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ABSTRACT The motion control of robot manipulators is a crucial problem concerning automatically
controlled robots. In this work, the model predictive control method with an integral compensation
(MPC-I), which compensates for the matched uncertainties due to unmodeled dynamics, is proposed to solve
the trajectory tracking problem of robot manipulators in joint and task spaces. First, this paper decouples
the joint variables of the robot manipulator using a computed torque control method. The MPC-I method is,
thereafter, derived to realize the motion control of the robot manipulators in joint space. To realize the motion
control of the robot manipulator in task space, the task space is, thereafter, converted into the joint space,
in which the MPC-I method is executed, afterward, to control the robot. Furthermore, an MPC-I variation,
in which the inverse kinematics is calculated indirectly, is proposed to achieve the motion control in task
space. The novelty of this paper is to propose the MPC-I method and the method of converting task space
to joint space with indirect inverse kinematics calculation. The former is suitable for the dynamic control of
the robot manipulators in the joint space, and the latter can extend the MPC-I method to dynamic control
in task space. To evaluate the performance of the proposed control method, motion control simulations
are performed in the task and joint spaces, respectively. Simulation results and comparisons verify the
effectiveness of the proposed control approach for the dynamic control of the UR5 robot manipulator.

INDEX TERMS Model predictive control (MPC), motion control, robot manipulators, trajectory tracking.

I. INTRODUCTION
Due to existing demands to improve reliability, accuracy,
repeatability, and productivity of industrial processes, the sig-
nificance of robot technology has been highlighted [1].
Furthermore, robots are being used for different purposes,
such as surgery [2], handling hazardous materials [3], and
motion assistance [4], and in different environments, such as
space [5], underwater [6] etc. In all these cases, robot manip-
ulators are employed; therefore, understanding their motion
control is crucial. The conventional control methods, such as
proportional integral derivative (PID) [7] and linear quadratic
regulator [8], can guarantee the reliability and safety of the
system, realizing a stable and effective motion control of
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the manipulator. Their main advantage is their simplicity,
as linear controllers are perfectly suited for numerous appli-
cations. However, some disadvantages, such as cumbersome
gain tuning and adjustment requirements for implementation
on a robot manipulator, are still not addressed. Furthermore,
obtaining optimal parameters of classical PID controllers
may be difficult, especially for systems comprising of high
nonlinearities and couplings [9]. As a result, in the past
few decades, advanced control technologies [10]–[16] have
attracted more attention. The control techniques like Adap-
tive Control [10], [13], Sliding Mode Control [11], Robust
Control [14]–[16] are very promising for implementation on a
robot manipulator. Among them, the most representative [15]
dealt with the robust task space control of electrically driven
robot manipulators using voltage control strategy, which is
simpler, less computational and requires less feedbacks than
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the conventional robust controllers. However, model predic-
tive control (MPC) is not only robust enough to eliminate the
effects of nonlinear behavior, complexity and coupling effects
in the dynamics, but also complies to possibly enforced con-
straints on the state and input variables, which is what the
above control methods are not good at.

The MPC, also named receding horizon control, is recog-
nized as the most efficient and application potential method,
considering the advanced process control methodology [17].
In MPC, a process model is used to predict and optimize
the future behavior of the system [18]. Future control inputs
in certain control horizon and future plant responses in cer-
tain prediction horizon are both predicted using a system
model and optimized at regular intervals with respect to
a performance index. MPC has generated huge economic
profits on thousands of industrial control systems over the
world [19]. This kind of control has been first employed
in large chemical factories; however, in recent years, it has
been widely promoted in other industrial fields. For example,
Paluszczyszyn et al. [20] has recently proposed this method
to adjust the patient support system position. Meanwhile,
Tadokoro et al. [21] uses this technology to adjust the motion
control for rigid-body dynamical systems, such as spacecraft
or aerial vehicles. Furthermore, other interesting results on
MPC can be found in [22]–[26].

In recent years, MPC application in robot manipulator
motion control has also been very popular; however, addi-
tional difficulties due to the nonlinearities of the manipulator
occur. The most common solution of the problem is the
linearization method, as illustrated in [27] and [28], in which
the feedback of the inverse dynamics of the manipulator and
the Taylor series are, respectively, used in the linearization.
Furthermore, boundedness and stability convergence of the
state tracking have also been proved in [28]. However,
the common disadvantage between [27] and [28] is that com-
pensation measures after linearization were not considered.
The other solution is to combine MPC with other advanced
control methods to realize the motion control of the manip-
ulator. Reference [29] proposes a combination of MPC and
H-infinity control, which is also a nonlinear design tech-
nique for a robot manipulator. The result of this combination,
however, could not combine the respective advantages of
these schemes while trying to avoid their shortcomings.
Meanwhile, a robust hierarchical multiloop control scheme
design to solve motion control problems for robot manipula-
tors was proposed in [30]. The inverse dynamics-based feed-
back linearized robotic system and the combination of MPC
with an integral sliding mode controller are the key elements
of this control approach. The internal control loop was used to
compensate for the matched uncertainties due to unmodeled
dynamics. This method was verified and validated by simula-
tions; however, the predictive control method is only applica-
ble to the motion control in joint space but not to the motion
control in task space that is the workspace of the end-effector.

Based on prior research, MPC variation methods that can
be applied to both joint and task spaces of robot manipulators

have been rarely found. As a result, this paper proposes an
model predictive control with integral compensation (MPC-I)
for the motion control of the robot manipulator that can be
used in the joint and task spaces. Motion control in joint
space was first decoupled by a computed torque control
method [31]. Afterward, an approximate prediction was per-
formed using Taylor expansion. Due to the truncation error of
the Taylor expansion, an integral compensation is introduced
to realize the motion control. To realize motion control in
task space, the task space is first transformed into the joint
space and, thereafter, the MPC-I in joint space is executed.
The task space can be transformed into the joint space by two
different procedures. In the first one, the inverse kinematics
are calculated directly, whereas, in the second one, which
is to calculate inverse kinematics indirectly. The latter has
a low computational complexity and is not affected by the
configuration of the robot manipulator. Both procedures were
compared in this work with simulations.

The rest of the paper is organized in the following manner.
In Section II, preliminary knowledge, including the robotic
dynamics in joint space and exponential coordinate repre-
sentation of rigid-body motions are discussed. In Section III,
the MPC-I methods that realizes the motion control of the
robot manipulator in the joint and task spaces are introduced.
In Section IV, the simulation results, which were obtained
from the co-simulation of the UR5 manipulator on MATLAB
and V-rep [32] platforms, are exhibited. Finally, in Section V,
conclusions and future work are informed.

II. PRELIMINARIES
In this section, the preliminary knowledge used in this article
was introduced. First, the robotic dynamics in joint space
was described. The exponential coordinate representation of
rigid-body motions was, thereafter, described, which lays the
foundation for the conversion of the task space to the joint
space in the Section III-B2, and facilitates the definition of
rotation and translation errors in the Section IV-B.

A. THE ROBOTIC DYNAMICS IN JOINT SPACE
The dynamic equation for n degree of freedom robot manip-
ulators can be written as:

M(θ )θ̈ + C(θ, θ̇ )θ̇ + g(θ) = τ, (1)

where M(θ ) ∈ Rn×n is the positive definite mass matrix,
C(θ, θ̇ ) ∈ Rn×n is called the Coriolis matrix, g(θ ) ∈ Rn×1

is the vector specifying the effects due to gravity, τ ∈ Rn×1

is the vector of torques (forces) of each joint actuator, and
θ = [θ1 θ2 . . . θn]T ∈ Rn×1 is the vector of joint variables.
Furthermore, θ̈ can be expressed as the following to calculate
the acceleration of the joint variables:

θ̈ = M(θ )−1
(
τ − h(θ, θ̇)

)
, (2)

where h(θ, θ̇ ) is defined as:

h(θ, θ̇ ) = C(θ, θ̇ )θ̇ + g(θ ). (3)
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B. EXPONENTIAL COORDINATE REPRESENTATION OF
RIGID-BODY MOTIONS
The product-of-exponentials formula used to describe the
kinematics of robot manipulators is introduced by [33].
Meanwhile, the Chasles-Mozzi theorem states that every
rigid-body displacement can be expressed as a displace-
ment along a fixed screw axis in space [34]. By combining
this theorem with the product of the exponential formula,
a six-dimensional exponential coordinate (S) of a homoge-
neous transformation (Th) can be defined as:

S =
[
Sa
Sp

]
, (4)

where

Sa = [Sa1, Sa2, Sa3]T , (5)

Sp = [Sp1, Sp2, Sp3]T , (6)

where Sa and Sp represent the rotation and translation,
respectively. The matrix are therefore defined by:

Th = exp([S]), (7)

[S] = log(Th), (8)

where Th belongs to Special Euclidean Group, named SE(3),
and [S], which belongs to se(3), the Lie algebra of the Lie
group SE(3), is defined as:

[S] =


0 −a3 a2 p1
a3 0 −a1 p2
−a2 a1 0 p3
0 0 0 0

 , (9)

The specific calculation process of (7) and (8) is described
by [33].

III. MOTION CONTROL WITH TORQUE OR FORCE INPUTS
Due to the nonlinearities of the robot manipulator dynamics,
motion control with torque or force inputs is more difficult
than motion control with velocity inputs. However, the latter
is generally limited to applications with low or predictable
force/torque requirements, the former is suitable for more
applications. In this section, therefore, a control method that
generates joint torques or forces to try to track the desired
trajectory in joint and task spaces is discussed.

A. MPC-I METHOD OF ROBOT MANIPULATORS IN JOINT
SPACE
In this section, the MPC-I method for the motion con-
trol of the robot manipulators in joint space is introduced,
and the prediction equation required by this method is eas-
ily expressed in this space. Trajectories are also naturally
described by the joint variables, and there are no issues of
singularities or redundancy [33].

First, the joint variables are decoupled by a computed
torque method. Afterward, an equation that predicts the
behavior of the joint variables is obtained. The objective
function is, thereafter, calculated, and the optimization prob-
lem is solved. Moreover, the stability analysis of the control

method is performed. Finally, integral compensation is intro-
duced to eliminate the steady state error.

The following assumptions were made before calculating
the appropriate solution:

1) The MPC controller used in this paper is based on the
solution of the so-called finite horizon optimal control
problem. Therefore, the prediction and control horizon
were defined within p and m steps (where p ≥ m),
respectively, and the time interval of each step is 1t .

2) For discrete systems, the acceleration of joint variables
between steps k and k + 1 was considered constant.

3) Beyond the control horizon, the control quantity was
preserved.

θ̈ (k + i− 1|k)= θ̈ (k + i|k), i = m,m+1, . . . , p− 1,

where k+ i|k represents the prediction of the k+ i step
at k step.

1) PREDICTION OF JOINT VARIABLES
According to these assumptions, the prediction formula of
joint variables could be written as

2(k + 1|k) = Iaθ (k)+ Ibθ̇(k)+ A2̈(k), (10)

where

2(k + 1|k)

, [θ (k + 1|k)T θ (k + 2|k)T . . . θ (k + p|k)T ]Tp×1, (11)

2̈(k)

, [θ̈ (k)T θ̈(k + 1)T . . . θ̈ (k + m− 1)T ]Tm×1, (12)

Ia
,
[
I I . . . I

]T
p×1 , (13)

Ib
,
[
I 2I . . . pI

]T
p×11t, (14)

A

,



1
2
I 0 0 . . . 0

3
2
I

1
2
I 0 . . . 0

...
...

...
. . .

...

2m−1
2

I
2m−3

2
I

2m−5
2

I . . .
1
2
I

2m+1
2

I
2m−1

2
I

2m−3
2

I . . .
3
2
I

...
...

...
. . .

...

2p−1
2

I
2p−3
2

I
2p−5
2

I . . .
2p−2m+1

2
I


p×m

1t2,

(15)

where I and 0 denote the (n× n) identity matrix and (n× n)
null matrix, respectively, and the matrix subscript represents
the number of elements rather than the dimension of the
matrix.
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According to (2), θ̈ is coupled with τ . These variables
were decoupled with a computed torque control method. As a
result, the torque or force at each step was defined as:

τ (k + i|k) = M(k + i|k)w(k + i|k)+ h(k + i|k). (16)

By combining (16) and (2), the following expression can be
obtained:

θ̈ (k + i|k) = w(k + i|k). (17)

As a result, (10) can be written as:

2(k + 1|k) = Iaθ (k)+ Ibθ̇(k)+ AW (k), (18)

where

W (k) , [w(k)T w(k + 1)T . . . w(k + m− 1)T ]Tm×1. (19)

2) CLOSED LOOP SOLUTION OF MPC
The optimization problem can be described as

W (k)∗ = arg min
W (k)

J (θ (k), θ̇ (k),W (k),m, p), (20)

where the objective function can be defined as

J (θ (k),θ̇ (k),W (k),m, p)=||0θ (2(k + 1|k)−2d (k + 1))||2

+ ||0wW (k)||2 , (21)

where nonnegative weighting matrix and the expected target
joint vector were evaluated by equations (22), (23), and (24),
respectively.

0θ = diag(0θ,1,0θ,2, . . . ,0θ,p) (22)

0w = diag(0w,1,0w,2, . . . ,0w,m) (23)

2d , [θd (k + 1)T θd (k + 2)T . . . θd (k + p)T ]Tp×1 (24)

Injecting (18) in (21), the objective function was modified
to:

J = W (k)THW (k)−F(k + 1|k)TW (k)+Y (k + 1|k), (25)

where

H = AT0T
θ 0θA+ 0T

w0w, (26)

F(k + 1|k) = 2AT0T
θ 0θEθ (k + 1|k), (27)

Y (k + 1|k) = Eθ (k + 1|k)T0T
θ 0θEθ (k + 1|k), (28)

where

Eθ (k + 1|k) , 2d (k + 1)− Iaθ (k)− Ibθ̇ (k) (29)

To solve (20), we calculated the derivative of (25)
concerningW (k).

∂J
∂W (k)

= 2HW (k)− F(k + 1|k) = 0 (30)

∂2J
∂W (k)2

= 2H > 0. (31)

As a result, the solution of (20) was obtained:

W (k)∗ =
1
2
H−1F(k + 1|k), (32)

where H and F(k + 1|k) were defined by (26) and (27),
respectively.

According to the MPC method, the first element ofW (k)∗

should be applied to the system:

w(k)∗ = KmpcEθ (k + 1|k), (33)

where Eθ (k + 1|k) is defined by (29) and

Kmpc = Ie(AT0T
θ 0θA+ 0T

w0w)−1AT0T
θ 0θ , (34)

where

Ie = [I 0 . . . 0]1×m. (35)

As a result, according to (16), the control torque/force was

τ ∗(k) = M(k)w(k)∗ + h(k), (36)

wherew(k)∗ and h(k) are defined as (33) and (3), respectively.

3) STABILITY ANALYSIS OF THE CONTROL METHOD IN
JOINT SPACE
This section discusses the stability of the methods proposed
above. The authors adopted a similar concept as reported
by [28] to conduct this analysis.

Using (36) and (29) in (2), the acceleration of the joint
variables could be calculated as:

θ̈ (k) = Kmpc(2d (k + 1)− Iaθ (k)− Ibθ̇(k)), (37)

where 2d (k + 1) can be written as

2d (k + 1) = Iaθd (k)+ Ibθ̇d (k)+ Aθ̈d (k)+ O(1t3), (38)

where Ia, Ib, and A are defined as (13), (14), and (15),
respectively, and O(1t3) is truncation error. Furthermore,
the joint variable error θe is defined as

θe = θd − θ. (39)

Therefore, the joint variable acceleration error (θ̈e) can be
calculated as

θ̈e(k) = θ̈d (k)− θ̈ (k)

= θ̈d (k)− Kmpc(2d (k + 1)− Iaθ(k)− Ibθ̇ (k)). (40)

By combining (38) with (40), the joint variable error dynamic
could be obtained:

ė1 = e2
ė2 = −KmpcIae1 − KmpcIbe2
−(KmpcA− I)θ̈d − KmpcO(1t3),

(41)

where e1 = θe and e2 = θ̇e. Moreover, the error state (e) can
be defined as:

e = [eT1 e
T
2 ]
T . (42)

As a result, the tracking problem of θe and θ̇e is reduced to
the regulation problem of e that was treated as a linear system
with non vanishing perturbation [35], which are described by
the following equations:

ė(t) =
[

0 I
−KmpcIa −KmpcIb

]
e(t)+C(θ̈d ,Kmpc,1t), (43)
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where the perturbed term is

C(θ̈d ,Kmpc,1t)=
[

0
−(KmpcA−I)θ̈d−KmpcO(1t3)

]
. (44)

The origin may not be an equilibrium point of system (41);
therefore, the stability of the system at the origin was not
analyzed. Furthermore, the solution of the perturbed system
may not approach the origin when t → ∞. However,
the boundedness of the system (41) could be analyzed.

Lyapunov function candidate is defined as

V =
1
2
eT1QKmpcIae1 +

1
2
eT2Qe2, (45)

where bothQKmpcIa andQ are positive definite matrixes. By
deriving the Lyapunov function concerning time, (45) was
transformed into:

V̇ = eT1QKmpcIae2 + eT2Qė2. (46)

After combining (41) with (46) the following expression was
obtained:

V̇ =−eT2QKmpcIbe2−eT2Q
(
(KmpcA−I)θ̈d+KmpcO(1t3)

)
(47)

There exist an lower bound δ1(θ̈d ), δ2(1t), and positive reals
tp1, tp2 for all e2:∣∣∣∣(KmpcA− I)θ̈d

∣∣∣∣ ≥ δ̄(θ̈d ) = tp1 ||e2||2 (48)∣∣∣∣∣∣KmpcO(1t3)
∣∣∣∣∣∣ ≥ δ̄(1t) = tp2 ||e2||2 (49)

The time derivative of V is bounded as follows:

V̇ ≤−λmin(QKmpcIb)||e2||2−(tp1+tp2)λmin(Q)||e2||2 . (50)

As a result, if λmin(QKmpcIb) + (tp1 + tp2)λmin(Q) > 0,
the solutions of the system expressed by (41) are uniformly
bounded. The dynamic of the tracking error (41) is specified
by the matrix Q and parameters 1t, θ̈d .
Because this bound could be made small by reducing the

penalty of the control signal 0w → 0 in (21). With 0w = 0,
that will lead to

KmpcA− I = 0. (51)

As a result, tp1 = 0 and the truncation error O(1t3) can
be eliminated by introducing integral compensation, which
will be introduced in the next section. Considering this equa-
tion, the origin is, therefore, the equilibrium point of the
system (41) and the time derivative of the Lyapunov function
could be modified to:

V̇ = −eT2QKmpcIbe2 (52)

AsQKmpcIb is positive definite matrix, the equilibrium point
eo = [0 0]T is globally asymptotically stable, according to
La Salle’s invariant theorem [35].

4) INTEGRAL COMPENSATION
In the previous sections, the MPC method was introduced
and its stability was proved. It is obvious that the truncation
error is caused by the matched uncertainties due to unmod-
eled dynamics. To eliminate the truncation error, this section
demonstrates the necessity of introducing integral compensa-
tion in the previously proposed MPC method.

To introduce the integral compensation, (29) is modified as
follow,

E∗θ (k + 1|k) , 2d (k + 1)−Iaθ (k)−Ibθ̇ (k)+K I

∫ k

0
2edt,

(53)

where the integral gain K I is a positive definite matrix:

K I , diag(K I ,1,K I ,2, . . . ,K I ,p)/1t (54)

and 2e(i) can be calculated as

2e(i) =
[
3θe(i)T 5θe(i)T . . . (2p+ 1)θe(i)T

]T
p×1 .

(55)

Therefore, the θ̈e can be calculated as

θ̈e(k) = θ̈d (k)− Kmpc(Iaθe(k)+ Ibθ̇e(k)

+Aθ̈d (k)+ K I

∫ k

0
2edt + O(1t3)). (56)

Then we calculated the derivative of (56) concerning time,
the joint variable error dynamic could be obtained:

ė1 = e2
ė2 = e3
ė3 = −KmpcK I e1 − KmpcIae2 − KmpcIbe3
−(KmpcA− I)

...
θ d − KmpcO(1t4),

(57)

where e3 = θ̈e. Moreover, the error state with integral com-
pensation (eI ) can be defined as:

eI = [eT1 e
T
2 e

T
3 ]
T . (58)

Then (43) can be modified as

ėI (t) =

 0 I 0
0 0 I

−KmpcK I −KmpcIa −KmpcIb

 eI (t)
+CI (θ̈d ,Kmpc,1t), (59)

where the perturbed term is

CI (θ̈d ,Kmpc,1t) =
[

0
−(KmpcA− I)

...
θ d − KmpcO(1t4)

]
.

(60)

The proof of the stability of (59) is similar to the method
in Section III-A3, which will not be repeated here. Below
we will mainly analyze the perturbation term (60). When θ̈d
is a constant, we can get

...
θ d = 0. When θ̈d is a variable,

we can set 0w = 0, that will lead to KmpcA − I = 0.
1t is very small,O(1t4) in (60) is much smaller thanO(1t3)
in (44), soO(1t4) can even be ignored. Therefore, the integral
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compensation makes the perturbed term (60) much smaller
than (44), which effectively eliminates the truncation error.

Therefore, the final equation that represents the MPC-I
method can be obtained as:

τ ∗I (k) = M(k)w∗I (k)+ h(k), (61)

where h(k) is defined as (3) and

w∗I (k) = KmpcE∗θ (k + 1|k), (62)

where Kmpc and E∗θ (k + 1|k) are defined as (34) and (53),
respectively.

5) CONTROL METHOD OF MOTION IN JOINT SPACE
In this section, the detailed process of the MPC-I method to
realize the motion control of the robot manipulators in joint
space is described.

TheMPC-I controller block diagram is illustrated in Fig. 1.
It should be noted that K is to transform θe into 2e.
Furthermore, the detailed control process is shown in
Algorithm 1. In line 1, the integral compensation Sθe is the
integral of joint variables errors. In line 2, N is the maximum
number of control steps. In lines 5 and 6, the joint variables
error θe(k) and2e(k) are calculated as (39) and (55), respec-
tively. From line 8 to 10, E∗θ (k + 1|k), Kmpc, and w∗I (k) are
calculated as (53), (34), and (62), respectively. In line 11,
the dynamics parameters h(k) is calculated as (3), but in order
to reduce the inaccuracy of the estimation, the θ and θ̇ used
to calculateM(k) and h(k) are replaced by the follows

θ = θ (k)+ θ̇ (k)
1t
2
+

1
2
w∗I (k)

(
1t
2

)2

(63)

θ̇ = θ̇ (k)+ w∗I (k)
1t
2

(64)

In line 12, the control torque/force τ ∗I (k) is calculated as (61).

FIGURE 1. The block diagram of the MPC-I controller that produces a
commanded torque or force as input to the robot manipulator.

B. MPC-I METHOD OF ROBOT MANIPULATORS IN TASK
SPACE
As the robot interacts with the external environment and
multiple objects, expressing the motion of the robot as a
trajectory of the end-effector in task space ismore convenient.
To perform this task, the trajectory in task space must be
converted to joint space.

Provided the corresponding trajectory in joint space is
feasible, this conversion may be done by direct or indirect
inverse kinematics calculation. Afterward, the controlmethod
in Section III-A5 be used to realize the motion of the robot.

Algorithm 1 The MPC-I Method to Control the Robot
Manipulator in Joint Space
1: Initialization: Determine the time step1t , the prediction

horizon p, the control horizonm, the nonnegative weight-
ing matrix 0θ ,0w,K I , and set the integral compensation
Sθe = 0

2: for each k ∈ [0,N ] do
3: Read the current the robot manipulator states

θ (k) and θ̇ (k)
4: Determine the expected target joint variables vector

2d (k + 1)
5: Calculate the joint variables error θe(k)
6: Determine 2e(k)
7: Calculate the error integral Sθe = Sθe +2e(k)1t
8: Determine E∗θ (k + 1|k)
9: Calculate Kmpc

10: Determine w∗I (k)
11: Calculate the dynamics parametersM(k) and h(k)
12: Determine the control torque/force τ ∗I (k) and act on

the robot manipulator
13: end for

1) THE CONTROL METHOD OF DIRECTLY CALCULATING
INVERSE KINEMATICS
The end-effector trajectory is specified by Td , where
Td ∈ SE(3). The inverse kinematics can transform the
end-effector trajectory into a trajectory based on joint vari-
ables by the following expression,

θd = f −1(Td ), (65)

where f −1 represents the inverse kinematics calculation.
Then proceed with control as in Section III-A5.

TheMPC-I method in which directly calculates the inverse
kinematics (MPC-I_IK), not only needs significant comput-
ing power to calculate the inverse kinematics, but also is
affected by the configuration of the robot manipulator.

2) THE CONTROL METHOD INDIRECTLY CALCULATING
INVERSE KINEMATICS
To overcome the shortcomings of the method described in
the previous section, the MPC-I method in which the inverse
kinematics are indirectly calculated (MPC-I_NIK) is intro-
duced in this section.

By assuming that the end-effector frame can be expressed
with a coordinate vector (x) governed by the kinematics
xd = g(θd ), the forward kinematics can be expressed as the
Taylor expansion

xd (k + 1) = g(θd (k + 1))

= g(θd (k))+
∂g
∂θd

∣∣∣∣
θd (k)︸ ︷︷ ︸

J(θd (k))

(θd (k + 1)−θd (k))+h.o.t.,

(66)
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where J(θd (k)) is the coordinate Jacobian evaluated at θd (k).
After performing the first-order truncation, (66) can be
approximated as:

θd (k + 1) = θd (k)+ J(θd (k))†(xd (k + 1)− g(θd (k))), (67)

where the J(θd (k))† denotes the pseudo-inverse of the
Jacobian.

To modify (67) to work with a desired end-effector config-
uration represented as Td ∈ SE(3) instead of as a coordinate
vector xd , the coordinate Jacobian J was replaced with the
end-effector body Jacobian Jb ∈ R6×n and xd (k + i) −
g(θd (k + i − 1)) was replaced with a body twist Vb, which
would generate the motion from Td (k + i− 1) to the desired
configuration Td (k + i). Furthermore, Vb(k + i− 1) is deter-
mined by the matrix logarithm introduced in Section II-B:

[Vb(k + i− 1)] = log(Td (k + i− 1)−1Td (k + i)). (68)

As a result, (67) can be modified to:

θd (k + i)=θd (k + i− 1)+Jb(θd (k + i− 1))†Vb(k + i− 1)

(69)

The method proposed in this section is fully described
by Algorithm 2. Lines 1 to 3 of Algorithm 2 are similar
to Algorithm 1. From line 4 to 12, the methods to convert
the desired pose of the task space Td into joint variables θd
without calculating kinematics are used. In lines 8, 9, and 12,
the body twist Vb, the expected joint variables of the next step
θd (k + i), and the expected target joint vector are calculated
with (68), (69), and (24), respectively. In line 13, the expected
joint variables at the current moment θd (k) are approximately
calculated with (70) and (71), as a preliminary step for the
calculation of the integral error. As a result, the estimated
value of the expected joint variable for step k + 1 at step k
is the expected joint variable for the next step. From line 14
to 20, theMPC-I method of a robot manipulator in joint space
is executed.

IV. SIMULATION AND DISCUSSION
To illustrate the effectiveness of the MPC-I method proposed
in this article, the motion control of the robot manipulators in
joint and task spaces is individually simulated. Considering
a UR5 robot manipulator as an example, the co-simulation is
conducted on the MATLAB 2015b and V-rep 4.0 platforms.
The product-of-exponentials parameters of the UR5 with the
current configurations relative to the base frame are shown
in Table 1, where [ωTi ν

T
i ]

T are the screw axes expressed in
the fixed space frame. Th0 is the end-effector configuration
when the UR5 is at its home position. All simulations are
performed on a desktop computer (Core i5 3.40GHz, 16GB
RAM, MATLAB 2019b and V-rep 4.0 software platforms).

A. COMPARISON OF MOTION CONTROL BETWEEN MPC
AND MPC-I METHODS IN JOINT SPACE
To prove the benefits of the integral compensation, the trajec-
tory tracking of the UR5 robot manipulator in joint space was

Algorithm 2 The MPC-I Method to Control the Robot
Manipulator in Task Space
1: Initialization: Determine the time step1t , the prediction

horizon p, the control horizonm, the nonnegative weight-
ing matrix 0θ ,0w,K I , and set the integral compensation
Sθe = 0 and θd0 = θ (0)

2: for each k ∈ [0,N ] do
3: Read the current robot manipulator states

θ (k) and θ̇ (k)
4: Calculate the pose transformation matrix Th(k) using

forward kinematics and set Td (k) = Th(k)
5: Determine the end-effector body Jacobian Jb(k|k)
6: for each i ∈ [1, p] do
7: Read expected pose transformation matrix Td (k+i)
8: Calculate the body twist [Vb(k + i− 1)]
9: Determine the expected joint variables θd (k + i)
10: Calculate the end-effector body Jacobian Jb(k+i|k)
11: end for
12: Determine the expected target joint vector 2d (k + 1)
13: Calculate the expected joint variables at the current

moment

θd (k) = θd0, (70)

then set

θd0 = θd (k + 1) (71)

14: Determine 2e(k)
15: Calculate the error integral Sθe = Sθe +2e(k)1t
16: Determine E∗θ (k + 1|k)
17: Calculate Kmpc
18: Determine w∗I (k)
19: Calculate the dynamics parametersM(k) and h(k)
20: Determine the control torque/force τ ∗I (k) and act on

the robot manipulator
21: end for

TABLE 1. The product-of-exponentials parameters of the UR5.

TABLE 2. The specific values of the initial and end joint angle of UR5.

implemented. The UR5 robot manipulator will take 8s to go
from the initial angle θinit to the end angle θend. The specific
values of the initial and the end angle of UR5 are shown
in Table 2. The expected motion trajectory is, thereafter,
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FIGURE 2. The actual and expected joint angles for motion control of the UR5, calculated by the MPC and MPC-I methods, versus time. (a) The first joint
variable. (b)The second joint variable. (c) The third joint variable. (d) The fourth joint variable. (e) The fifth joint variable. (f) The sixth joint variable.

FIGURE 3. The joint input torque for motion control of the UR5, calculated by the MPC and MPC-I methods, versus time. (a) The first joint input torque.
(b)The second joint input torque. (c) The third joint input torque. (d) The fourth joint input torque. (e) The fifth joint input torque. (f) The sixth joint input
torque.

obtained by the fifth-order polynomial interpolation of θinit
and θend. Furthermore, the time interval was defined as1t =
0.025s, and the prediction and control horizons were defined
as p = m = 5. The other parameters in the MPC and MPC-I
motion control methods were

0θ = diag(150I6, 120I6, 90I6, 60I6, 30I6), (72)

0w = diag(0.5I6, 0.4I6, 0.3I6, 0.2I6, 0.1I6), (73)

K I = 0.003 diag(I6, I6, I6, I6, I6), (74)

where I66 denotes the (6× 6) identity matrix.
The actual and expected joint angles for motion control of

the UR5, calculated by the MPC and MPC-I methods, versus
time are shown in Fig. 2. These six figures respectively cor-
respond to the six joint angles of UR5. In addition, the joint

input torque for motion control of the UR5, calculated by the
MPC and MPC-I methods, versus time are shown in Fig. 3.
The differences betweenMPC andMPC-Imethods are shown
by driven motions. It can be seen from the Fig. 2 and 3 that
the six joints controlled by the MPC and MPC-I methods
all follow very accurately and the fluctuation of joint input
torque of the MPC-I method is more serious than the MPC
method, which can be relieved by adjusting K I .

However, to further understand the behavior of these
steady-state errors, the joint errors of the UR5 controlled
by the MPC and MPC-I methods versus time are shown
in Fig. 4. The steady-state errors, especially those from the
second, third, and fourth joints, were significant when the
six joints were controlled by this MPC method, which are
0.0172◦, −0.1183◦, and −0.0323◦ respectively. Whereas,
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FIGURE 4. The joint errors of UR5 controlled by MPC and MPC-I methods versus time. (a) The error of the first joint variable. (b)The error of the second
joint variable. (c) The error of the third joint variable. (d) The error of the fourth joint variable. (e) The error of the fifth joint variable. (f) The error of the
sixth joint variable.

FIGURE 5. The objective function values of MPC and MPC-I methods
versus time.

for the MPC-I method, these values converged to 0.0002◦,
0.0009◦, and 0.0011◦, considering the same simulation time.
The errors of the MPC-I method were acceptable and were
expected to further decrease over time, as analyzed in
Section III-A4. To further illustrate the advantages of the
MPC-I method, the objective function values (Equation (21)),
calculated by the MPC and MPC-I methods, versus time is
shown in Fig. 5. As a result, this simulation proves the advan-
tage of theMPC-I method, in which an integral compensation
was introduced.

B. COMPARISON OF BETWEEN THE MPC-I_NIK AND
MPC-I_IK METHODS IN TASK SPACE
In this section, the reliability of theMPC-I_NIK is verified by
comparing its results with those of anMPC-I_IK. The inverse
kinematics was calculated directly by the method proposed
by [36]. In this experiment, a trajectory that will allow the
UR5 to draw the letter ‘‘F’’ in 20s is expected to be obtained.
The UR5 model of the V-rep simulation platform is shown
in Fig. 6(a) and the desired configuration trajectory of the
end-effector of the UR5 is shown in Fig. 6(b).

The initial configuration (T init) and end configuration
(T end) of end-effector are defined as:

T init =


−0.0012 0.0819 0.9966 0.5634
0.9996 0.0298 −0.0012 0.0880
−0.0298 0.9962 −0.0819 0.3075

0 0 0 1.0000

 (75)

T end =


0.8780 −0.3517 0.3248 0.6634
0.4102 0.9024 −0.1319 0.1880
−0.2467 0.2490 0.9366 0.3075

0 0 0 1.0000

 (76)

To illustrate the configuration trajectory and error analysis
of the end-effector, the matrix logarithm was used to con-
vert the configuration to six-dimensional exponential coordi-
nates (S) according to Section II-B. When the expected (Sd )
and actual (Sc) exponential coordinates were previously
determined, as indicated in (77) and (78), respectively,

Sd = [STad , S
T
pd ]

T (77)

Sc = [STac, S
T
pc]

T (78)

the rotation (Ea) and translation (Ep) errors in task space are
defined by (79) and (80), respectively.

Ea = ||Sad − Sac||2 (79)

Ep = ||Spd − Spc||2 (80)

The six components of Sd and Sc versus time are shown
in Fig. 7. The actual tracking trajectory was separately
obtained by the MPC-I_NIK and MPC-I_IK methods. From
Fig. 7, the two methods are satisfactory for the accuracy
of the trajectory tracking. For further analysis, the rotation
and translation errors of the trajectory tracking expressed by
the exponential coordinate versus time are shown in Fig. 8.
Both methods were able to obtain results whose rotation and
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FIGURE 6. The UR5 model of the V-rep simulation platform and the desired configuration trajectory of the end-effector of the UR5. (a) The UR5 model
of the V-rep simulation platform. (b) The desired configuration trajectory of the end-effector of the UR5.

FIGURE 7. The six components of the expected and actual trajectory exponential coordinate versus time. (a) The first component. (b)The second
component. (c) The third component. (d) The fourth element component. (e) The fifth component. (f) The sixth component.

FIGURE 8. The rotation and translation errors of trajectory tracking expressed by the exponential coordinate versus time. (a) The rotation error.
(b) The translation error.

translation errors, in exponential coordinates, were within an
acceptable range (order of magnitude of 10−6). To evaluate
the accuracy of the space conversion method proposed in this

paper, the joint angle estimated by (69) was used to calculate
the configuration of the end-effector through forward kine-
matics. The configuration of the end-effector was, thereafter,
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FIGURE 9. The rotation and translation errors of spatial transformation. (a) The rotation error. (b)The translation error.

FIGURE 10. The calculation time of the inverse kinematics of methods MPC-I_NIK and MPC-I_IK. (a) The calculation time versus steps. (b) The
calculation time box plots.

converted into exponential coordinates and compared with
the exponential coordinates of the desired pose. The rotation
and translation errors of the spatial transformation are illus-
trated in Fig. 9. The rotation error was within 1 × 10−5 and
the translation error was within 3×10−5. Finally, to illustrate
the computational complexity of the MPC-I_NIK method
proposed in this paper, the calculation time of the inverse
kinematics of methods MPC-I_NIK and MPC-I_IK is shown
in Fig. 10. FromFig. 10(a), the advantages of theMPC-I_NIK
method to the MPC-I_IK method can be easily verified.
From Fig. 10(b), the medians of the time for calculating
inverse kinematics for methods MPC-I_NIK and MPC-I_IK
are 0.0014s and 0.0132s, respectively. It can be concluded
that the former has a great advantage over the latter in terms
of computational complexity.

V. CONCLUSION
This article proposes an MPC-I method for motion control
of a robot manipulator considering the joint space and ana-
lyzes the advantages of introducing an integral control term.
To adapt the method to enable the motion control in task
space, a space conversion method for indirect calculation
of inverse kinematics was proposed. Two simulations were
conducted to illustrate the effectiveness of the proposed
method. In the first one, the effect of the MPC and MPC-I
methods was compared, considering the motion control in

joint space. The results indicated that the steady-state errors
of the six joints controlled by theMPCmethod were 0.0008◦,
0.0172◦, −0.1183◦, −0.0323◦, −0.0042◦, and 0.0022◦,
respectively; however, with the proposed MPC-I method,
the steady-state errors converged to lower values (−0.0003◦,
0.0002◦, 0.0009◦, 0.0011◦, 0.0002◦, and −0.0005◦, respec-
tively), at the same simulation time. In the second simulation,
the MPC-I_NIK and MPC-I_IK methods were compared
considering the motion control in task space. Both methods
could achieve results with rotation and translation errors
in exponential coordinates within the order of magnitude
of 10−6. Meanwhile, the rotation and translation errors of
the space conversion method proposed in this paper were
1 × 10−5 and 3 × 10−5, respectively, which shows that the
method is effective. And the median time of the MPC-I_NIK
method to calculate the inverse kinematics is 0.0014s,
which is a great improvement over the calculation time of
MPC-I_IK method.
In futureworks, actual constraints, such asmaximum speed

and maximum acceleration, will be added to the MPC-I
method, resulting in a more practical method. Furthermore,
the motion control method in joint and task spaces proposed
in this paper will be applied to practical applications, such
as handling of hazardous materials and motion assistance.
Moreover, the MPC-I method will be extended to hybrid
motion-force control.
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