , have the same meanings in Theorem 1.
Then the consensus of multi-agent systems (15) can be
achieved.

Proof: Note that λ(τk+1) = (λA + 2l + λ6)τk+1, and
λ(τk ) = (λA + 2l + λ6)τk , which shows (25) is equivalent
to (10) in Lemma 4. The analysis process is similar to the
proof of Theorem 2, which is omitted here for simplicity.

V. NUMERICAL EXAMPLES
In this section, we consider the Chua’s system [51] as the
example, which is a very typical nonlinear one with Lipschitz
condition and usually used for the numerical simulation
in some existing consensus or synchronization cases. The
stochastic perturbed MAS is described as

dxi(t) = (Axi(t)+ ψ(xi(t)))dt
+ϑi(t, δi(t))dw(t), t 6= tk ,

1xi(tk ) = xi(t
+

k )− xi(t
−

k ) = ui(tk ), k ∈ N,

where

A =

−p1(1+ m2) p1 0
1 −1 1
0 −p2 0

 ,
ψ(xi) =

−0.5p1(m1 − m2)(|xi1 + 1| − |xi1 − 1|)
0
0

 .
Let the system parameters be m1 = −1.25, m2 = −0.758,
p1 = 9.21, p2 = 15.995, ϑi(t, δi) = diag{1/

√
2δi1, 1/

√
2δi2,

1/
√
2δi3}, then it yields λA = 16.5492, l = |m1p1| =

11.5125, and 6 = I3.
In this section, consider the MASs with a communication

topology shown in Fig. 2 consisting of four follower agents
and one leader.

FIGURE 2. Diagram of communication topology.

One has the following matrices from topology G:

A =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

L = D−A =


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 ,

C =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Let bk = −0.6, ξ = 1.01, then it can get λk = 0.8721.

From condition (21) in Theorem 1, it yields

tk+1 − tk < −
ln(λkξ )

λA + 2l + λ6
= −

ln(1.01× 0.8721)
40.5742

.

FIGURE 3. Consensus error trajectory for Theorem 1.

From Fig. 3, it is observed that the consensus error
can converge to zero asymptotically, which verifies the
correctness of the proposed comparison system method.
Fig. 4 shows the impulsive sequence tk in the simulations.

FIGURE 4. The impulsive instant tk vs k .
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Similarly, let bk = −0.6, ξ = 1.01, from condition (24)
in Theorem 2 and condition (25) in Theorem 3, the following
estimation can be obtained as

τ lk+1 − τ
l
k < −

ln(λkξ )
λA + 2l + λ6

,

τk+1 − τk < −
ln(λkξ )

λA + 2l + λ6
.

FIGURE 5. Consensus error trajectory for Theorem 2.

The consensus error trajectories are shown in Fig. 5.
From this figure, it can obtain that the synchronization time
between other nodes and the leader node is less than 0.15s.
It can verify the effectiveness of Theorem 2. Furthermore,
the relation between tk and τ lk is shown in Fig. 6. The actual
impulsive instant and impulsive left endpoint are represented
by blue stars and red circles. Obviously, the actual tk is greater
than τ lk .

FIGURE 6. The relation between tk and τ l
k .

Under the condition in Theorem 3, consensus of the
stochastic perturbedMASwith impulsive center points can be
realized in Fig. 7, which is less than 0.15s. The relationship
between tk and τk is shown in Fig. 8. The actual impulsive

FIGURE 7. Consensus error trajectory for Theorem 3.

FIGURE 8. The relationship between tk and τk .

instant and impulsive center point are represented by blue
stars and red circles. From this figure, it can obtain impulsive
instants are exerted at left and right sides of the centers.

In the simulation section, the initial states are chosen as
x1 = [−3, 1, 2]T , x2 = [−2,−1, 2]T , x3 = [−1,−1, 1]T ,
x4 = [1, 1, 1]T , x0 = [2, 0,−1]T .

VI. CONCLUSION
In this paper, the variable impulsive consensus scheme of
stochastic perturbed MAS is investigated. Based on the
theory of stochastic and impulsive differential systems,
some comparison system-based sufficient conditions are
obtained to realize the consensus goal. Compared with the
typical and existing impulsive control method, the consensus
conditions of variable impulsive protocol in this works is
more reasonable and flexible in real application. Finally,
the numerical examples are given to illustrate the feasibility
of the control method. It should be pointed out that future
research topics include further promotion and improvement
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as well as various potential applications, mainly involving the
following aspects.

(1) The impulsive consensus condition in this paper is only
a sufficient condition, and it is necessary to further reduce its
conservation in our future work.

(2) In practical applications, time delay is inevitable, and
how to extend the results in this paper to a more general
delayed system is an important issue.

(3) For the stochastic perturbed consensus problem in
real system, the additive or multiplicative noise is the more
realistic stochastic one [52], [53], which deserves further deep
explanation.
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