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ABSTRACT Linear regression is a basic method that models the relationship between an outcome value and
some explanatory values using a linear function. Traditionally, this method is conducted on a clear dataset
provided by one data owner. However, in today’s ever-increasingly digital world, the data for regression
analysis are likely distributed among multiple parties and even contain sensitive information about the
data owners. In this case, data owners are not willing to share their data unless data privacy is guaranteed.
In this paper, we propose a novel protocol for conducting privacy-preserving linear regression (PPLR) on
horizontally partitioned data. Our system architecture includesmultiple clients and two noncolluding servers.
In our protocol, each client submits its data in encrypted form to a server, and two servers collaboratively
determine the regression model on pooled data without learning its contents. We construct our protocol
with Paillier homomorphic encryption and a new data masking technique. This data masking technique can
perturb data bymultiplying a rational number while the data are encrypted. Due to the use of the data masking
technique, the efficiency of our protocol is greatly improved. We provide an error bound of the protocol and
prove it rigorously. We also provide security analysis of the protocol. Finally, we implement our system in
C++ and Java, and then we evaluate our protocol using real datasets provided by UCI. The experiments
show our protocol is one of the most effective approaches to date and has negligible errors compared with
performing linear regression on clear data.

INDEX TERMS Privacy-preserving regression, linear regression, homomorphic encryption, data masking,
multiplicative perturbation.

I. INTRODUCTION
With the extensive use of computer technology, many insti-
tutions and individuals have accumulated a large amount of
data. This causes an increasing demand on collaborative min-
ing among multiple data owners. Because many data owners
lack professional skills and computing resources for data
mining, they have to outsource this work to a service provider.
If all data owners agree to submit their clear data to a service
provider for mining information of common interested on
the pooled data, the data mining over distributed data can be
easily accomplished. However, in many cases, data owners
are unwilling to share their data because some sensitive infor-
mation of data owners may be contained in the data.
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For example, some medical institutions want to evaluate
the effect of different treatment plans for patients with a
particular disease. Each treatment plan could be combination
of several drugs in specific proportions. Under the premise
that patients’ privacy is well protected, all the medical insti-
tutions are willing to contribute their data for analysis on the
combined dataset. Another example concerns personal credit
evaluation. Personal credit is the basis of some individual
economic activity, such as a mortgage loan, a car loan. Credit
evaluations require data provided by banks, insurance com-
panies, e-commerce firms, judicial offices, etc. All of these
institutions have their own data usage policy. It is almost
impossible for a third party to collect data from all these
institutions in clear text form. This make comprehensive
evaluation of personal credit become a difficult problem.
These examples belong to distributed privacy-preserving data
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mining. As we enter the age of big data, such demanding
scenarios will become increasingly common.

In this paper, we focus on privacy-preserving linear regres-
sion (PPLR) on a distributed dataset. The approach addresses
how several servers (service providers) conduct linear regres-
sion, where the data are divided among multiple clients (data
owners), and any information about clients’ data cannot be
learned by any server. The PPLR is a problem that belongs
to privacy-preserving data mining (PPDM) [1]. Thanks to
the efforts of many experts in PPDM, now we have at least
four techniques to contend with the PPLR problem. The
first method is based on data perturbation [2]–[4]. In this
method, each client first masks data with mathematical trans-
forms, such as rotation, translation and swap. Then, a service
provider performs a mining algorithm on the pooled dataset.
High efficiency is the prominent advantage of this method.
The downside is that a perturbation that is too large leads
to a loss of data utility, wheres too small of a perturbation
results in a privacy breach. The second method is linear secret
sharing [5]–[7]. This method transforms each data element
into the sum of several random parts. Each part is sent to a
different server. The servers collaboratively perform amining
algorithm using these data parts. Because each server cannot
expose its data part to other servers, the arithmetic operations
become very complex [8]. The data privacy is assured unless
the number of colluded servers exceeds a threshold. The
third method is the garbled circuit [9]–[11]. In general, this
method has two parties – Alice and Bob. Alice has data x
and Bob has data y. They want to compute f (a, b), where f
is a public function. By using the garbled circuit technique,
Alice and Bob can obtain f (a, b) without learning anything
about the other party’s data. This method cannot be applied
to the PPLR problem directly because Alice and Bob should
play the role of service provider and they do not have any
input data. Therefore, we must combine the garbled circuit
method with other techniques to ensure the clients’ privacy
is not compromised. Garbled circuits are less efficient than
other methods when solving the same problem. The fourth
method is homomorphic encryption [12], which is a kind of
public key encryption. The homomorphic encryption enables
a server to perform computation directly on encrypted data
without accessing a secret key, and the results of the com-
putations remain in encrypted form. An attractive idea about
using homomorphic encryption for the PPDM problem is one
in which clients submit encrypted data to the server and the
server conduct data mining on encrypted data directly. Until
now, practical homomorphic encryption, known as partial
homomorphic encryptions [13], [14], have only supported
one kind of arithmetic operation - addition or multiplication.
In contrast, fully homomorphic encryption [15], [16] supports
both addition and multiplication. Although a major break-
through had beenmade in fully homomorphic encryption, it is
still far less efficient than other techniques. Most researchers
still choose partial homomorphic encryption in their research.
In this paper, we develop our approach also based on partial
homomorphic encryption.

Privacy-preserving linear regression or ridge regression
over distributed datasets has received considerable attention
in recent years. Some approaches have been proposed. Each
of them used one or more the aforementioned techniques.

In 2005, Karr et al. [22] proposed a protocol for PPLR
based on secure summation. Their approach is highly effi-
cient but does not conceal important intermediate values such
as the covariance matrix. In 2011, Hall et al. [6] proposed a
protocol for PPLR based on secret sharing and homomorphic
encryption. Different from Karr et al.’s approach, their pro-
tocol conceals the covariance matrix. However, the iteration
they used for computing the inverse matrix is inefficient.
In 2017, Mohassel et al. [7] designed a computing frame-
work for PPDM based on two-party secret sharing and pro-
vided fixed-point multiplication with O(1) complexity. Their
approach is highly efficient at the phase of online computing
but still requires expensive offline precomputation to prepare
for online multiplication.

In 2013, Nikolaenko et al. [10] proposed a protocol to
address privacy-preserving ridge regression on distributed
records. They used additive homomorphic encryption to gen-
erate the covariance matrix and right-hand-side vector, and
then used garbled circuit to determine the final result. Exper-
iments show their hybrid protocol is more efficient than
Hall et al.’s protocol. Gascón et al. [17] extended Nikolaenko
et al.’s protocol to vertically partitioned datasets in 2017.
They designed a secure inner product protocol for data aggre-
gation and garbled circuits of the conjugate gradient decent
algorithm for solving linear equations.

Hu et al. [18] in 2017 proposed a protocol for
privacy-preserving ridge regression that was completely
based on additive homomorphic encryption. They design
a packed secure multiplication protocol, which is used to
construct the secure Gauss elimination and Jacobi itera-
tion algorithm. These algorithms are used in solving linear
equations. In 2018, Chen et al. [19] designed a protocol
for privacy-preserving ridge regression. In their protocol,
multiplicative and additive homomorphic encryption are used
together to implement data aggregation and solving equa-
tions. Their experiments show that the protocol based on
homomorphic encryption alone is more efficient than the
hybrid protocol using garbled circuits.

In 2018, Giacomelli et al. [20] proposed a protocol
based on homomorphic encryption and a data masking tech-
nique. By using homomorphic encryption, they mask data in
encrypted form, and then decrypt it and solve the masked
linear equations. Their approach is similar to ours, but our
data masking method is different. Data masking can provide
a sufficient level of security and greatly reduces the compu-
tational cost.

A. OUR CONTRIBUTIONS
Our work in this paper follows the research line of homomor-
phic encryption. Our system framework is shown in figure 1.
The Evaluator and Crypto-Service provider (CSP) are two
servers, and multiple clients are data owners. In our protocol,
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each client submits its data in encrypted form to the Evaluator,
and the Evaluator cooperates with CSP to determine the data
model on the pooled data without learning its contents. Our
protocol is based on a semi-honest model, and the two servers
do not collude with each other.

Our contribution can be summarized as follows:

• We propose a new protocol for conducting privacy-
preserving linear regression on horizontally partitioned
data. By combining homomorphic encryption and a
data masking technique, two servers determine the data
model and cannot learn any information about the input
data. We design a new data masking technique that
makes our protocol simple and effective. Furthermore,
each client can be offline after submitting its data
because the client does not participate in any subsequent
computations.

• We derived an error bound of the protocol and prove it
with rigorous matrix theory. Furthermore, we conduct a
security analysis that shows our protocol is secure in a
statistical sense.

• We implement our protocol in C++ and Java language,
and then evaluate its accuracy and efficiency by per-
forming experiments on real datasets provided by UCI.
We also compare our protocol with the state-of-the-art
solution. The experiments show our protocol is not only
one of the most effective approaches to date but also
sufficiently accurate with only negligible error.

II. PROBLEM STATEMENT
We first give some notations used in this paper.

- Bold uppercase – matrix (e.g., X,A,U,V)
- Bold lowercase – vector (e.g., y,b, xi, b̂1, b̂2,α,β, γ )
- Normal lowercase – real number or integer (e.g., aij, yi)
- bf c – round a real number f down to the nearest integer
- df e – round a real number f up to the nearest integer
- bf e – round f to the integer that is the floor or ceiling of
f

- (p, q)–bit length of the integral and fractional part of a
fixed-point number

- pk, sk – public key and private key
- E(·), D(·) – encryption and decryption function
- E(A) – a matrix that consists of elements E(aij)
- E(b) – a vector that consists of elements E(bi)

We use xij to denote the (i, j) element of X or xi. Similarly,
αi is an element of α, etc.

A. ARCHITECTURE AND OUR GOAL
Our system architecture consists of three entities – a CSP,
an Evaluator and r clients, as shown in Figure 1. Suppose
there are m data pairs (xi, yi) used in regression, where 1 ≤
i ≤ m, xi ∈ Rd and yi ∈ R.

- Clients: Each client holds part of the data pairs in our
system. xi includes d explanatory values, and its cor-
responding output is yi. (xi, yi) contains some sensitive
information of the client.

FIGURE 1. Distributed data analysis system.

- CSP: The CSP generates public/private key pair of
homomorphic encryption and sends the public key to the
Evaluator and clients in the initialization phase.

- Evaluator: The Evaluator sets up parameters for
our protocol in the initialization phase and performs
privacy-preserving regression on the combined dataset
of all clients with the help of CSP. Finally, it outputs the
result of regression analysis.

We call d the number of data features in this paper.
Our goals are threefold: to build a model without revealing

any input data or important intermediate value to servers,
to free clients from complicated data mining tasks, and
to design a highly efficient protocol that is suitable for
practical use. Here, the important intermediate values are
the covariance matrix and its corresponding right-hand-side
vector in the linear regression (ref. Section III. A). Some
research [6], [23] has shown that revealing the covariance
matrix or the corresponding right-hand-side vector may be
a cause of privacy leakage.

We assume that all parties are honest-but-curious and the
Evaluator andCSP do not colludewith each other. Thismeans
all participators follow the instruction of protocol but try
to learn privacy information through observing the protocol
execution.

B. INPUT DATA DISTRIBUTION
In our system, input data are horizontally partitioned among
r clients. This means each data (xi, yi) cannot be split and
belongs to one client. Therefore, we can find some integers
lk that satisfy 0 = l0 < l1 < · · · < lr = m, and client
k (1 ≤ k ≤ r) holds the data

(xlk−1+1, ylk−1+1), (xlk−1+2, ylk−1+2), · · · , (xlk , ylk )

We can denote the client k’s data as matrix Xk and vector
yk as follows.

Xk = [xlk−1+1, xlk−1+2, · · · , xlk ]
T

yk = [ylk−1+1, ylk−1+2, · · · , ylk ]
T
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FIGURE 2. Horizontally partitioned data.

Additionally, all input data can be denoted as matrix X and
vector y as follows.

X = [x1, x2, · · · , xm]T, y = [y1, y2, · · · , ym]T

Therefore, we have

XT
= [XT

1 , · · · ,X
T
r ], yT

= [yT
1 , · · · , y

T
r ]

Figure 2 shows the relations between X and Xk , y and yk .

III. BACKGROUND
A. LINEAR REGRESSION
Linear regression is one of most widely used approaches
for prediction. Its theory is classical and can be found in
textbook [29]. Linear regression takes a large number of data
as input and outputs a best-fit linear equation for these data.

Given a set of xi = (xi1, xi2, · · · , xid )T ∈ Rd and its
corresponding values yi ∈ R, for 1 ≤ i ≤ m. Linear
regression finds β = (β1, · · · , βd )T ∈ Rd and α ∈ R that
makes yi ' βTxi + α. To simplify the problem, denote
xi = (xi1, · · · , xid , 1)T and β = (β1, · · · , βd , α)T. Then,
the goal of linear regression is to find the best-fit function
y = βTx.

The common way to compute β is the least square method,
which needs to solve the linear system

Aβ = b

where A = XTX ∈ R(d+1)×(d+1) is the covariance matrix,
its corresponding right-hand-side vector b = XTy ∈ R(d+1),
and

X =


x11 · · · x1d 1
x21 · · · x2d 1
...

...
...

...

xm1 · · · xmd 1

 y =


y1
y2
...

ym


The element of A and b is

aij =
m∑
n=1

xnixnj, bi =
m∑
n=1

xndyn (1 ≤ i, j ≤ d + 1)

In particular,

a(d+1)(d+1) = m

a(d+1)j = aj(d+1) =
∑m

n=1
xnj (j 6= d)

b(d+1) =
∑m

n=1
yn

Because our input data are horizontally partitioned, client
k has Xk ∈ R(lk−lk−1)×(d+1) and yk ∈ R(lk−lk−1). From XT

=

[XT
1 , · · · ,X

T
r ] and yT

= (yT
1 , · · · , y

T
r ), we obtain

A =
r∑

k=1

XT
kXk b =

r∑
k=1

XT
k yk

Let Ak = XT
kXk ∈ R(d+1)×(d+1) and bk = XT

k yk ∈
R(d+1). Obviously, client k can compute Ak and bk locally.
Later in this article, we always assume that the matrixX or

Xk contain d + 1 columns.

B. THE PAILLIER CRYPTOSYSTEM
The Paillier cryptosystem [13] is the core encryption used
in our protocol. It is a semantically secure [21] and additive
homomorphic encryption scheme. Semantic security makes
it impossible for any polynomial algorithm to gain extra
information about a plaintext when given only its ciphertext
and public key. As an asymmetric encryption, the Paillier
cryptosystem has a public/private key pair (pk, sk).

pk := (n, g) and sk := λ(n) = lcm(p1 − 1, q1 − 1)

where n = p1 ·q1, p1 and q1 are distinct large primes, g ∈ Z∗
n2

and n divides the order of g, λ(n) is the Carmichael’s function
on n.
Encryption: Given plaintext m ∈ Z∗n, select random r ∈

Z∗n. The ciphertext c is

c = Epk (m, r) = gm · rn mod n2

where Epk is the encryption function with public key pk .
Decryption: Given ciphertext c ∈ Z∗

n2
, its plaintext m is

m = Dsk (c) =
L(cλ mod n2)
L(gλ mod n2)

mod n

where Dsk is the decryption function with secret key sk and
L(u) := (u− 1)/n.
Given a, b ∈ Zn, the Paillier encryption scheme satisfies

the following properties:

Epk (a+ b) = Epk (a) · Epk (b) mod n2

As a special case, for a positive integer k

Epk (ka) = Epk (a)k mod n2

In this paper, each client encrypts its data with Paillier
encryption before submitting them to a service provider.
To simplify the problem description, we use E(·) and D(·)
instead of Epk (·) and Dpk (·) elsewhere in this paper. In addi-
tion, we also omit the ‘‘mod’’ suffix when we describe the
homomorphic addition later in this paper.

C. DATA REPRESENTATION
Clients’ input data could be real numbers, but Paillier encryp-
tion only works on nonnegative integers; therefore, data con-
version must be done before using Paillier encryption. In our
protocol, a fixed-point number is used to realize conversion
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between a real number and an integer. The fixed-point num-
ber has a q-bit fractional part and p-bit integral part. Because q
is fixed, we can drop the binary point and use a binary integer
to represent the fixed-point number.

Furthermore, the integer used in Paillier encryption is non-
negative, so the clients need to convert all xi and yi into
nonnegative numbers locally at the beginning of the protocol.
One solution is two’s complement representation, which rep-
resents a negative integer with a positive integer. Our solution
is find a large enough numberM that makes xij+M ≥ 0 and
yi +M ≥ 0 for all data. In the initial phase of the protocol,
each client converts a real number a to a nonnegative integer
by the following formula

ufix(a) = b(a+M) · 2qc

where ufix(a) is an unsigned fixed number corresponding to
a. Some fixed-point arithmetic operations are also used in our
protocol as follows:

- Addition: ufix(a+ b) = ufix(a)+ ufix(b)
- Multiplication: ufix(a · b) = ufix(a) · ufix(b)/2q

- Division: ufix(a/b) = ufix(a) · 2q/ufix(b)
Parameter q is important because it influences the accuracy

of calculations. p is trivial in most cases because the range
of numbers in practice is far less than the upper limit of the
encryption scheme.

IV. SECURE LINEAR REGRESSION PROTOCOL
A. THE KEY IDEA OF OUR PROTOCOL
The execution process of our protocol includes three phase:
initialization, aggregation and regression (see figure 1). The
main task of each phase is as follows.

(1) initialization: The CSP generates key pair (pk ,sk),
and sends pk to others; the Evaluator sets (p,q) for a
fixed-point number and sends (p,q) to others. Client k
converts data to nonnegative integers.

(2) aggregation: Client k computes E(Ak ), E(bk ) locally
and submits E(Ak ) and E(bk ) to the Evaluator. The
Evaluator merges data into E(A) and E(b).

(3) regression:
– SupposeM (·) is a data masking algorithm; the Evalu-
ator usesM (·),E(A) andE(b) to determineE(M (A)),
E(M (b)) with the help of the CSP.

– The CSP decrypts E(M (A)), E(M (b)), solves the lin-
ear equations related toM (A) andM (b), and returns
the masked model M (β) to the Evaluator.

– The Evaluator obtains the true β by eliminating the
data mask.

In phase 3, M (·) can mask each element in A and b and
generates the data masked matrix and vector. There are two
critical problems in this protocol:

(a) how do we design M (·) ?
(b) how do we introduce M (·) into E(A) and E(b) ?
Let us first illustrate our design aboutM (·) in plaintext. We

randomly choose three invertible diagonal matrices V, S and

T. Then, we obtain the diagonal matrixU = S+T. Transform
the equation Aβ = b as follows.

UAVV−1β = Ub = Sb+ Tb

We choose two random numbers w1, w2 and let Â := UAV,
b̂ := Ub, b̂1 := w1Sb, b̂2 := w2Tb; hence,

β = VÂ−1b̂ = V
( Â−1b̂1

w1
+

Â−1b̂2
w2

)

Then, we construct two linear equations as follows

Âξ = b̂1, Âη = b̂2

Solving these equations, we can obtain the final result

β = V
( ξ

w1
+

η

w2

)
The masked Â, b̂1 and b̂2 prevent information leakage

aboutA or b. In our protocol, the Evaluator first choosesU,V,
w1 and w2, then manages to obtain E(Â), E(b̂1), E(b̂2), and
sends them to the CSP. The CSP decrypts the received data,
solves the equations Âξ = b̂1 and Âη = b̂2, and sends back
the solution ξ and η. The Evaluator uses ξ and η to determine
β.

Now, let us show how to introduce M (·) into E(A) and
E(b). Given ui, vj, and E(aij), they are elements of matrix
U, V and E(A) respectively. How do we compute E(uiaijvj) ?
If ui and vj are integers, we can use E(uiaijvj) = E(aij)uivj
directly. However, this is not secure because the CSP will
obtain uiaijvj when solving the data masked equations. If aij,
ui and vj are prime numbers, it is not difficult for the CSP
to guess aij. In our protocol, the elements in U and V are
rational numbers that have the same denominator. That mean
the elements in U and V are ui/e and vj/e, where ui, vj
and e are integers. To obtain E(uiaijvj/e2), we first compute
E(uiaijvj) = E(aij)uivj . Then, we use an encrypted divi-
sion technique (in protocol 2) to obtain E(buiaijvj/e2e). The
buiaijvj/e2e is the integer near uiaijvj/e2. Actually we cannot
compute E(uiaijvj/e2) in most cases because uiaijvj/e2 may
not be an integer. Replacing uiaijvj/e2 with buiaijvj/e2e only
causes negligible error.

B. INPUT DATA CONVERSION
In the inintialization phase, the client needs to convert its
data to nonnegative integers. If all clients’ primary data are
nonnegative, each client can simply convert data to integers
by using formula ba · 2qc, where a represents primary data.
If there are some negative input data, our method is to pass
a positive real number M to all clients, who can convert
the local data to nonnegative numbers by using it, and then
convert the data to integers. We propose the protocol 1 to
complete data conversion when there are negative data.

In protocol 1, E(d−zk · 2qe) are collected by the Evaluator
before they are sent to the CSP. We do this to keep more
information about the client secrete. The M is known to all
clients and the CSP in protocol 1. This means M is almost
public information. IfM is sensitive information, each client
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Protocol 1 Clients’ Data Conversion
Parties: Clients Evaluator CSP
Input: xij, yi (p, q) pk
Output: x̄ij, ȳi ∈ N
1: Client k finds the minimum value zk in the local negative

dataset Ng = {xij, yi|xij ≤ 0, yi ≤ 0, lk−1 < i ≤ lk , 1 ≤
j ≤ d}, where k = 1, 2, · · · , r .

2: Client k computes E(d−zk ·2qe) and sends it to Evaluator.
3: Evaluator sends all E(d−zk · 2qe) to CSP.
4: CSP decrypts all E(d−zk ·2qe), finds the maximum value

M in {d−z1 · 2qe/2q, d−z2 · 2qe/2q, · · · , d−zr · 2qe/2q}
and passes it to all clients.

5: Each client converts local data to nonnegative integers by
using formula x̄ij = b(xij+M) ·2qc and ȳi = b(yi+M) ·
2qc.

Protocol 2 (Data Masking) Compute E(bxc/de) From Given
E(x), c and d

Parties: A B
Input: E(x), integer c,

d
pk, integer d

Output: E(bxc/de)

1: A computes E(xc) = E(x)c

2: A chooses a random r , computesE(xc+r) = E(xc)·E(r).
Then A sends E(xc+ r) to B.

3: B decrypts E(xc+r), computes b(xc+r)/dc, then returns
E(b(xc+ r)/dc) to A.

4: A computes E(br/dc), then computes

E(bxc/de) = E(b(xc+ r)/dc − br/dc)

= E(b(xc+ r)/dc) · E(br/dc)−1

can add a random positive integer to d−zk · 2qe before it is
encrypted and passed to the Evaluator.

C. DATA MASKING TECHNIQUE
In our system, the Evaluator holds some data that can be
viewed as E(x), integer c and public integer d . To mask the
data x, the Evaluator needs to compute E(bxc/de). It is easy
to compute E(xc) = E(x)c. The problem is how to compute
E(bxc/de) using E(xc) and d . Until now, there is no way for
the Evaluator to complete this task alone. In our data masking
protocol, we use Veugen’s [26] approach to perform division
between E(xc) and a public divisor d .

In protocol 2, the E(br/dc)−1 is a modular inverse of
E(br/dc). In proposition 1, we prove the correctness of pro-
tocol 2.
Proposition 1: In protocol 2, the integer b(xc + r)/dc −
br/dc in step 4 is the integer bxc/dc or bxc/dc + 1.

Proof: Some basic formulas are

xc/d = bxc/dc + xc%d

r/d = br/dc + r%d

(xc+ r)/d = b(xc+ r)/dc + (xc+ r)%d

Hence,

b(xc+ r)/dc − br/dc

= bxc/dc + xc%d + r%d − (xc+ r)%d

= bxc/dc + xc%d + r%d − (xc%d + r%d)%d (4.1)

From 0 ≤ xc%d < d and 0 ≤ r%d < d
we obtain 0 ≤ xc%d + r%d < 2d .
It can be divided into two cases as follows.

Case 1: 0 ≤ xc%d + r%d < d
we have xc%d +%d = (xc%d + r%d)%d
Combining (4.1), we obtain

b(xc+ r)/dc − br/dc = bxc/dc

Case 2: d ≤ xc%d + r%d < 2d
we have xc%d + r%d = 1+ (xc%d + r%d)%d
Combining (4.1), we obtain

b(xc+ r)/dc − br/dc = bxc/dc + 1

�
In protocol 2, d is public. If we can design a protocol that

can mask our data while c and d is only known to A, the
data masking protocol will be perfect. However, this is not
easy work. Some attempts [24], [25] have been made to deal
with the problem of computing E(a/b) from E(a) and E(b).
However, all of these methods are too complicated and time
consuming. If our protocol spends too much time on data
masking, our advantage in terms of efficiency will lost.

We include an example here to showwhy this data masking
technique enjoys a high level of security and accuracy. For
simplicity, we perform an arithmetic operation on fixed-point
decimal numbers in this toy example.

Suppose input data are given as x = 2871234561091231;
the low-order 8 digital numbers represent the fractional part.
We choose an 8-digit prime number d = 39999931 and a
random integer c = 8233875439. We mask x as follows and
obtain y:

y = bxc/dc = 591035712841030450

or

y = dxc/de = 591035712841030451

Let us consider security first. The CSP can see y after
decrypting E(y), and the CSP also knows divisor d ; now the
CSP wants to know x. What he can do is compute yd and
guess x based on it. However,

yd = 23641387732177031968898950

or

yd = 23641387732177032008898881

If the CSP guesses x by factorization, he needs to know the
exact xc.

xc = 23641387732177031969175409
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Actually, there are 7 or 10 different digits between yd and
xc in this example. It is difficult to guess xc based on yd .

Now, we consider the accuracy when the CSP uses y in
computation. The exact computation can be done by using
xc/d instead of y. Obviously,

|y− xc/d | = |bxc/de − xc/d | < 1

Because the low-order 8 digital numbers are the fractional
part, the difference between y and xc/d is actually less than
10−8. Obviously, we can obtain sufficient accuracy if the
length of the fractional part is large enough.

D. OUR PROTOCOL FOR DISTRIBUTED DATA
Our protocol described here is the main contribution of this
paper. The protocol comprises three phases: initialization,
aggregation and regression. Our data masking protocol (pro-
tocol 2) is used in regression phase. Finally, the Evaluator
outputs the regression model β in the clear.

In protocol 3, operator⊗ denotes the elementwise product
of two matrices or vectors.

Protocol 3 Secure Linear Regression for Distributed Data
Input:
Client k: xi, yi ( xi ∈ Rd , yi ∈ R, lk−1 < i ≤ lk ),

k = 1, 2, · · · , r
Evaluator: p, q – bit length of integral and fractional part

e – a public denominator (prime number)
CSP: pk

Output:
Evaluator: regression model β ∈ R(d+1)

1. Initialization
a. Evaluator sets (p, q) and sends it to all clients; then it

chooses a q-bit prime number e for data masking and
passes it to CSP.

b. If all data are nonnegative, each client converts their
data to integers locally. Otherwise, all clients, the
Evaluator and CSP execute protocol 1 to complete
data conversion. Finally, all xij and yi become non-
negative integers.

c. CSP generates a key pair (pk, sk) of the Paillier
encryption scheme and sends pk to all other parties.

2. Aggregation
a. Client k computes Ak = XT

kXk , bk = XT
k yk and

encrypts these data locally, then passes E(Ak ) and
E(bk ) to the Evaluator, where 1 ≤ k ≤ r .

b. Evaluator computes matrix E(A) and vector E(b):
E(A) = E(

∑r
k=1 Ak ) = ⊗rk=1E(Ak )

E(b) = E(
∑r

k=1 bk ) = ⊗
r
k=1E(bk ).

3. Regression
a. Evaluator chooses random integer vi, si, ti, w1, w2 in

(e, 210e), and obtains ui = si+ti. where 1 ≤ i ≤ d+1.
b. Evaluator (role A) and CSP (role B) execute proto-

col 2 to mask data as follows.

Parties: A B
Input 1: E(aij), uivj, e2 pk, e2

Output 1: E(buivjaij/e2e)
Input 2: E(bi), w1si, e2 pk, e2

Output 2: E(bw1sibi/e2e)
Input 3: E(bi), w2ti, e2 pk, e2

Output 3: E(bw2tibi/e2e)

Then, Evaluator sends the output 1,2,3 to CSP.
d. CSP decrypts the data received and obtains

ãij=b
uivjaij
e2
e, b̃i1=b

w1sibi
e2
e, b̃i2=b

w2tibi
e2
e

then CSP solves two equations as follows, and returns
ξ̃ , η̃ to Evaluator.

Ãξ̃ = b̃1, Ãη̃ = b̃2

where
Ã := {̃aij} ∈ R(d+1)×(d+1), b̃1 := {̃bi1} ∈ R(d+1),
b̃2 := {̃bi2} ∈ R(d+1).

e. Evaluator computes the solution β̃ as follows

β̃ = V
( ẽξ
w1
+
ẽη
w2

)
where V = diag(v1/e, v2/e, · · · , vd/e).

V. PROTOCOL CORRECTNESS AND ERROR ANALYSIS
In this section, we discuss the correctness of protocol 3 and
conduct error analysis. First, we define diagonal matrix S, T,
U, V, matrix Â, vector b̂1, b̂2 as follows

S = diag(s1/e, s2/e, · · · , sd+1/e)

T = diag(t1/e, t2/e, · · · , td+1/e)

U = S+ T = diag(u1/e, u2/e, · · · , ud+1/e)

V = diag(v1/e, v2/e, · · · , vd+1/e) (5.1)

Â = UAV, b̂1 =
w1

e
Sb, b̂2 =

w2

e
Tb (5.2)

where si, ti, ui, vi, w1, w2, and e are random integers in
protocol 3.

According to definition (5.2), the element of Â, b̂1 and b̂2
is uivjaij/e2, w1sibi/e2 and w2tibi/e2. Obviously, Â, b̂1 and
b̂2 is the accurate version of Ã, b̃1 and b̃2 in protocol 3. We
construct functions as follows

Âξ = b̂1, Âη = b̂2

Then, we use ξ and η to compute β in the same way as we
compute β̃ in protocol 3. We obtain

β = V
( eξ
w1
+
eη
w2

)
= VÂ−1

(eb̂1
w1
+
eb̂1
w2

)
= VÂ−1(Sb+ Tb)

= V(V−1A−1U−1)Ub

= A−1b
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This means β is the true solution when we ignore the
error in protocol 3. This process is just the same as what we
described in the key idea section.
Now, the problem is how do small changes to Â, b̂ affect

the solution β̃. From the classical textbook of numerical
analysis [27], a theorem can be found as follows.
Lemma 1: Given two linear systems of equations Ax = b

and (A + 1A)x̂ = b + 1b, where 1A and 1b are small
changes, let 1x ≡ x̂ − x; then, the estimation holds up as
follows

‖1x‖
‖x‖

≤
K(A)

1−K(A)‖1A‖/‖A‖

(
‖1A‖
‖A‖

+
‖1b‖
‖b‖

)
where K(A) = ‖A‖‖A−1‖ is the condition number that
measures how sensitive the linear system is to changes in A
and b. ‖·‖ is the matrix and vector norm.

Lemma 1 is used in our error analysis of protocol 3. Now,
we present our conclusion as follows.
Proposition 2 (Error Estimation): Given two linear sys-

tems of equations as

ÂV−1β =
e
w1

b̂1 +
e
w2

b̂2

ÃV−1β̃ =
e
w1

b̃1 +
e
w2

b̃2

where Ã, b̃1, and b̃2 are defined in the regression phase of
protocol 3. V, Â, b̂1, and b̂2 are defined as (5.1) and (5.2),
and e, w1, and w2 are random integers used in protocol 3.
Let ‖1β‖ = ‖β̃ − β‖, given the condition m ≥ d + 1 and∑m

i=1 yi ≥ 2q, the error caused by perturbation (ÂV−1 −
ÃV−1) and ((eb̂1/w1 + eb̂2/w2)− (ẽb1/w1 + ẽb2/w2)) can
be estimated as follows

‖1β‖

‖β‖
≤

3 ·K(A)
22q−9 −K(A)

where q is the bit length of the fractional part, d is the number
of data features, and K(A) is the condition number of the
matrix.

Proof: Obviously, β̃ is the approximate solution we
obtain in protocol 3, and β is the true solution of Aβ = b.
First, consider the error of the right-hand items. Using the

infinity-norm, we have

‖̃b1 − b̂1‖ = max
16i6d+1

∣∣∣∣w1sibi
e2
− b

w1sibi
e2
e

∣∣∣∣ < 1

‖̃b2 − b̂2‖ = max
16i6d+1

∣∣∣∣w1tibi
e2
− b

w1tibi
e2
e

∣∣∣∣ < 1

Let

ĝ =
e
w1

b̂1 +
e
w2

b̂2, g̃ =
e
w1

b̃1 +
e
w2

b̃2

In protocol 3, we have w1 > e and w2 > e. Hence,

‖1ĝ‖ = ‖̃g− ĝ‖

= ‖
e
w1

b̃1 +
e
w2

b̃2 −
e
w1

b̂1 −
e
w2

b̂2‖

≤
e
w1
‖̃b1 − b̂1‖ +

e
w2
‖̃b2 − b̂2‖

< 2 (5.3)

From the definition of b̂1, b̂2, and si > e, ti > e, we obtain

‖ĝ‖ = ‖
e
w1

b̂1 +
e
w2

b̂2‖

= ‖Sb+ Tb‖

= max
16i6d+1

∣∣∣∣ si + tie
bi

∣∣∣∣
> 2

∣∣b(d+1)∣∣ (let i = d + 1)

= 2 ·

∣∣∣∣∣
m∑
n=1

2q · yn

∣∣∣∣∣ (xn(d+1) = 2q)

> 22q+1 (5.4)

where xn(d+1) = 2q (1 ≤ n ≤ m) corresponds to 1 in primary
data.

From (5.3) and (5.4) we obtain

‖1ĝ‖
‖ĝ‖

<
1
22q

(5.5)

Second, consider the error of the coefficient matrix. For
each element of Ã− Â, we have

1âij =

∣∣∣∣buivjaije2
e −

uivjaij
e2

∣∣∣∣ < 1 (1 ≤ i, j ≤ d + 1)

and we also know vj > e; hence,

‖1(ÂV−1)‖ = ‖ÃV−1 − ÂV−1‖

= ‖(Ã− Â)V−1‖

= max
16i6d+1

d+1∑
j=1

∣∣∣∣1âij evj
∣∣∣∣

< d + 1 (5.6)

From xn(d+1) = 2q (1 ≤ n ≤ m), we obtain a(d+1)(d+1) =
22q · m. From the definition of Â, V and ui > 2e, we obtain

‖ÂV−1‖ = max
16i6d+1

d+1∑
j=1

∣∣∣∣ evj âij
∣∣∣∣

= max
16i6d+1

d+1∑
j=1

∣∣∣∣ evj uiaijvje · e

∣∣∣∣
> 2 · max

16i6d+1

d+1∑
j=1

|aij|

≥ 2 ·
d+1∑
j=1

|a(d+1)j| (let i = d + 1)

> 2 · a(d+1)(d+1) = 22q+1 · m (5.7)

From (5.6), (5.7) and m > d + 1, we obtain

‖1(ÂV−1)‖

‖ÂV−1‖
<

1
22q+1

(5.8)

According to lemma 1, (5.5), and (5.8), we obtain

‖1β‖

‖β‖
≤

K(ÂV−1)

1−K(ÂV−1)(1/22q+1)

(
1

22q+1
+

1
22q

)
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=
3 ·K(UAVV−1)

22q+1 −K(UAVV−1)

≤
3 ·K(U)K(A)

22q+1 −K(U)K(A)

=
3 · ‖U‖‖U−1‖K(A)

22q+1 − ‖U‖‖U−1‖K(A)
(5.9)

Since 2 < ui/e = (si + ti)/e < 211 and U, U−1 are
diagonal matrices. We have

‖U‖ = max
16i6d

∣∣∣ui
e

∣∣∣ < 211

‖U−1‖ = max
16i6d

∣∣∣∣ eui
∣∣∣∣ < 1

2

Combining (5.9), we obtain

‖1β‖

‖β‖
≤

3 ·K(A)
22q−9 −K(A)

�
In most cases, protocol 3 provides a solution with enough

precision. For example, suppose A is well conditioned when
K(A) < 250(≈ 1.1 · 1015). If we choose q = 40, then

‖1β‖

‖β‖
≤

3 · 250

271 − 250
≈ 1.4 · 10−6

In fact, our experiments in section VII show this is a rather
conservative estimate. This estimate shows the larger the q
we choose, the more accurate the solution we obtain.
Remark: There are two preconditions for the establishment

of proposition 2. The first one is m ≥ d + 1 and is easy
to satisfy because the number of data used in analysis is
often greater than the number of data features in practice. The
second one is

∑m
i=1 yi ≥ 2q and indicates that the sum of all

yi in the primary data is no less than 1. This is also easy to
satisfy.

VI. SECURITY ANALYSIS
Our system is secure provided all participators are honest-
but-curious. At first, all clients contribute their own data and
cannot see any intermediate result, it is impossible for clients
to learn some information about others except that which is
revealed by the final result. Therefore, we only analyze two
servers.

A. SEMI-HONEST EVALUATOR
The Evaluator only have some ciphertext, such as E(aij),
E(bi), E(buivjaij/e2e), E(bw1sibi/e2e), and E(bw2tibi/e2e).
Moreover, he also knows some relations between the plain-
texts corresponding to these ciphertexts, such as

aij · buivj/e2e ≈ buivjaij/e2e

bi · bw1si/e2e ≈ bw1sibi/e2e

The relations are unhelpful except that an Evaluator can use
them to deduce one plaintext based on knowledge of the other.
For example, if the Evaluator knows aij, he can compute

buivjaij/e2e, or vice versa (ignoring small difference). There-
fore, the essential problem is still how to crack the unrelated
ciphertext. However, the Paillier cryptosystem is semantically
secure. It is impossible for the Evaluator to gain information
about a plaintext when given only its ciphertext and public
key. Hence, the security of the Paillier cryptosystem can
guarantee the Evaluator cannot learn anything about input
data and important intermediate values.

B. SEMI-HONEST CSP
In our data masking protocol, the CSP can obtain some
results, such as aij + rij, bi + qi, where rij and qi are random
integers and used only once. Therefore, the client’s data
cannot be disclosed to the CSP in this procedure.

In the regression phase, the CSP obtains a masked matrix
Ã and right-hand-side vector b̃1, b̃2. The element of them
is buivjaij/e2e, bw1sibi/e2e, bw2tibi/e2e. Here, we ignore the
influence of operation b·e and only assess the security of mul-
tiplicative perturbation. Suppose the CSP has data uivjaij/e2,
w1sibi/e2, w2tibi/e2. If the CSP wants to guess the value
of aij and bi, he can use the final result β̃ to confirm his
conjecture. The CSP must guess the value of all aij and bi
and then compute a new model β̄; if β̄ ≈ β̃, then his guess is
likely to be right.

Because the value of random vi, si, ti, w1, and w2 are
limited to any integer between e and 210e in protocol 3, the
probability of guessing one of them correctly is 1/(1023e)
for the CSP. Let us investigate a simple case: given m plane
points (x1, y1), (x2, y2), · · · , (xm, ym) for a linear regression.
In such a case, the number of data features is d = 1 and
the dimension of Ã is 2; therefore, the CSP have two linear
system as follows.[

u1v1a11 u1v2a12
u2v1a21 u2v2m

] [
ξ̃1
ξ̃2

]
=

[
w1s1b1
w1s2b2

]
[
u1v1a11 u1v2a12
u2v1a21 u2v2m

] [
η̃1
η̃2

]
=

[
w2t1b1
w2t2b2

]
Suppose m is known to all parties. A is a symmetric matrix;
this means a12 = a21. The CSP can crack the secret as
follows.
(1) Suppose the CSP knows v1 and v2; he can computes u2

from the value of u2v2m.
(2) Then, from the value of u1v2a12/u2v1a21, the CSP

determines u1.
(3) Next, if the CSP also knows s1 and s2, he can obtain t1

and t2 because u1 = s1 + t1, u2 = s2 + t2.
(4) Finally, if the CSP also know w1 and has the final

answer β̃ from the Evaluator, he can determinew2 from
β̃ = V

(
ẽξ/w1 + ẽη/w2

)
by using v1, v2, w1 and β̃.

Therefore, there are 5 independent random variables: v1,
v2, s1, s2, and w1. The probability that the CSP can guess A
and b correctly is 1/(1023e)5. If e is a 40-bit long prime, the
odds are approximately 1/2245. For a regression analysis with
d data features, the probability that the CSP can determine
A and b is 1/(1023e)2d+3. From the above analysis, it can
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ascertained that our protocol is statistically secure by using
multiplicative perturbation. Moreover, the greater the e is, the
safer the data become.

VII. EXPERIMENT AND COMPARISON
We assess our privacy-preserving linear regression protocol
by a set of numerical experiments on some real datasets. All
experiments are performed on a Dell Mobile Workstation
M6800 with an 8-core CPU at 2.70GHz and 32 GB RAM,
running Ubuntu Linux 16.04. We implement our protocol
using C++ with the NTL library and Java on the OpenJDK
1.8 platform. The Paillier encryption scheme with a 1024-bit
modulus is adopted in our implementation.

A. DATASETS
We choose 6 datasets from the UCI repository [28] for our
experiments. These datasets are listed below.

• Auto MPG
This dataset contains 398 records about cars regard-
ing attempts to predict miles per gallon for each.
We removed the car name attribute and 6 records that
have missing values of horsepower. In the end, the
dataset has 1 target and 7 predictive attributes, and con-
tains 392 records.

• Wine Quality
It contain 4898 records of wine used for predicting
wine quality. We choose a dataset about white wine that
has 11 predictive attributes and 1 target attribute.

• Bike Sharing
This dataset contains 17379 records about bike rentals.
We remove the record index, the date, count of casual
users and count of registered users from the dataset
hour.csv. We leave 12 attributes to predict the count of
total rental bikes.

• Forest Fires
The dataset contains 517 records used in predicting the
burned area of the forest. We remove the month attribute
and alter the content of theweekday attribute from ‘mon’
to 1, ‘tue’ to 2, etc. Finally, we have 11 predictive
attributes and 1 target attribute.

• Communities and Crime
This dataset contains information from 1994 com-
munities. We remove 5 nonpredictive attributes and
use 122 attributes to predict the number of crimes
per capita for each community. All missing values are
replaced with 0s.

• YearPredictionMSD
This dataset describes 515344 songs with 90 audio fea-
tures for each one. It is used for predicting the release
year of each song. To speed up the process, only the
top 100000 records are used.

For every dataset, we add integer 1 at the end of each line
to determine the constant term of the regression equation.
We modify some datasets only for obtaining usable data for

our experiment, not for serious prediction research. Further-
more, all data has not been normalized.

B. EVALUATION OF ACCURACY
When we calculate something like â = uivjaij/e2 in proto-
col 3, we obtain ã = buivjaij/e2e instead. This procedure
causes very small calculation error. Because â and ã are
integers corresponding to fixed point numbers, |â − ã| < 1
means the real gap between these two data is less than 2−q.
This indicates that the accuracy of the datamasking procedure
depends on q. Furthermore, because q is the length of the
fractional part of the fixed-point number, it also has a great
influence on the truncation error of our system. Consequently,
the accuracy of the protocol depend on q. The larger the q is,
the more accurate the calculation is.

Let β be the model learned in the clear data and β̃ learned
in our system. We define the relative error of our system as:

Errβ̃ =
‖β̃ − β‖2

‖β‖2

Table 1 shows the accuracy of β̃ is improved with the
increasing of q. Moreover, the results also indicate there is
no obvious correlation between m and Errβ̃ , or between d
and Errβ̃ . Although the condition number K(A) is used in
evaluating the error bound in section V, there is no direct
correlation between K(A) and the accuracy of the output.
It must be pointed out that the change of q almost has no

impact on the running time of the protocol. In our experiments
listed in table 1, the running time has no identifiable differ-
ences between q = 10 and q = 50 for any dataset. In fact,
after clients encrypted a data, the corresponding cipher is
always a 1024-bit long integer, no matter what the value of
q is. Moreover, when two servers execute our protocol, they
always perform computation with encrypted data, except that
the CSP will solve two data masked linear systems. Because
the time spent on a normal multiplication or division is less
than 1% of that spent on an encryption (see table 5), our
protocol spends almost all running time on crypto operations.

C. EVALUATION OF RUNNING TIME
In this section, we focus on the time spent on online com-
putation. Because computation in the initial phase of our
protocol is mainly offline computation, we just evaluate the
time efficiency of aggregation and regression phase.

Figure 3 shows how the time spent on different phases
varies with the increasing of d . Dataset YearPredictionMSD
is used in this experiment and only the top 60000 records are
preserved. This means the number of all data m = 60000.
In addition, m is constant in this experiment. We assume all
data are divided evenly among 10 clients and all clients exe-
cute step (a) of aggregation in parallel on similar hardware.
Therefore, we recalculate the running time of aggregation as
follows: 10% of execution time on step (a) of aggregation
plus execution time on step (b) of aggregation. The result
of this experiment shows the time spent on aggregation and
regression increases at a speed of O(d2) with the increasing
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TABLE 1. Accuracy Evaluation based on q-bit length of Fractional Part.

FIGURE 3. Running time variation with increasing of d .

of d . Moreover, the running time of the regression phase
grows more quickly.

The results of another experiment are shown in figure 4.
In this experiment, bothm and d are taken as variable. We set
d to 10, 30, 50, 70, and 90, and for each value of d , we survey
the running time of the protocol (including the aggregation
and regression phase) whenm is varied from 20000 to 90000.
The results reveal that the running time of the protocol
increases with the increasing of m or d , but d has a more
obvious influence on the running time. For example, if d is
fixed at 90, the running time only rises by 30% when m runs
from 20000 to 90000. However, when m is set to 60000, the
running time rises by 700% when d increases from 30 to 90.
The reason this occurs is that except that each client costs
O(md2) arithmetic operations in step (a) of the aggregation,
m is unrelated to all other computation. Thus, our protocol is
relatively more sensitive to the variation of d .

D. COMPARISON WITH OTHER PROTOCOLS
In recent years, some protocols have been proposed to tackle
the privacy-preserving linear regression or ridge regression
on distributed data. Most of these solutions fall into two
categories: protocols that combine garble circuits and homo-
morphic encryption and protocols based on homomorphic
encryption alone.

FIGURE 4. Running time variation with increasing of m and d .

1) COMPARISON WITH NIKOLAENKO et al.’s HYBRID
PROTOCOL
In Nikolaenko et al.’s [10] protocol, garbled circuits are
used to solve a linear system. In table 2, we list some
experimental results of Nikolaenko et al.’s protocol and our
protocol running on UCI datasets. The platform descriptions
of experiments are as follows.
• Their platform: Server (CPU 1.9 GHz, 64 G RAM),
Ubuntu 12.04, JDK 1.7

• Our platform: Mobile workstation (CPU 1.9 GHz, 32 G
RAM), Ubuntu 16.4, OpenJDK 1.8

We confine our laptop to running at 1.9 GHz to make
the comparison more convincing. It clearly shows that the
protocol using garble circuits is still less efficient than that
based on homomorphic encryption alone.

2) COMPARISON WITH CHEN et al.’s PROTOCOL
Chen et al.’s [19] protocol uses Paillier’s and ElGamel’s
encryption to generate and solve linear equations in encrypted
form. Table 3 shows the comparison of experimental results.
Due to the adoption of data masking technique, our protocol
is more efficient than their protocol under the similar experi-
mental conditions.
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TABLE 2. Experimental results of Nikolaenko et al.’s and ours.

TABLE 3. Experimental results of Chen et al.’s and ours.

TABLE 4. Computational cost of the two protocol’s regression phase.

3) COMPARISON WITH GIACOMELLI et al.’s PROTOCOL
Finally, we compare our protocol with Giacomelli et al.’s [20]
protocol, which is also based on homomorphic encryption
alone. Moreover, we implement Giacomelli et al.’s proto-
col in C++ language. Therfore, the results in this section
all come from our experiment. Both of the protocols take
advantage of different data masking techniques. In the aggre-
gation phase, these two protocols adopt the same method for
horizontally partitioned data. To compare the two protocols,
we only need to focus on the regression phase.

Table 4 shows the computational cost of the two protocol’s
regression phase; the cost counts all operations of the Eval-
uator and CSP. The Enc, Dec, and Exp in table 4 represent
encryption, decryption and the modular-exponentiation oper-
ation in Paillier’s cryptosystem. The Arithmetic operations
not only include the basic arithmetic operations, but also the
modular multiplication (Mul) in Paillier’s cryptosystem.
Table 5 shows the average ratio of time spent on other

operations to that on encryption. Obviously, the cost on Arith-
metic operations is much less than that on other crypto opera-
tions. This means the running time of the protocols is mainly
determined by Enc, Dec and Exp. Among these operations,
Exp is a special one because the operation cost rises with the
increase of the exponent. When increasing the bit-length of
the exponent from 60 to 500, the value of Exp/Enc rises from
6% to 50% approximately.

TABLE 5. Ratio of other operations’ cost to encryption’s cost.

FIGURE 5. Comparison of running time between protocols.

Because Exp spends much less time than Enc or Dec, the
running time of our protocol is longer than Giacomelli et al.’s
protocol when d is small enough. However, the running time
of their protocol increases more rapidly because their proto-
col costs O(d3) Exp operations, but our protocol costs O(d2)
Exp operations (see table 4). Figure 5 shows Giacomelli et
al.’s protocol is more efficient than ours when d is less than
70, but when d is greater than 70 our protocol is better. The
top 5000 records of the YearPredictionMSD dataset are used
in this experiment, and some columns are added to the dataset
to fit the experiment. The bit-length of the exponent in theExp
operation is designated as 60. Obviously, if a larger number
is set for the exponent, the performance of our protocol can
exceed their protocol earlier.

When comparing the communication cost, only the regres-
sion phase needs to be considered because the approach
adopted for aggregation in both protocols is the same. For
the regression phase, the communication cost of Giacomelli
et al.’s protocol is d2+2d , while our protocol is 3d2+4d . The
reason for this is the linear equations need to be transmitted
only once in Giacomelli et al.’s protocol, but three times in
our protocol.

Although efficiency differences exist between Giacomelli
et al.’s protocol and ours, the difference is far smaller than that
between protocols belonging to different types. We believe
both of protocols are fit for solving the same problem in
practice.

VIII. CONCLUSION
In this paper, we propose a protocol that learns a linear regres-
sion model over distributed clients’ data without leaking any
information of the client to the service provider. Theoretical
analysis and numerical experiments have been performed
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to verify its efficiency, accuracy and security. By taking
advantage of the data masking technique, our protocol can
be more efficient than most existing protocols. By combining
the merits of homomorphic encryption and data masking,
our protocol is able to realize a high level of security and
accuracy. These advantages make our protocol ideally suited
for practical application, especially for realizing a regression
module in a privacy-preserving machine learning task.

As future work, we believe the idea about introducing
rational number data masking into encrypted data is a basic
technique, and we are interested in extending this technique
to other privacy-preserving machine learning methods.
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