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ABSTRACT This paper addresses a target localization problem in 3-D wireless sensor networks using a
hybrid system that fuses received signal strength and angle of arrival measurements. First, we formulate the
received signal strength and angle of arrival measurement models as the pseudo-linear equations. Then, the
bias is derived from the 3-D angle of arrival measurements that take the measurement noise into account to
improve the localization performance. Furthermore, a non-convex estimator is derived based on the Least
Squares criterion. Finally, semi-definite relaxation and second-order cone relaxation are applied to transform
the derived non-convex estimator into a convex one. We propose a semi-definite relaxation and second-order
cone relaxation-based estimator which yields the best performance under a large measurement noise or a
small measurement noise. The generalization of the proposed method for known transmit power can also
be applied to the case when transmit power is not know. Theoretical analysis and computer simulations
corroborate the superior performance of the proposed localization methods over the existing ones.

INDEX TERMS Target localization, received signal strength, angle of arrival, convex relaxation.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been used in a wide
range of applications, such as target tracking, navigation,
emergency services, friends finding and intelligent trans-
portation [1], [2]. Knowledge of the sensor node location
is an indispensable part for most WSNs applications, espe-
cially when it comes to the rapid development of network
and information technology in the modern society, definite
information of the specific location of each object becomes
quite necessary for making decisions and taking actions [3].
In general, only a number of sensor nodes, called anchor
nodes, have their location information known, whereas the
others, called target nodes, have their location information
unknown, which remains to be determined through localiza-
tion methods. Most localization methods make use of the
noise measurements, such as time of arrival (TOA) [4]-[6],
time difference of arrival (TDOA) [7], angle of arrival (AOA)
[8], [9], and received signal strength (RSS) [10]-[15] or
combinations of them [16]-[26]. Among those, TOA-based
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and TDOA-based localization requires clock synchroniza-
tion, AOA-based localization must have an antenna array
which increases the cost of hardware, RSS-based localization
gradually becomes the primary concern owing to it imple-
mentation, but it will fluctuate greatly with the increase of
distance. Compared with TOA and TDOA, the latter two
measurements do not require time synchronization between
the target and the anchor node, this makes them widely
used in different situations. Furthermore, hybrid system that
combining two measurements of wireless signals has also
been studied [16]-[21]. The advantage of hybrid system is
that more information of hybrid measurement is used to
complete the localization problem. On the other hand, it will
increase the cost of network and the complexity [22]-[24].
In this paper, we are focused on a combination of RSS
and AOA measurements, which is to further improve the
localization accuracy. The biggest challenge for the RSS
and AOA measurements is its non-linearity, which makes
the localization problem quite complex. The measurement
errors in WSNs are usually assumed to be Gaussian noise.
Thus, RSS-AOA based localization problem can be solved
using Maximum Likelihood (ML) estimator. However, the
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localization accuracy of this method highly depends on the
selection of initial point, which means that if the initial
solution is not close to the global solution, the final solution
will lead to a poor localization accuracy. To avoid this dis-
advantage of ML estimator, convex optimization method is
proposed to solve the RSS-AOA based localization problem,
where the semi-definite programming (SDP) method and the
second order cone programming (SOCP) method give the
best performance with a higher computational complexity
[27], [28]. In addition, AOA measurement in 3D is much
more challenging than AOA measurement in 2D. The main
reason is that it contains azimuth angle and elevation angle
measurements, which are both highly non-linear, and this
makes the localization problem becomes a highly non-linear
one. Moreover, there is a big deviation in the localization
problem based on RSS and AOA, especially when the signal-
to-noise ratio is low and the localization deployment is bad.
Mostly, the most literature only consider the impact of the
noise variance on the localization accuracy and ignore the
deviation. But under the condition of low signal-to-noise ratio
and poor localization deployment, deviation is a major factor
that should not be ignored. There are a lot of literatures at
present discuss the RSS-AOA based localization problem.
[22]-[24] studied the RSS-AOA based localization problem
by using convex relaxation technique. In [23], based on LS
criterion, the authors derived a novel objective function for
solving the hybrid localization problem. Then, the derived
non-convex localization problem was approximated into a
convex problem by applying second order cone program-
ming relaxation, which could be solved by using the convex
hull of MATLAB package CVX [29]-[31]. In [22], for the
3D RSS-AOA localization problem, the authors proposed
a generalized trust region subproblem (GTRS) method that
could quickly solve the target localization problem with a
lower computational complexity. In [24], a new relationship
between the measurement information and the unknown tar-
get location was established by using the spherical coordinate
conversion, and then a closed-form solution of the original
problem was obtained by LS method. Compared with the con-
vex relaxation method, the computational complexity of these
two methods was greatly reduced. However, these methods
did not consider the influence of AOA measurement deviation
on positioning. In [9], Yue Wang et al. fully considered the
influence of measurement deviation in 3D AOA localization
problem.

In this paper, we consider the localization problem in 3D
wireless sensor networks based on RSS and AOA measure-
ments. First of all, we make pseudo-linearization of the RSS
and AOA measurement models. Also, considering the influ-
ence of the measurement deviation, we reconstruct the
pseudo-linearization of AOA. Then, we establish the min-
imum optimization problem for solving the target location
by using the LS criterion. Finally, the derived cost function
and constraint are transformed into a convex optimization
problem by applying convex optimization relaxation tech-
nique. At the same time, we also provide the computational
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complexity of the proposed methods. Simulations confirmed
the performance of the proposed methods which demon-
strated an improvement over the previous works. Finally,
we also show that the proposed estimators for known transmit
power is straightforward for the case when transmit power is
not know.

The main contributions of this paper are summarized as
follows:

1) The proposed methods begin with the RSS and 3D AOA
measurements and derive the pseudo-linear equations. Then
the bias is considered to recast the derived pseudo-linear
equations in augmented form.

2) The RSS and AOA models are transformed into unified
form, then a novel non-convex objective function for solving
the target location is derived based on LS criterion, which
tightly approximates the ML one for small noise.

3) Semi-definite programming and second order program-
ming relaxation techniques are used to transform the derived
non-convex objective function into a convex one.

The following notations are adopted throughout the paper.
Bold face lower case letters and bold face upper case letters
denote the vectors and matrices, respectively. R” denotes the
set of n-dimensional real column vectors. r; denotes the ith
entry of the vector r. In addition, || - || denotes the £,-norm.

The rest of the paper is organized as follows. The RSS
and AOA models and the localization scenario are given in
Section II, in which we also propose the localization problem.
In Section III, the proposed localization method is derived.
In Section IV, the complexity of the proposed method is
analyzed. Section V provides computer simulation results and
analyzes the performances of the proposed methods. Finally,
the main conclusions are made in Section VL.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

The localization problem in three dimensional (3-D) space is
considered. In this section, the RSS and AOA measurement
models are presented in the first place. Then the formulation
for RSS-AOA localization problem is presented.

A. SYSTEM MODEL
In this localization system, only one target is to be esti-
mated based on the corresponding target to anchors RSS
measurements and AOA measurements. Under a centralized
processing mode, all sensors convey their RSS and AOA
measurements with respect to the target node location to
the central processor, during which the locations of all the
sensor nodes are supposed to be unchanged. We consider a
3D WSNs with N anchor nodes with locations 51, §2, ..., SN
(s;i = (si1,802,53)7 € R3) and one target at x (x =
(x1, x2, x3)T € R3) which is unknown and is to be estimated.
Fig. 1 shows the localization scenario. With log-normal shad-
owing, the true values of received signal path loss L; (in dB)
between the target node and the ith anchor node can be shown
as
lx — sill
dy

L; = Ly + 10y logg =12,---N, (D)
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FIGURE 1. lllustration the link between the target node and the ith
anchor node in 3D WSNs.

where L denotes the reference path loss value at the reference
distance dy (||lx — si|| = dp), y is the path loss exponent
(PLE), ¢;, «; respectively represents the true value of azimuth
angle and elevation angle between the target node and the
ith anchor node. It can be shown in a nonlinear manner
as

¢; = arctan (xz — Siz) , 2)
X1 — Sil
and
o; = arctan < 37 - ) )
(x1 — si)cosd; + (x2 — spp)sing;

where ¢; € (—m, m)and @; € (=%, 5),i=1,2,---N.

In the presence of measurement errors in practice, the
observed measurement path loss, azimuth, and elevation
equations are

L=L+n, 4)
¢=¢+m, )
&=a+v, (6)

where L = [Li,Ly,--- ,Ly1", ¢ = [d1. ¢, -+ . on]",
and & = [&;, &, - ,ay]T are the observation vectors
of path loss, azimuth, and elevation measurements respec-

tively and L = [Ly, Lo, -+, Ly17, ¢ = [¢1, 2, -+ , o ]17,

and ¢« = [y, an,--- ,aN]T are the true values. n =
T T

[n1,no, -~ ,ny]l", m = [my,mp,--- ,my]", and v =

[vi,v2,---,vy]T are the zero mean Gaussian measurement

noises of path loss, azimuth and elevation respectively, and
are modeled as n; ~ N(O, onz’,), m; ~ N(O, o,%“) and v; ~
N(O, crvzl_). For the sake of simplicity, in the rest of this paper,
we assume U,i_ = 0,12,0,%” = U,%,,Jvzl_ = O’V2 fori=1,---,N.
Given the RSS and AOA measurements 6 = [i,T, @T,@T I
(0 € R3N), We would like to estimate the location of the
target node as accurately as possible.
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B. PROBLEM FORMULATION
Based on (4), (5), and (6), we can formulate the ML estima-
tion of target location x as

3N 2
. (0; — fi(x))
min Z — 0 @)
i=1 i
where, 0; = [oy;, Ow;, Uv,-]T and
X —5; — 5
716 = [ Lo+ 10y loggg 2, arcan 222,
X1 — 8i1

< X3 — 83 ) T
arctan - .
(x1 — si1)cosd; + (x2 — sp)sing;

Typically, it is seen that (7) is non-convex and difficult to
solve.

Ill. LOCALIZATION VIA SDP AND SOCP RELAXATION

In this section, a convex relaxation method is proposed to
approximately solve the ML problem (7), where the derived
solution bias is minimum.

In the following part of this section, we develop a subop-
timal method to solve the localization problem in (7), where
the exact solution is obtained by convex optimization. Then,
we show that the estimation procedure can also be applied to
the case where transmit power Pr is not know.

A. LOCALIZATION METHOD WITH KNOWN P
We will first dispose of the RSS expression. Dividing by 10y
and taking the power on both side of (4), we obtain

L;—L —q: n;
107w = =il o ®)
do

R Li—L,
Letd; = dOIOTVO, (8) is transformed to
di = |lx = sillei, ©)

where €; = 10ﬁ.

Then, for the AOA expressions, let us derive the
pseudo-linear equations. Taking the tangent on both side
of (2), we have

tan ; = 22 (10)
X1 = Si1
Using the relation of the trigonometric function of the same

angle, i.e., tan ¢; = sindi (10) can be equivalently written as

cos ¢P;
sin ¢;(x1 — si1) — cos @;(x2 — s;2) = 0. (11)

Note that ¢; is the true value which is not known in
equation (11), therefore we need to further consider the noise
value of ¢;. If consider the noise value, (11) should have the
following form

sini(x1 —si1) — cos it —sp) =ng,  (12)

where 7 b is the residual caused by the noise. Next, we use
the undetermined coefficient method to solve n P
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By using (5), when the measurement noise is sufficiently
small, we have cosm; ~ 1, sinm; ~ m; and
sin (]3,- = sin(¢; + m;) ~ sin ¢; + m; cos ¢;,
cos ¢A>i = cos(¢; + m;) ~ cos ¢; — m; sin ¢;. (13)
Putting (13) into (12), we arrive at
N, = d; cos ajm;, (14)

where d; = ||x — s;|| is the true distance between target and
anchor.
Then, (12) can be rewritten as

ggi(x —§i) = d;cosa;m;, (15)

where 84 = [sin qgi, —Cos qgi, 0]7.
Similar to the derivation way of (15), according to (3)
and (6), we can obtain the following form [9]

ggl.(x —5;) =dpv;, (16)

where g4, = [sin@; cos ¢A),~, sin &; sin (ﬁi, —cos ;7.
Following the LS criterion, from (9), (15), and (16), we can
estimate the target location x by the following LS formulation

2 N gh(x—si) \2
bi
e Z(nx—sn) ;(nx—sincosai)
Vgl (x—si)\2
—_— . 17
+Z<||x—sz-||> an

i=1

The Problem (17) is obviously non-convex. We shall apply
SOCP and SDP relaxation technique to obtain a convex prob-
lem. For this purpose, introduce auxiliary variables

. . T
d; a’ g; & —si)

)2: . b=

llx —sil1

zi = (

lx — ;|| cos «;

(ggi (JC—Si))2

llx —sil1

e — sill

2
(g8 @ —s0) g w—s)\’
_ b k= o _
- e ) - _
o = sillZ cos” o I =il

fori=1,2,---
written as

, N. Then, Problem (17) can be equivalently

min Zz,—}—Zh +Zk“

x,2i,hi ki
AZ

d;
stz = ————, 18a
T =Sl (182)

(g —s0)

llx — sill% cos? e

(e -s0)’

l'_
llx —sill

(18b)

i =

(18¢)

However, Problem (18) is still non-convex. The non-
convexity of this comes from the non-linear equality con-
straints (18a), (18b), and (18c). In order to deal with this
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non—convexity, we also introduce several auxiliary variables
ui = |lx — sill%, b; —g (x—si),ci =g, (x s;), and we
utilize the measurement Value a; to replace «;, we have

Jmin, Zz,+Zh +Zk,, (192)
u;,bj,ci
st = |lx — si]|%, (19b)
bi =g (x —s0), (19¢)
ci = g, (x — 8, (19d)
A'2
Zi=—, (19)
uj
b2
hi = ——, (190
U; COS~
g
ki = (19g)
Ui

Let I3 as the 3 x 3 identity matrix and defining X =

[i; xJTcx ], Problem (19) can be reformulated as

x?,li;nk ZZ1+Zh +Zk1, (20a)
ui,bi,ci, X i=1 i=1
Si T Si
s.touj = [_’1} X [_’1} , (20b)
bi =g} (x —s0), (20¢)
ci =g (x — ), (20d)
a’
zi=—, (20e)
u;
b2
hi=———. (20f)
U; COS~
2
ki = -, (20g)
uj
X13,13 =13, (20h)
X > 04, (201)
rank(X) = 3. (209)

Dropping the non-convex constraint (20j) and applying
SDP and SOCP technique, we have the mixed SD/SOCP
estimator defined below as

xgi;lnk ZzerZh +Zk1, (21a)
ui,bi,ci, X i=1 i=1
S T S
s.touj = [_'1} X [_’1], (21b)
bi =g} (x = si). (210)
ci = g4,(x — s, (21d)
[Lif d’} >0, (2le)
d; zi
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2b; L

' [ui cos? & — h,} < u;cos”a; + h;, 211)
i K

X133 =15, (21h)

X = 0q. 21i)

This is the proposed convex estimator for known trans-
mit power Pr based on hybrid RSS-AOA measurements.
We label the estimator (21) as “SD/SOCP1-new” method in
this paper.

B. LOCALIZATION METHOD WITH UNKNOWN Py

In order to reduce the cost of implementation, testing and
calibration are not necessary. Therefore, the transmit power of
the sensor is often unknown, i.e. Pr is not know. Not knowing
Pr in RSS measurement model corresponds to not knowing
Ly in model (1). The generalization of the proposed method
for known Ly is straightforward for the case where Ly is not
known. Then, the equation (8) can be rewritten as

ﬁm = |lx —sille;, (22)
—Ly
where 8; = d01010y € = 1010V and n = 10 is an

unknown parameter that need to be estlmated.
For the sufficiently small noise, according to (22), (15),
and (16) we can get the following LS problem as

N g((x—s,-) )2

Bin 2 Pi
w Z (nx —si ||) t2 (nx —sillcosa;
Vgl (x—si)\2
+ _— . 23
Z( o —sil ) 29

i=1
- . A Bin \2 .
Introduce auxiliary variable z; = (M) . Using the
similar steps as described in Section III-A, we obtain the
following convex estimator

min, Zz, Z hi+ Zk,, (24a)
ulbez ci.X.n i=1 i=1
Y T Si
stui=| " | X[ (24b)
bi =g} (x —si), (240)
ci =g, (x —s), (24d)
[ wi  Bin

~ >0, 24e
| Bin % ] - (24¢)

21),’ 2 A
|:14i cos? &; — hl} <ujcos”aj+hi, (24D

26‘,’

[ui a kl} < ui + ki, (24g)
X313 =13, (24h)
X = 0. (241)

This is the proposed convex estimator for unknown trans-
mit power Py based on hybrid RSS-AOA measurements.
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We label the estimator (24) as “SD/SOCP2-new”” method in
this paper.

IV. COMPLEXITY ANALYSIS

The computational complexity is analyzed in this section.
The worst-case complexity of the considered method is used,
which is based on the following formula [32]:

NY()L‘
< ( Znsd +m22nsa’ _’_mZZnsoc
NY()L‘

+ o +m3)), 25)
i=1

where L is the number of iterations, m is the number of equal-
ity constraints, Ny, is the number of the second order (SOC)
constraints, and 7}°¢ is dimension of the ith SOC. Assume
that K. = 30 is the maximum number of steps in the
bisection procedure used in [22] and [24]. In the next section,
simulation results will indicate that the proposed methods
show better performance.

V. SIMULATION RESULTS

In this section, a set of Monte Carlo simulations are con-
ducted to evaluate the performance of the proposed methods
in comparison with the existing ones for RSS-AOA hybrid
localization with known and unknown P7. N anchor nodes
and one target node are randomly distributed in a box with
an edge length B = 15 m. We assume that all sensor nodes
are fully connected, i.e., all anchor nodes and target node can
communicate with each other. The models (4), (5), and (6)
are used to generate measurements. All sensor nodes are
assumed to have the same transmit power and the received
signal path loss (which corresponds to the received signal
power) at the reference distance dp = 1m is set to Lo =
40dB, the PLE is fixed as y = 4. The performance of all
discussed methods are evaluated using the root mean square

error (RMSE), defined as RMSE= />, % where ¥

and x is the estimated location and true location of the ith
Monte Carlo (Mc) run respectively, and Mc=3000 being the
number of runs. In order to demonstrate the benefit of hybrid
systems versus traditional localization ones, we present also
the performance results of the proposed methods when only
RSS measurements are employed, called here RSS-only-K
and RSS-only-U for known and unknown P, respectively.
Also, it is worth mentioning that for the sake of fairness, the
LS method in [19] is given here. We use ML-Ture-K and
ML-Ture-U to denote the ML solution of (7) for known and
unknown P7 by using the starting point provided by the true
location. Furthermore, we also give the Cramér-Rao lower
bound (CRLB) on the RMSE of any unbiased estimator as a
performance benchmark, and use the CRLB-K and CRLB-U
to denote the CRLB of the two cases when known and
unknown Pr, respectively. All of the presented methods are
solved by using the MATLAB package CVX [31], where the
solver is SDPT3 [30]. The corresponding ML problems are
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TABLE 1. Summary of the Considered Methods In Section I1I-A and
Section V-A.

Method Description Complexity
SD/SOCPI The SD/SOCP method in [25] O(N35)
GTRS-SRWLS1 The GTRS method in [22] O(KmazN)

SC-WLS1 The WLS method in [24] O(KmazN)
SOCP The SOCP method in [23] O(N33)
LS The LS method in [19] O(N)
SD/SOCP1-new | The proposed method in III-A O(N3?)

4.5

—©— SD/SOCP1-new
4r SD/SOCP1
—&— GTRS-SRWLS1
3.51| = % = SCWLS1

—— SOCP
31| = % = ML-True-K
—_ -®~-LS
Eas) RSS-only-K
] —— CRLB-K
= 2l
x

3 4
o(dB,deg)

FIGURE 2. RMSE versus the o (dB, deg) comparison, when N = 9 and
y =4,B=15m, Ly = 40dB, dy = 1 m, Mc = 3000.

solved by MATLAB function “Isqnonlin”. In the following
part of this section, we will verify the performance of the
proposed methods through different scenarios.

A. Pr KNOWN

Table 1 gives an overview of the compared methods in
this case, together with their complexities. From Table 1,
we can see that the complexity of each algorithm mainly
depends on the network size, i.e., the number of sensors
in WSNs. As shown in this table, the proposed method
SD/SOCPI1-new has the same computational complexity as
SOCP and SD/SOCP1 methods, but slightly higher than
GTRS-SRWLS1, SC-WLSI1, and LS methods. However,
it shows the superior performance in the sense of localization
accuracy than the other considered methods, as we will see in
the following simulation results.

1) Effect of the noise standard deviation. The RMSE of
all discussed methods versus the noise standard deviation
is given in Fig.2. From this figure, the RMSE of all the
discussed methods increases as the noise standard deviation
o increases, i.e., the performance of all considered methods
deteriorates as o grows. It also shows that the effectiveness of
combined measurements of RSS and AOA versus using only
a single measurement for our proposed method. Moreover,
with the increase of o, the gap between the methods is
increasing. Finally, the proposed method performs better than
other discussed methods and is closest to the ML-True-K and
CRLB-K for all choices of o.
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—o6— SD/SOCP1-new
4.5¢ SD/SOCP1 1
—8— GTRS-SRWLS1
4r ' - % - SCWLS1 i
350 —%— SOCP
ML-True-K
L - ®=1LS B
RSS-only-K
—— CRLB-K 1

FIGURE 3. RMSE versus of sensor number N comparison, when o = 4dB,
om =5deg, oy =5deg, y =4,B=15m, Ly = 40dB, dy = 1 m, Mc = 3000.

—— SD/SOCP1-new
SD/SOCP1
—— GTRS-SRWLS1 | |
—— SCWLS1
—— SOCP B

ML-True-K
—1LS 7

RSS-only-K
—— CRLB-K

CDF

0 1 2 3 4 5 6
EM(m)

FIGURE 4. CDF versus the mean error comparison, when N = 9 and

on =4dB, om =5deg, oy =5deg, y =4,B=15m,Ly =40dB,dy =1m,

Mc = 3000.

2) Effect of the number of the anchor nodes. Fig. 3 com-
pares the RMSE versus the number of anchor nodes N when
o, = 4dB, 0, = 5deg, and 0, = 5 deg. Fig. 3 shows that the
RMSE of all considered methods decreases when the number
of anchor nodes increases, and the proposed SD/SOCP1-new
method results to the smallest RMSE among the discussed
methods. Moreover, it is shown that a smaller N leads to
a larger performance margin, and the performance margin
slightly decreases with the increase of N. From the figure, itis
clear that the proposed method outperforms the considered
methods for all choices of N. Furthermore, the proposed
method is very close to ML-Ture-K and CRLB-K for all
choices of N. Finally, even though we derive our method
under the assumption that the noise is small enough, Fig. 3
shows that the proposed method has high positioning per-
formance in high noise environment. This behavior is since
the considering the influence of the measurement deviation
of AOA.

3) Effect of the cumulative distribution function (CDF)
of the mean error (ME). CDF can be used to evaluate the
accuracy of localization method. From the CDF trend figure
with localization error, we can clearly see the deviation range
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TABLE 2. Summary of the Considered Methods In Section I11-B and
Section V-B.

Method Description Complexity
SD/SOCP2 The SD/SOCP method in [25] 2-O(N3?)
GTRS-SRWLS2 The GTRS method in [22] 2 0(KmazN)

SC-WLS2 The WLS method in [24] 2 0(KmazN)
SD/SOCP2-new | The proposed method in III-B O(N35)

6
—6— SD/SOCP2-new
SD/SOCP2
5 —&— GTRS-SRWLS2 |
- % - SC-WLS2
ML-Ture-U
4 RSS-only-U |
_ = == CRLB-U
£
®3 |
=
3
2
L =Tk — e e = T RT T

3 4
c(dB,deg)

FIGURE 5. RMSE versus the o (dB, deg) comparison, when N = 9 and
y=4,B=15m, do = 1m, Mc = 3000.

of the localization method. Generally, the closer the CDF is to
100%, the better localization accuracy and the faster conver-
gence speed there will be. Fig. 4 shows the CDF comparison
of the error in target location estimation of the considered
methods. From Fig. 4, it can be seen that the proposed method
outperforms the other considered methods for all range of
ME. Furthermore, we can see that the proposed method
achieves ME< 1m in 95% of the cases, whereas the other
considered methods attain the same ME in less than 75% of
the cases.

B. Pr UNKNOWN
Table 2 also gives an overview of the considered methods
in this case when Pr is not know, together with their com-
plexities. From table 2, the proposed method SD/SOCP2-new
is slightly more complex than other considered methods,
due to the convex optimization process. However, the higher
computational complexity of the proposed method than the
other considered methods is justified by its higher estimation
accuracy as we will show in the following part in this section.
1) Effect of the noise standard deviation. Fig. 5 illustrates
the RMSE of all discussed methods versus the noise standard
deviation. As anticipated, Fig. 5 reveals that the RMSE of
all the discussed methods increases as the noise standard
deviation o increases. The proposed method performs bet-
ter than other discussed methods in the entire range of the
noise standard deviation. This is mainly because the pro-
posed method SD/SOCP2-new can get the target location
directly through joint estimation of target location and Pr,
while the other methods need to iterative bisection procedure,

VOLUME 8, 2020

—6— SD/SOCP2-new
7h SD/SOCP2
—#&#— GTRS-SRWLS2
= %= SC-WLS2

6 - ® - ML-Ture-U
RSS-only-U
=57 : : - - - CRLB-U
E
@ 47
=
©

e = ~T-—“*----t__
---,"==:":::::‘:::::!=___
0 i i ; ;
6 8 10 12 14 16
N

FIGURE 6. RMSE versus of sensor number N comparison, when o5 = 4dB,
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FIGURE 7. CDF versus the mean error comparison, when N = 9 and
on =4dB, om = 5deg, oy =5deg, y =4,B=15m, dy = 1 m, Mc = 3000.

which will lead to local minimum value, resulting in large
localization error. Moreover, it can be seen that the proposed
method SD/SOCP2-new has the similar properties as the
SD/SOCP1-new method. Finally, the proposed method is also
closest to the ML-True-U and CRLB-U for all choices of o.

2) Effect of the number of the anchor nodes. Fig. 6 com-
pares the RMSE versus the number of anchor nodes N when
o, = 4dB, 0, = 5deg, and 0, = 5deg. Similar to
Fig. 3, Fig. 6 shows that the RMSE of all considered methods
decreases when the number of anchor nodes increases when
Pr unknown, and the proposed SD/SOCP2-new method
results to the smallest RMSE among the discussed methods
for all choices N. Moreover, the proposed method is also
closest to the ML-True-U and CRLB-U for all choices N.

3) Effect of the CDF of the ME. we also investigate
the CDF comparison of the ME in the target localization
estimation of the considered methods when P7 unknown.
Fig.6 shows that the proposed method outperforms the other
considered methods for all range of ME, improving the local-
ization accuracy by more than 0.4 m on average. Furthermore,
we can see that the proposed method achieves ME< 1m
in 90% of the cases, whereas the other considered methods
attain the same ME in less than 50% of the cases.
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VI.

CONCLUSION

In this paper, the hybrid RSS-AOA localization problem has
been considered. We have presented a convex SD/SOCP
method for both the cases when P7 is known and unknown.
According to the measurement models, we transform the
models into pseudo-linear equation. Then a non-convex LS
estimator is derived. By using the SDP and SOCP technique,

the

derived non-convex estimator is approximated into a

convex one. The generalization of the proposed method for
known transmit power can also be applied to the case when
transmit power is not know. The simulation results verify the
excellent performance of the proposed method in solving the
localization problem efficiently in variety of scenarios for
hybrid RSS-AOA measurements.
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