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ABSTRACT A novel technique, combining the feature extraction mechanisms of a convolutional neural
network (CNN) with the classification method of a radial basis probability neural network (RBPNN),
is proposed for small sample set modeling and feature knowledge embedding in multi-channel time-varying
signal classification. This CNN-RBPNN consists of a signal input layer, signal feature parallel extraction
and integration units, and an RBPNN classifier. Each channel signal in a feature extraction unit corresponds
to a 1D CNN. The extracted features are represented as feature vectors, and these vectors constitute
a comprehensive feature matrix. The RBPNN classifier was designed using signal feature embedding
mechanism based on radial basis kernels and the property of combining pattern subclasses into pattern classes
to form complex class boundaries. A dynamic clustering algorithm was used to divide each pattern class
sample into several subclasses. Typical signal samples in each pattern subclass were designated as kernel
centers, in order to achieve signal categories features embedding. This process was also used to determine the
number of nodes in the RBPN layer. The RBPN layer outputs were selectively summed in the pattern layer
according to kernel center category, which can generate irregular class boundaries, reducing the overlap
among different pattern class boundary. The proposed CNN-RBPNN replaces the full-connection layer
and classifier unit of conventional CNN with RBPNN, which can extract and represent signals distribution
features and structural properties, implement structural and data constraints. This can reduce the structural
risks of small sample set modeling. In this study, the properties of CNN-RBPNN are analyzed and an
integrated learning algorithm is proposed. An experiment was conducted using 12-lead ECG signals in a
seven-classification in the case of small sample set. Results demonstrated that, the correct recognition rate is
5.7% higher than other methods in the experiment, the performance evaluation index also showed significant
improvement.

INDEX TERMS Time-varying signal classification, CNN feature extraction, radial basis probability
network, prior feature knowledge embedding, small sample set modelling.

I. INTRODUCTION
With the rapid development and application of intelligent
sensor and internet of things (IOT) technology, multi-channel
signal classification has become increasingly important in a
variety of fields [1]–[3]. Nonlinear time-varying signals are a
type of multi-component signal whose frequency and ampli-
tude change with time. These signals can exhibit non-linear,
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non-stationary, and non-fixed probability distributions. They
can also be characterized as multi-peak, stretched, drift-
ing, or noisy and are often highly dependent on temporal
changes. Combination process characteristics for multiple
variable signals often exhibit a high degree of complexity,
particularly in complex nonlinear dynamic systems [4], [5].
The classification and processing of such data are critical
issues in the research fields of signal analysis and artificial
intelligence [6]. However, the influence of uncertain fac-
tors, the unrepeatability of some process events in dynamic
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systems, and mutual coupling in the signal system make it
difficult to acquire a complete large-scale dataset. In addi-
tion, some events are highly rare, or sampling can be cost-
prohibitive, often leading to a reliance on small or unbalanced
sample sets for modeling and analysis [7]–[9]. Each of these
issues complicates research in complex signal systems [10].

Artificial neural networks are a common and effective
model used in signal processing and analysis. With the devel-
opment of deep learning, various neural network architec-
tures have been proposed for studying time-varying signals.
These include deep convolutional neural networks [11],
[12], automatic encoder neural networks [13], [14], recursive
networks [15], recurrent networks [16], [17], and Markov
chains [18], [19]. These algorithms can effectively imple-
ment the classification and analysis of time-varying signals
in practical settings. However, they are also unstable when
modeling small or imbalanced datasets. In these cases, clas-
sification accuracy and generalizability suffer, as the lack of
constraints for domain prior knowledge affects key model
properties [20].

Existing machine learning models for time-varying signal
analysis can often be classified as ‘end-to-end’ black box sys-
tems, which require a complete dataset to support. As such,
the ability to generalize these models to practical systems
depends primarily on the model structure, information pro-
cessing mechanism, learning strategy, and the scale and com-
pleteness of the sample set. Algorithms lacking enlighten and
restriction mechanisms for domain knowledge often exhibit
large exploration spaces and complex optimization processes.
The classification of large-scale datasets depends primarily
on the extraction, memory, and representation mechanisms
for data features. However, it is difficult to analyze and
explain deep level features based on distributed data repre-
sentations and abstract high-level synthesis mechanisms.

Convolutional neural networks are a widely used deep
learning model that offer several advantages for feature
extraction and representation. The associated convolution
operations, local connections, and weight sharing can effec-
tively reduce the complexity of a network [21]. CNNs typi-
cally use a convolution kernel matrix, adopt a step traversal
scanning strategy, and generate multiple feature surfaces for
feature extraction and representation learning. A data struc-
ture in which the feature vector is consistent with the original
signal can be maintained in the initial stage. However, with an
increase in structure depth, high-level feature extraction and
representation becomes abstract, which is not conducive to
the analysis or interpretation of signal distributions or struc-
tural feature correspondence. This increase in depth also com-
plicates the embedding of prior feature knowledge including
category information.

As such, a novel feature extraction and representation
methodology for time-varying signal classification, in which
relationships are consistent between the time sequence fea-
ture matrix arrangement order and the original multi-channel
signal, and the embedding and utilization for prior feature
knowledge, can greatly improve the ability to feature anal-

ysis, interpretation and utilization. In addition, the embed-
ding of typical feature knowledge can reduce the explo-
ration process for model structure and the iterative learning
space for model parameters, thereby increasing the stability,
generalizability, and robustness of the model. Fewer model
parameters and a stronger self-adaptive learning mechanism
could further improve the modeling ability of small sample
sets.

Huang proposed a radial basis probabilistic neural network
(RBPNN) in 1999 [22]. This model consists of a signal input
layer, a radial basis probability neuron (RBPN) hidden layer,
a pattern layer, and a classifier. The RBPNN fully considers
the staggered influence of multi-class patterns in recognition
applications. This approach forms an effective feature inter-
face and offers the advantages of fewer model parameters
and lower computational complexity [23]. The primary infor-
mation processing unit of an RBPNN is the RBPN, which
adopts Gaussian radial basis kernel functions. The adjustable
variables in this model are statistical parameters, such as
the radial basis kernel center and variance. The radial basis
kernel transform calculates the distance between input signals
and kernel centers, which is essentially a measure of signal
feature similarity. This process also provides an interface
for the embedding of prior feature knowledge and an RBPN
probability output.

In this study, CNN feature extraction and representation
mechanisms are combined with the differentiation capabil-
ities of RBPNN pattern class features and the embedding
mechanisms of category feature knowledge. A multi-channel
time-varying signal classification model CNN-RBPNN is
established usingmodularization and layer-by-layer stacking.
Input and feature extraction for multi-channel signals are
designed as a parallel structure, with each channel input
signal corresponding to a 1D CNN. Features extracted before
CNN activation are used as single-channel signal features,
which can more accurately represent signal shape distribu-
tions and maintain timing relationships. A regular uniform
dimensional feature vector is formed after processing with
the batch normalization (BN) layer. A comprehensive feature
matrix can then be generated with a data structure corre-
spondence relationship between multi-channel time-varying
signals. The RBPNN was used in the design of classifiers
based on a signal synthesis feature matrix, in which RBPN
kernel centers directly affected RBPNN properties.

In the proposed technique, a dynamic clustering algo-
rithm was used to divide each pattern into pattern subclasses
with more similar characteristics. Typical samples with cat-
egory feature marks in each pattern subclass could then be
determined. After feature extraction and representation by
CNN, as the kernel centers for each RBPN with a dynamic
time-warping (DTW) algorithm being used to measure the
similarity between time-varying signal distribution features.
An exponential sigmoid function with probability member-
ship was chosen as the RBPN action function, which was
capable of determining RBPN probability outputs. The out-
put of the radial basis layer was selectively summed in the
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RBPNN pattern layer, according to RBPN kernel center cat-
egory labels. That is, the membership probability of signal to
pattern subclass is integrated into the membership probabil-
ity to pattern class. In addition, pattern subclass boundaries
were combined into irregular pattern class boundaries, which
improved signal pattern feature discrimination. The Softmax
classifier uses the output of the pattern layer as input, based on
the maximum probability membership principle, to achieve
classification of multi-channel time-varying signals.

The proposed CNN-RBPNN can extract single-channel
distribution features and characterize multi-channel signal
combination relationships. It can also embed typical category
feature knowledge, represent and maintain the diversity of
modal features, strengthen the role of signature categories in
signal classification, and overcome the limitations of existing
neural networks. This is primarily accomplished by form-
ing complex irregular class boundaries, as opposed to con-
ventional convex decision regions, thereby increasing the
accuracy of classification and category feature identification.
In addition, the embedding of prior pattern subclass fea-
ture knowledge imposes structural and data constraints in
the RBPNN, which simplifies model structure and reduces
the requirements for sample set completeness. This in turn
decreases the required number of learning iterations and com-
putational complexity for the modeling and analysis of small
sample sets.

The diagnosis of cardiovascular disease using ECG signals
is a typical multi-channel classification problem [24], [25].
Some diseases are not common in the clinic, which leads
to the acquisition of fewer samples. ECG signals can also
be characterized by multi-peak, irregular period, and drift
stretching data, which complicates their structural properties.
As a result, existing classification models for long-duration
multi-beat ECG signals suffer from low accuracy and poor
adaptability in distinguishing signal characteristics for small
sample sets [26]. In this study, a CNN-RBPNN was used to
conduct a classified diagnostic experiment with long 12-lead
ECG signals consisting of 7 disease types, to verify the
feasibility and effectiveness of the proposed model.

The remainder of this paper is organized as follows. After
discussing the challenges of time-varying signal classifica-
tion and the limitations of existing neural networks, a novel
CNN-RBPNN classification model is developed and ana-
lyzed in Section 2. A comprehensive learning algorithm for
the CNN-RBPNN is proposed in Section 3. A series of ECG
signal classification experiments are then performed and the
results are analyzed in Section 4. Finally, the study is sum-
marized and the advantages and limitations of the proposed
methodology are discussed in Section 5.

II. THE CNN-RBPNN MODEL
In this section, CNN-based time-varying signal feature
extraction is combined with the classification mechanism of
an RBPNN to develop the novel CNN-RBPNN classification
model, which can embed prior diversity feature knowledge
and classify multi-channel time-varying signals.

FIGURE 1. The parallel CNN model for multi-channel time-varying signal
feature extraction.

A. THE PARALLEL EXTRACTION OF MULTI-CHANNEL
SIGNAL FEATURES WITH A 1D CNN
A feature extraction and representation model, based on a
parallel one-dimensional (1D) CNN structure, was developed
for multi-channel time-varying signals. The associated model
architecture and information workflow are shown in Fig. 1,
where x1(t), x2(t), · · · , xn(t) represent multi-channel time-
varying input signals on the process interval [0,T ]. In this
expression, each xi(t)(i = 1, 2, · · · , n) corresponds to a 1D
convolutional network (CNNi), composed of several alter-
nating convolution and pooling layers. After the batch nor-
malization layer processing, normalized eigenvectors were
established with unified dimensions. On this basis, the signal
eigenvectors in each channel were integrated into a synthe-
sis eigenmatrix, which exhibited topological correspondence
with multi-channel input signals. This matrix can simulta-
neously represent the distribution characteristics of single-
channel signals and the structural characteristics of multi-
channel signals. The full connection layer and classifier were
removed from the 1D CNN and the extracted features were
used prior to activation, forming a 1D convolutional neural
network CNNi(i = 1, 2, · · · , n) for single-channel signal
feature extraction.

This structure and the relevant parameter settings are
shown in Fig. 2, where the convolution and pooling lay-
ers in each CNNi(i = 1, 2, · · · , n) are alternately stacked
and connected. The convolution layer can be described
as C (i)

j

(
P(i)j @

(
l(i)j × 1, s(i)j

))
, i = 1, 2, · · · , n; j =

1, 2, · · · , h. The pooling layer can be represented by
S(i)j

(
P(i)j @

(
l(i)j × 1, s(i)j

))
. Here,P(i)j is the number of feature

planes in the convolution layer C (i)
j , l(i)j is the width of the

convolution kernel, w(i,p)
j =

(
w(i,p)
j1 ,w(i,p)

j2 , · · · ,w(i,p)
jlj

)
is a

1D convolutional kernel parameter corresponding to the pth

feature plane, and s(i)j is the step length. The features extracted
in each unit prior to activation were used as signal features.
The activation functions in the convolution and pooling layers
of the 1D CNN were then assigned as identity functions.

1) THE CONVOLUTION LAYER
The convolution layer is based on the original signal or the
previous layer’s feature graph. Convolution operations are
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FIGURE 2. Structural and parameter settings for the one-dimensional CNN.

conducted using a learnable 1D convolution kernel and can
be expressed mathematically as [27]:

y(t) =
m∑
i=1

x (t + i− 1)w(i), (1)

where w(i)(i = 1, 2, · · · ,m) are convolution kernel param-
eters, m is the width of the convolution kernel, t =
1, 2, · · · ,L − m + 1, and L is the length of the input signal
(L > m).

Output feature graphs for subsequent layers are obtained
using 1D convolutions. These graphs can be represented by:

H l
j =

k∑
i=1

H l−1
i ×W (l)

ij + b
l
j, (2)

where H l
j is the j

th feature graph in the l th convolution layer,

W (l)
ij represents a weighting matrix for the ith graph in the

(l−1)th layer to the jth graph in the l th layer, and ‘‘×′′ indicates
convolution. The term H (l−1)

i represents the ith graph in the
(l − 1)th layer, i, j are the input and output indices, and blj
represents an offset corresponding to the output feature graph
in the l th layer.

2) THE POOLING OPERATION LAYER
The pooling layer down-samples the feature graph according
to specified pooling rules. The number of input and out-
put feature graphs remain the same, but the dimensions are
reduced. The generating formula for H l

j , the j
th feature graph

in the l th pooling layer, is given by [28]:

H l
j = β

l
j pooling

(
H l−1
i

)
+ blj, (3)

where pooling(·) represents the pooling function. Each output
feature graph corresponds to a multiplicative bias β lj and an
additive bias blj .

3) THE SYNTHESIS FEATURE MATRIX FOR MULTI-CHANNEL
SIGNALS
It is evident from Fig. 2 that each single-channel signal passes
through multiple alternating convolution and pooling layers.
The signal is then regularized in the BN layer to form feature
vectors with the same dimensions. As demonstrated by the
structure of Fig. 1, feature vectors in each channel signal were

FIGURE 3. The RBPNN model.

integrated to form a comprehensive feature matrix of multi-
channel signals.

In this study, time-varying signal features were extracted
by the 1D CNN without the use of a classifier and full
connection layer. A synthesis feature matrix was then gener-
ated, which is represented by convolution kernel and pooling
parameters. The unique properties of these convolution and
pooling operations, as well as the use of feature information
prior to activation, result in a consistent topological corre-
spondence between the comprehensive feature matrix and
the original multi-channel signal. In addition, bias settings
can reduce the influence of time-varying signal drift and
scaling, producing more accurate distribution characteristics
for single-channel signals and structural characteristics for
multi-channel signals.

B. A RADIAL BASIS PROBABILISTIC NEURAL NETWORK
The RBPNN is a classification model based on Bayes deci-
sion theory, which offers high learning efficiency and dis-
tinguishing signals features ability [29], [30]. This RBPNN
is composed of an input layer, a kernel transformation layer
based on radial basis probability neurons, a pattern layer,
and a Softmax classifier. This structure is shown in Fig. 3,
where x1, x2, · · · , xn are input signals in the RBPNN,K (·) is a
radial basis probabilistic kernel function satisfying the Parzen
window distribution, Mk is a pattern unit, k = 1, 2, · · · ,K ,
K is the number of signal sample set pattern classes, and mk
is the number of typical feature signals for the pattern class k .
In this study, each typical feature signal was used as an RBPN
kernel center.
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As seen in Fig. 3, the relationship between the input and
output in each RBPNN layer can be described as follows:

(1) The input layer: an n-dimensional signal x =

(x1, x2, · · · , xn) is input to the network, xi ∈ R.
(2) The kernel transformation layer: the signal is received

and fully connected to each node in the input layer. The output
corresponding to the jth kernel function unit can be expressed
as:

uj = exp
(
‖x − zj‖F − 1

σ 2

)
, j = 1, 2, · · · ,m, (4)

where zj(j = 1, 2, · · · ,m) are kernel centers,m is the number
of radial basis nodes, ‖ · ‖F is the distance norm, and K (·) is
an exponential Gaussian function.

(3) The pattern layer: the RBPN layer output was selec-
tively summed according the class labels for each RBPN
kernel center. The output of the pattern layer is given by:

qk =
∑
j∈�k

uj, (5)

where k = 1, 2, · · · ,K and �k is a set of sequence numbers
for hidden layer nodes associated with the k th pattern class.
(4) The Softmax classifier [31]: the output of the pattern

layer was used as subsequent input. The probability of clas-
sifying signal samples into the k th class is given by:

p
(
y = k|q(i); θ

)
=

eθ
T
l ·q

(i)∑K
l=1 e

θTl ·qk
, (6)

where q(i) =
(
q(i)1 , q

(i)
2 , · · · , q

(i)
K

)
are the outputs of the

pattern layer corresponding to the ith sample input, θ =
(θ1, θ2, · · · , θK ) and θl = (v1l, v2l, · · · , vKl) are classifier
parameters, l = 1, 2, · · · ,K , and vkl is the connection weight
from the k th node of the pattern layer to the l th Softmax
function node.

RBPNN classification results, based on the principle of
maximum probability output, can then be expressed as:

y = argmax p
(
y = k|q(i); θ

)
. (7)

C. THE CNN-RBPNN MODEL
The CNN-RBPNN established in this paper for multi-channel
time-varying signal classification is composed of a 1D CNN,
single-channel parallel extraction units, multi-channel inte-
gration units (for signal features), and an RBPNN clas-
sifier. This structure is shown in Fig. 4, from which the
CNN-RBPNN information processing workflow and corre-
spondence between input and output in each unit can be
established.

1) FEATURE EXTRACTION AND PARAMETER
REPRESENTATION FOR INPUT SIGNALS
(1) Convolution layer feature extraction and representation
The 1D convolutional kernel corresponding to the pth fea-

ture plane in the ith convolution layer can be represented

by w(p)
i =

(
w(p)
i1 ,w

(p)
i2 , · · · ,w

(p)
ili ,

)
. Here, Ci is the ith con-

volution layer, Pi is the total number of feature planes of
Ci. li is the width of the convolution kernel, the convolution
step size is si. The corresponding convolution operation is
defined in equation (1). Features extracted in the ith con-
volution layer can be represented by a vector containing a
convolution kernel parameter set, expressed as:WCi = [W 1

∈

Rp
(Ci)
1 @li×1, · · · ,WPi ∈ Rp

(Ci)
Pi

@lpi×1].
If the sampling time and density are the same for each

signal sample in the training set, the length of each channel
time series will also be the same. Features extracted by the 1D
CNN will then exhibit the same structure and the eigenvector
dimensions of each sample signal will be the same.

(2) Pooling layer feature extraction and representation
The pooling layer receives feature information output from

the previous convolution layer, which has the same number
of feature planes. In the following expressions, the pooling
kernel width is represented by rj, the length of the step is s′j,
and the bias is indicated by aj =

(
βj, bj

)
. After the pooling

operation described by equation (3), features extracted from
the jth pooling layer Sj can be represented by vectors with a

bias parameter set: a = [a1 ∈ Rp
Si
p1 , · · · , apj ∈ Rp

Si
pi ].

(3) The representation of features extracted by a CNN with
parallel structure

Each single-channel input signal corresponded to a 1D
CNN, from which features were extracted. The feature vector
of unified dimensions was formed. Kernel parameters for
convolution operators in each layer of the convolution net-
work were uniformly recorded as W = [W 1,W 2, · · · ,W h].
Similarly, bias parameters for pooling operations were uni-
formly recorded as a = [a1, a2, · · · , ah]. Feature vectors
extracted by this parallel structure can then be expressed as:

H = ϕ (x(t),W , a) , (8)

where x(t) ∈ RL is the single-channel time-varying input
signal, L is the length of time-varying signal samples, H is
the feature vector extracted by the convolution network, ϕ
is a composite feature extraction operation, W = [W 1

∈

Rp1@l1×1,W 2
∈ Rp2@l2×1, · · · ,W h1 ∈ Rph1@lh1×1] is a

1D convolution kernel parameter set containing convolution
layers, and a = [a1 ∈ Rs1 , a2 ∈ Rs2 , · · · , ah2 ∈ Rsh2 ] is the
parameter set containing h2 pooling layers.
(4) BN normalization processing [32]
In the next step, x ∈ RN×C×L represents an input batch

containingN signals, whereC is the number of channels, L is
the signal length, represents the (tkm)th element in the signal
set, m is the temporal dimension, k is the input feature chan-
nel, and t is the index for the batch signal. The regularization
process can then be expressed as:

ytkm =
xtkm − utk√
σ 2
tk + ε

, (9)

where ε is a variable parameter, utk = 1
L

∑L
m=1 xtkm, and

σ 2
tk =

1
L

∑L
m=1 (xtkm − utk)

2.
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FIGURE 4. The CNN-RBPNN model.

2) INTEGRATION OF MULTI-CHANNEL SIGNAL FEATURES
The single-channel signal eigenvectors extracted by the
multi-layer convolution and pooling operations were inte-
grated and arranged according to the channel and time
sequence of the input signal. The resulting integrated feature
matrix is given by:

h11 h12 · · · h1L
h21 h22 · · · h2L
· · · · · · · · · · · ·

hn1 hn2 · · · hnL

. (10)

This comprehensive feature matrix for multi-channel
signals achieves topological correspondence with single-
channel signals in each row. As a result, feature combination
relationships and overall structural features can be expressed
for multi-channel signal. Spatial and temporal feature fusion
can then be achieved.

3) RBPNN CLASSIFICATION USING A COMPREHENSIVE
FEATURE MATRIX
A DTW-DCM algorithm, based on the combination of
dynamic time warping (DTW) [33], [34] and dynamic C-
means clustering (DCM) [35], [36] was established for the
purpose of maintaining the diversity of pattern class features.
This clustering process divided the samples in each pattern
class into several pattern subclasses with more similar char-
acteristics. Typical signal samples in the pattern subclasses
were used as the kernel centers for each radial basis, to embed
diverse signal class features.

The primary RBPNN information-processing unit is the
radial basis probability neuron (RBPN). A comprehensive
feature matrix of multi-channel signals was used as input to
the RBPN. The DTW algorithmwas then used to measure the
similarity between the input signal’s comprehensive feature
matrix and the RBPN kernel’s central feature matrix. The
output of RBPN is activated by the action function with
probability significance. The outputs of RBPN layer were
then selectively summed in the pattern layer, and the multi-

channel time-varying signals are classified by the Softmax
classifier.

The division of the pattern subclasses and the radial basis
kernel center are determined as follows.

The training set consisted of K pattern classes Ck (k =
1, 2, · · · ,K ), each containingmk typical sample signals. The
feature matrix extracted using the CNN was then recorded as
Zkl(l = 1, 2, · · · ,mk ) and the number of RBPN hidden layer
nodes is given by m = m1 + m2 + · · · + mK .
The radial basis kernel centers can be determined by the

following two techniques. (1) Experts select typical signal
samples in each pattern class and extract its characteristic
matrix using the CNN. (2) The DTW algorithm is used to
measure the distance between signal samples in each pattern
class subset. The dynamic C-means clustering algorithm is
then used to divide the sample subset and identify the cluster
center, which functions as the radial basis kernel center,
extracting its feature matrix with the CNN.

The feature matrix for m typical samples selected from the
training set was arranged in order asZ11, · · · ,Z1m1 ,Z21, · · · ,Z2m1 , · · · ,ZK1, · · · ,ZKmK .
The first subscript of Zkl(l = 1, 2, · · · ,mk ; k = 1, 2, · · · ,K )
represents the signal sample category and the second sub-
script represents the serial number of the jth typical sample
feature matrix in the ith pattern class. The Zkl term was used
as the kernel center for each node in the radial basis function
layer sequentially. Selective summation of radial basis output
to the pattern layer nodes only needs to be conducted using
the class labels for k in Zkl . The output unit of the RBPNN
is a Softmax classifier, which accepts output from the pattern
layer as input and is calculated using equations (6) and (7).
Multi-channel signal classification results can then be deter-
mined using the principle of maximum probability output.

In this study, a CNN was used to extract multi-channel
time-varying signal features, which preserve the topologi-
cal correspondence between the feature matrix and origi-
nal signal, reducing the impact of signal drift and scaling.
The RBPNN classifier can reduce the effects of interleaving
between multi-class pattern features, forming an effective
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boundary between each pattern class. This facilitates the
embedding of prior feature knowledge and reduces both the
structural risk and requirements for sample set completeness.
As such, the algorithm is suitable for small sample set model-
ing as it maintains the robustness and generalizability of the
model.

III. THE CNN-RBPNN LEARNING ALGORITHM
CNN-RBPNN training was divided into the following stages.
(1) A parallel feature extraction algorithm, based on a 1D
CNN, was designed for multi-channel signals. The associated
matrix representation was based on convolution kernel and
pool bias parameters. (2) Typical samples and their com-
prehensive feature matrix were determined for each pattern
class in the sample set using expert selection or a dynamic
clustering algorithm. (3) A similarity measurement metric,
based on DTW, was implemented for the feature matrix. (4)
CNN-RBPNN information unit parameters were normalized
and the cross entropy was used to construct an objective
function. (5) Optimal CNN-RBPNN model parameters were
identified.

A. SIGNAL FEATURE SIMILARITY MEASUREMENTS BASED
ON DTW
Dynamic time warping (DTW) is a nonlinear integration
algorithm, based on dynamic programming, which combines
distance measurements with time warping [33]. This tech-
nique is insensitive to the delay and compression of a time
series and was used to find an optimal time warping function
M = ∅(N ), which non-linearly maps the temporal axis
of time-varying signals to the temporal axis of a reference
template. This function satisfies:

D = min
N∑
n=1

d{T (n),R[∅(n)]}, (11)

where the test template includes an N -frame feature vector,
the reference template includes an M -frame feature vector,
and d{T (n),R[∅(n)]} is the distance between the nth frame
feature vector T (n) in the test template and the mth frame
feature vector R(m) in the reference template. The term D
is a warping function representing the minimum cumulative
distance for each frame of the test and reference templates
under optimal time warping. Smaller values indicate higher
similarity between two signal distribution features.

In this study, the DTW algorithm was applied to simi-
larity calculations for the original signal and signal feature
matrix. This similarity was calculated between synthetic fea-
ture matrices for multi-channel signals, as the rows of these
matrices represent distribution characteristics for single chan-
nel signals. DTW was also used to determine the difference
distance dij for channel distribution features corresponding
to the two matrices. The similarity between signal features
was then calculated as rij = 1/(1 + dij) and the similarity
between characteristic matrices for multi-channel signals was

determined as r = 1
n

∑n
l=1 r

(l)
ij , here, l is the number of rows

in the matrix.

B. DYNAMIC C-MEANS CLUSTERING
The signal feature matrix model established in this paper
includes a convolution kernel parameters and pooling bias.
The original time-varying signal was used to measure the dis-
tance between signals, based on the DTW algorithm. On this
basis, a dynamic C-means clustering approach [35] was used
to divide pattern subsets in the pattern class and determine
typical samples exhibiting the signature distribution char-
acteristics. In practical applications, it can be difficult to
determine the number of clusters in advance and cluster-
ing can be sensitive to initial values. As such, a dynamic
C-means (DCM) clustering algorithm is established in this
study. Varying cluster numbers were used to evaluate the
clustering results corresponding to specific parameter values,
by calculating the degrees of coupling and separation between
signal samples [36], selecting the best clustering result, and
identifying the optimal clustering number. The centers of
each optimal cluster were selected as typical signals for the
sample set.

C. THE CONSTRUCTION OF A CROSS-ENTROPY
OBJECTIVE FUNCTION
The CNN-RBPNN included parameters for the convolu-
tion kernel W , pooling layer bias b, radial basis kernel
smoothing σ = (σ1, σ2, · · · , σm), and connection weights
V = (v1, v2, · · · , vK ) between the pattern layer and
the Softmax classifier, Softmax classifier parameters θ =
(θ1, θ2, · · · , θK ) and θl = (θ1l, θ2l, · · · , θKl), where (l =
1, 2, · · · ,K ).

Cross-entropy [37] was used to construct an objective func-
tion for the training sample set as follows:

min
W ,b;θ

J (W , b;V ; σ, θ)

=
1
NTR

NTR∑
n=1

K∑
k=1

δ
(
yTRn = k

)
· log

(
Y TRn (k)

)
+ λ1R(W )+λ2R(b)+λ3R(σ )+λ4R(V )+λ5R(θ ), (12)

The last five terms in this expression are regularization terms
and λi(i = 1, 2, · · · , 5) is the associated coefficient. These
can be expressed as:

Y TRn (k) = softmax
(
XTRn , θ

)
= softmax

(
ϕ2
(
ϕ1
(
xTRn ;W , b

)
,V , σ

)
, θ
)

R(W ) =
∑P

l=1
‖W l
‖
2
F

R(b) =
∑P

l=1
‖bl‖2F

R(σ ) =
∑m

l=1
‖σ l‖2F

R(V ) =
∑P

l=1
‖V l
‖
2
F

R(θ ) =
∑K

k=1
‖θk‖

2
F .

(13)
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D. THE CNN-RBPNN TRAINING ALGORITHM
The implementation process for the comprehensive CNN-
RBPNN training algorithm can be described as follows.

Step 1. A Gaussian radial basis function was selected
and the kernel centers were determined using the algorithm
presented in Section 3.2.

Step 2. The squared sum of the mean square deviations was
determined for the pattern subclass samples and the cluster
centers, and an initial value of σmk defined as:

σmk =

 1
Kmk

∑
i∈�mk

∥∥ximk (t)− zmk (t)∥∥DTW
 1

2

, (14)

where Kmk is the number of signal samples in the mthk cluster
of the k th pattern class, zmk (t) represents cluster centers, �mk
is the sequence number set for samples contained in the
pattern subclass, and ‖ · ‖DTW is the distance norm based on
the DTW algorithm.

Step 3. According to the cross-entropy objective function,
gradient descent algorithm is adopted. The terms V , σ and
θ in the equation (15) belong to a classifier unit. A previ-
ous hierarchical connection structure was adopted, which is
consistent with derivatives in the feedforward network. The
iterative update formula for CNN-RBPNNmodel parameters
is given by:

W (k)
= W (k−1)

− α
∂J (W , b,V , σ, θ )

∂W
|W=W (k−1)

b(k) = b(k−1) − α
∂J (W , b,V , σ, θ )

∂b
|b=b(k−1)

σ (k)
= σ (k−1)

− α
∂J (W , b,V , σ, θ )

∂σ
|σ=σ (k−1)

V (k)
= V (k−1)

− α
∂J (W , b,V , σ, θ )

∂V
|V=V (k−1)

θ (k) = θ (k−1) − α
∂J (W , b,V , σ, θ )

∂θ
|θ=θ (k−1) .

(15)

where α is learning efficiency. W (k) is the updated value of
convolutional layers parametermatrix of CNN in the k th itera-
tion. b(k),V (k), σ (k), θ (k) are the update values of respectively
bias vector in the pool layer, the connection weight vector
from RBFNN pattern layer to Softmax classifier, the RBFN
kernel center smoothing parameter vector and Softmax clas-
sifier parameter vector in the k th iteration.
Step 4. The error back propagation (BP) algorithm was

used to fine-tune RBPPNN parameters in the training set,
including (X1(t), y(1)), (X2(t), y(2)), · · · , (XN (t), y(N )).

IV. APPLICATION TO THE CLASSIFICATION OF 12-LEAD
ECG SIGNALS
A. EXPERIMENTAL DATA
ECG signals represent changes in the electrical potential
of the human heart. These multi-peak data are periodic,
non-stationary, and include significant background noise.
Various cardiovascular diseases exhibit different signal dis-
tribution characteristics. The data used in this experiment

TABLE 1. The experimental sample data distribution.

were 12-lead ECG signal samples from the Chinese Car-
diovascular Disease Database (CCDD) [38]. The sampling
frequency was 500 Hz and each recording time was more
than 10 seconds, including nine heartbeats. These samples
included labeled heartbeat divisions with a diagnosis marked
by medical experts. Seven disease types were included and
the training set was composed of 4332 samples. A time
series of 2520 sampling points in 12 channels was formed
using Nyquist ECG sampling theorem [39]. This sample set
was relatively small, due to the complexity of ECG signal
characteristics. The disease names, sample distributions, and
category codes are shown in Table 1.

The data were normalized, to compensate for differing
dimensions and large variability in signal magnitude, using
the following formula:

x ′(t) = x(t)−min x(t)/max x(t)−min x(t), (16)

wheremin x(t) andmax x(t) represent theminimum andmax-
imum values of each ECG lead on the measurement interval,
respectively.

B. THE CNN-RBPNN MODEL FOR ECG SIGNAL
CLASSIFICATION
The CNN-RBPNN model structure and parameters were
established for 12-lead ECG signal classification as follows.
The 1D CNN consisted of two convolution layers, two pool-
ing layers, and one BN layer. The number of feature planes in
the convolution layers were set to 8 and 4, respectively. The
convolution kernel width and step size were set to 7 and 3,
respectively. The pooling layers included amaximum pooling
operation with a step size of 4. After BN layer processing,
a feature vector was produced with a dimension of 568. The
feature fusion layer integrated signal vectors in each channel
to form a multi-channel comprehensive feature matrix with
dimensions of 12× 568.

The DTW-DCM clustering algorithm was used to cluster
each sample subset which consisting of 7 disease types, and a
total of 32 pattern subclasses are divided. The centers of each
pattern subclass were used as typical characteristic signal
samples. The CNN module included 12 input nodes, which
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TABLE 2. Experimental results for the proposed model.

realized the input of 12-lead ECG signal and the output was
the feature matrix with dimensions of 12×568. The RBPNN
module included 12 input layer nodes, each of which was a
single-channel signal feature vector. The number of nodes in
the RBPN and pattern layers were 132 and 7, respectively.
The Softmax classifier included 7 input and 7 output nodes.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) EXPERIMENTAL CONFIGURATION
Training set samples were randomly divided into two groups
according to disease proportions. One group of 2888 samples
constituted the training set and the other group of 1444 sam-
ples served as the test set. The learning algorithm described in
Section 3 was then used to determine CNN-RBPNN param-
eters. The experiment was performed using an NVIDIA
TITAN X GPU with a core frequency of 1418MHz. Training
error accuracy was set to 0.05, the maximum number of
iterations was 10,000, and the learning efficiency was 0.45.
Once training was complete, test set samples were classified
into specific categories. Identification results for 7 disease
types and various evaluation indicators are shown in Table 2.

As shown in table 2, it has achieved good classification
results in normal, atrial fibrillation, atrial premature beats,
and episodic premature beats. The performance evaluation
indicators of frequent premature beats and atrial tachycardia
are relatively low. This is due to the small sample number of
these two diseases and the similar distribution characteristics
of these ECG signals. Although the sample number of atrial
fibrillation with rapid ventricular rate is also small, the distri-
bution characteristics are different from other diseases, and
good results have also been obtained.

Comprehensive analysis shows that the proposed technique
achieved good result in the case of small sample set modeling.
Due to a 1D parallel CNN feature extraction technique was
used to generate a comprehensive feature matrix, which could
simultaneously represent the distribution characteristics of
single-lead signals and the structural characteristics of multi-
lead signals. Typical signal features from each pattern class
were embedded in the model, structural and data constraints
were implemented, the diversity of pattern features wasmain-
tained, and the requirements for sample set completeness

TABLE 3. ECG signal classification results for the comparative models.

were reduced. As a result, the proposed algorithm has better
stability and robustness for small and imbalanced sample sets.

2) COMPARATIVE ANALYSIS
A series of comparative experiments were conducted to
assess conventional models in the classification of multi-
channel process signals. This included a multi-channel con-
volutional network (MC-DCNN) [40], an LSTM + RF net-
work combining LSTM and random forest [41], and a GRU-
RNN network [3]. These three deep neural network mod-
els, combined with the methodology proposed in this study,
comprised the four algorithms used for comparative disease
classification. The same training and test sample sets were
used in each case.

The MC-DCNN model architecture can be described as
I-C1(Size)-S1-C2(Size)-S2-H-O, where ‘Size’ denotes the
kernel size, C1 and C2 represent the numbers of filters, and
S1 and S2 denote subsampling factors. The I, H, and O terms
respectively indicate the number of input layers, units in the
hidden layer, and MLP output layers. Comparative analysis
determined an optimal architecture of 12-8(5)-2-4(5)-2-440-
7. A series model of two LSTM networks was constructed
with 3 hidden layers in each LSTM. A random forest clas-
sifier was also established with 160 trees. The GRU-RNN
hidden layer consisted of 5 GRU stacks and included a Soft-
max classifier. An experimental 4-fold crossover scheme was
implemented, in which the sample set was randomly divided
into 4 groups according to the proportion of disease types,
with 1083 samples in each group. Three of these groups were
combined to form the training set and the remaining group
was used as the test set in each of the 4 experiments. The
average of each evaluation index across four experiments was
used as a comparison metric, as shown in Table 3.

It is evident in this table that the proposed model achieved
the best results among the algorithms tested. This is because
the small sample set modeling used in the experiment. The
complexity and feature diversity of 12-lead ECG signals
makes it difficult to acquire a complete sample set. However,
in the CNN feature extraction step, the included comprehen-
sive feature matrix maintains distribution characteristics of
single-lead signal and structural information for the 12-lead
signals. In addition, the RBPNN classifier embeds typical
signal feature knowledge for pattern classes. Complex clas-
sification boundaries are formed in the process of combining
pattern subclasses into classes, which reduces the influence
of incomplete sample sets. These properties improves the
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TABLE 4. The 7-class confusion matrix for the proposed technique.

TABLE 5. The 7-class confusion matrix for DC-CNN.

classification accuracy of the proposed technique. In contrast,
the three deep learning algorithms are all ‘end-to-end’ models
that learn from a sample set and lack the inspiration or con-
straints of knowledge embedding. In the case of incomplete
small sample sets, the corresponding model structure and
parameter selection exhibit high degrees of freedom, which
are prone to overfitting, resulting in poor generalizability.

The DC-CNN and the proposed technique in this study
were used to calculate a confusion matrix for seven clas-
sification results in the test set [42], the results of which
are shown in Tables 4 and 5. It is evident from these data
that the algorithm proposed in this study has significantly
improved the differentiation of samples with similar distri-
bution characteristics. Especially for frequent premature beat
and atrial tachycardia, the correct recognition rate increased
by 14.12% and 25.78% respectively. This is because the
proposed model is superior to DC-CNN in terms of feature
knowledge embedding, feature extraction, an ability to char-
acterize combinational relationships, memory capabilities for
multi-modal signal features and the generating complex clas-
sification interfaces. As such, the methodology developed in
this paper offers superior accuracy and robustness for small
and imbalanced sample sets.

V. CONCLUSION
In this study, a multi-channel time-varying signal classi-
fication model combining CNN and RBPNN information
processing mechanisms was developed for small sample set
modeling and feature knowledge embedding. The proposed
method can extract and represent the comprehensive features
of multi-channel signals, has the advantages of embedding

the diverse signal features knowledge of each pattern class in
model, and combined multiple pattern subclass to form com-
plex boundaries of pattern classes. It is suitable in mechanism
to the case of small sample set modeling, the experiment also
achieved good results. In the proposed technique, the multi-
channel signal feature extraction and representation learning
method based on CNN was mature. However, the feature
identification and classification ability of the model mainly
depends on the pattern class typical feature signals set gen-
erated by each pattern class through clustering algorithm.
Therefore, for different signal types and distribution charac-
teristics, it is an important work of constructing an appro-
priate clustering algorithm and selecting the typical feature
signals in the pattern classes, for purpose to maintain the
completeness of the signal feature set, which will be further
study in the next stage.

REFERENCES
[1] H.-M. Shim and S. Lee, ‘‘Multi-channel electromyography pattern clas-

sification using deep belief networks for enhanced user experience,’’
J. Central South Univ., vol. 22, no. 5, pp. 1801–1808, May 2015.

[2] V. Chandran, ‘‘Time-varying bispectral analysis of visually evoked multi-
channel EEG,’’ EURASIP J. Adv. Signal Process., vol. 2012, no. 1, p. 140,
Dec. 2012.

[3] D. Rajan and J. J. Thiagarajan, ‘‘A generative modeling approach to limited
channel ECG classification,’’ in Proc. 40th Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. (EMBC), Jul. 2018, pp. 2571–2574.

[4] J. Gao, Y. L. Murphey, and H. Zhu, ‘‘Multivariate time series prediction
of lane changing behavior using deep neural network,’’ Int. J. Speech
Technol., vol. 48, no. 10, pp. 3523–3537, Oct. 2018.

[5] M. Lee, ‘‘Methods and apparatus for identifying audio/video content using
temporal signal characteristics,’’ U.S. Patent 7,650,616, Jan. 19, 2010.

[6] A. Gacek and W. Pedrycz, ECG Signal Processing, Classification and
Interpretation: A Comprehensive Framework of Computational Intelli-
gence. Springer, 2011.

[7] L.-F. Chen, H.-Y.-M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, ‘‘A new
LDA-based face recognition system which can solve the small sample size
problem,’’ Pattern Recognit., vol. 33, no. 10, pp. 1713–1726, Oct. 2000.

[8] M. Alibeigi, S. Hashemi, and A. Hamzeh, ‘‘DBFS: An effective density
based feature selection scheme for small sample size and high dimen-
sional imbalanced data sets,’’ Data Knowl. Eng., vols. 81–82, pp. 67–103,
Nov. 2012.

[9] D. Ramyachitra and P. Manikandan, ‘‘Imbalanced dataset classification
and solutions: A review,’’ Int. J. Comput. Bus. Res., vol. 5, no. 4,
pp. 1–29, 2014.

[10] S. Bououden, M. Chadli, and H. R. Karimi, ‘‘Control of uncertain highly
nonlinear biological process based on Takagi–Sugeno fuzzy models,’’
Signal Process., vol. 108, pp. 195–205, Mar. 2015.

[11] D. Li, J. Zhang, Q. Zhang, and X. Wei, ‘‘Classification of ECG signals
based on 1D convolution neural network,’’ in Proc. IEEE 19th Int. Conf.
E-Health Netw., Appl. Services (Healthcom), Oct. 2017, pp. 1–6.

[12] Z. Xiong, M. Stiles, and J. Zhao, ‘‘Robust ECG signal classification for
the detection of atrial fibrillation using novel neural networks,’’ in Proc.
Comput. Cardiol. Conf. (CinC), Sep. 2017, pp. 1–4.

[13] S. Lange and M. Riedmiller, ‘‘Deep auto-encoder neural networks in
reinforcement learning,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2010, pp. 1–8.

[14] W. Fei, X. Ye, Z. Sun, Y. Huang, X. Zhang, and S. Shang, ‘‘Research
on speech emotion recognition based on deep auto-encoder,’’ in Proc.
IEEE Int. Conf. Cyber Technol. Automat., Control, Intell. Syst. (CYBER),
Jun. 2016, pp. 308–312.

[15] J. Qi, P. Shi, L. Hu, T. Zhang, and S. Xie, ‘‘ECG characteristic wave
detection based on deep recursive long short-term memory,’’ J. Med. Imag.
Health Informat., vol. 9, no. 9, pp. 1920–1924, Dec. 2019.

[16] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux, ‘‘Phase-sensitive
and recognition-boosted speech separation using deep recurrent neural
networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Apr. 2015, pp. 708–712.

108512 VOLUME 8, 2020



L. Wu et al.: CNN-RBPNN Model With Feature Knowledge Embedding and Its Application

[17] S. Chauhan and L. Vig, ‘‘Anomaly detection in ECG time signals via deep
long short-termmemory networks,’’ inProc. IEEE Int. Conf. Data Sci. Adv.
Analytics (DSAA), Oct. 2015, pp. 1–7.

[18] W. J. Fitzgerald, ‘‘Markov chain Monte Carlo methods with applications
to signal processing,’’ Signal Process., vol. 81, no. 1, pp. 3–18, Jan. 2001.

[19] S. Derrode and W. Pieczynski, ‘‘Signal and image segmentation using
pairwise Markov chains,’’ IEEE Trans. Signal Process., vol. 52, no. 9,
pp. 2477–2489, Sep. 2004.

[20] M. Wasikowski and X.-W. Chen, ‘‘Combating the small sample class
imbalance problem using feature selection,’’ IEEE Trans. Knowl. Data
Eng., vol. 22, no. 10, pp. 1388–1400, Oct. 2010.

[21] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, ‘‘Face recognition:
A convolutional neural-network approach,’’ IEEE Trans. Neural Netw.,
vol. 8, no. 1, pp. 98–113, Jun. 1997.

[22] D.-S. Huang, ‘‘Radial basis probabilistic neural networks: Model and
application,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 13, no. 7,
pp. 1083–1101, Nov. 1999.

[23] D.-S. Huang, ‘‘Application of generalized radial basis function networks to
recognition of radar targets,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 13,
no. 6, pp. 945–962, Sep. 1999.

[24] S. Shadmand and B. Mashoufi, ‘‘A new personalized ECG signal classi-
fication algorithm using block-based neural network and particle swarm
optimization,’’ Biomed. Signal Process. Control, vol. 25, pp. 12–23,
Mar. 2016.

[25] Ö. Yildirim, ‘‘A novel wavelet sequence based on deep bidirectional LSTM
networkmodel for ECG signal classification,’’Comput. Biol. Med., vol. 96,
pp. 189–202, May 2018.

[26] C. Saritha, V. Sukanya, and Y. N. Murthy, ‘‘ECG signal analysis using
wavelet transforms,’’ Bulg. J. Phys., vol. 35, no. 1, pp. 68–77, Feb. 2008.

[27] A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, ‘‘On
random weights and unsupervised feature learning,’’ in Proc. ICML, 2011,
vol. 2, no. 3, p. 6.

[28] D. Scherer, A. Müller, and S. Behnke, ‘‘Evaluation of pooling operations
in convolutional architectures for object recognition,’’ in Proc. Int. Conf.
Artif. Neural Netw. Berlin, Germany: Springer, 2010, pp. 92–101.

[29] D.-S. Huang and J.-X. Du, ‘‘A constructive hybrid structure optimization
methodology for radial basis probabilistic neural networks,’’ IEEE Trans.
Neural Netw., vol. 19, no. 12, pp. 2099–2115, Dec. 2008.

[30] K. Liu, S. Xu, and N. Feng, ‘‘A radial basis probabilistic process neural
network model and corresponding classification algorithm,’’ Int. J. Speech
Technol., vol. 49, no. 6, pp. 2256–2265, Jun. 2019.

[31] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[32] M. Yedroudj, F. Comby, and M. Chaumont, ‘‘Yedroudj-net: An efficient

CNN for spatial steganalysis,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Apr. 2018, pp. 2092–2096.

[33] E. J. Keogh and M. J. Pazzani, ‘‘Derivative dynamic time warping,’’ in
Proc. SIAM Int. Conf. Data Mining, Apr. 2001, pp. 1–11.

[34] T. Giorgino, ‘‘Computing and visualizing dynamic time warping align-
ments in R: The dtw package,’’ J. Stat. Softw., vol. 31, no. 7, pp. 1–24,
2009.

[35] H. Fathabadi, ‘‘Power distribution network reconfiguration for power
loss minimization using novel dynamic fuzzy C-means (dFCM) cluster-
ing based ANN approach,’’ Int. J. Electr. Power Energy Syst., vol. 78,
pp. 96–107, Jun. 2016.

[36] M. Ghaffari and N. Ghadiri, ‘‘Ambiguity-driven fuzzy C-means clustering:
How to detect uncertain clustered records,’’ Appl. Intell., vol. 45, no. 2,
pp. 293–304, 2016.

[37] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, ‘‘A tuto-
rial on the cross-entropy method,’’ Ann. Oper. Res., vol. 134, no. 1,
pp. 19–67, Feb. 2005.

[38] J.-W. Zhang, X. Liu, and J. Dong, ‘‘CCDD: An enhanced standard ecg
database with its management and annotation tools,’’ Int. J. Artif. Intell.
Tools, vol. 21, no. 5, Oct. 2012, Art. no. 1240020.

[39] M.Mangia, J. Haboba, R. Rovatti, and G. Setti, ‘‘Rakeness-based approach
to compressed sensing of ECGs,’’ in Proc. IEEE Biomed. Circuits Syst.
Conf. (BioCAS), Nov. 2011, pp. 424–427.

[40] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, ‘‘Time series clas-
sification using multi-channels deep convolutional neural networks,’’ in
Proc. Int. Conf. Web-Age Inf. Manage.Cham, Switzerland: Springer, 2014,
pp. 298–310.

[41] L. D. Sharma and R. K. Sunkaria, ‘‘Inferior myocardial infarction detec-
tion using stationary wavelet transform and machine learning approach,’’
Signal, Image Video Process., vol. 12, no. 2, pp. 199–206, Feb. 2018.

[42] S. Visa, B. Ramsay, A. L. Ralescu, and E. Van Der Knaap, ‘‘Confusion
matrix-based feature selection,’’MAICS, vol. 710, pp. 120–127, Apr. 2011.

LU WU was born in Shandong, China, in 1982. He
received the B.Sc. and M.Sc. degrees in computer
science and technology from Northwestern Poly-
technic University, in 2003 and 2006, respectively.
He is currently pursuing the Ph.D. degree with
the College of Computer Science and Engineer-
ing, Shandong University of Science and Technol-
ogy. His current research interests includemachine
learning, neural networks, and applications of arti-
ficial intelligence in medicine.

YINGLONG WANG received the B.Sc. degree
in electronic technology and the M.S. degree in
industrial automation from the Shandong Univer-
sity of Technology, in 1987 and 1990, respec-
tively, and the Ph.D. degree in communication
and information systems from Shandong Univer-
sity, in 2005. His current research interests include
medical artificial intelligence, high-performance
computing, and cloud computing.

SHAOHUA XU received the B.Sc. degree in
mathematics from the Northeastern University of
Petroleum, in 1983, the M.Sc. degree in applied
mathematics from the Harbin Institute of Technol-
ogy, in 1986, and the Ph.D. degree in computer
software and theoretical engineering fromBeihang
University, in 2004. His current research interests
include large data analysis, intelligent information
processing technology, and 3-D visualization data
modeling technology.

KUN LIU was born in Shandong, China, in 1990.
He received the B.Sc. and M.Sc. degrees in mathe-
matics from Qufu Normal University, in 2013 and
2017, respectively. He is currently pursuing the
Ph.D. degree with the College of Computer Sci-
ence and Engineering, Shandong University of
Science and Technology. His current research
interests include machine learning, fuzzy set, and
neural networks.

XUEGUI LI received the B.Sc. degree in electronic
information science and technology, the M.Sc.
degree in computer application technology, and
the Ph.D. degree in computer technology from
the Northeastern University of Petroleum, in 2005,
2008, and 2017, respectively. His current research
interests include artificial intelligence and large
data analysis.

VOLUME 8, 2020 108513


	INTRODUCTION
	THE CNN-RBPNN MODEL
	THE PARALLEL EXTRACTION OF MULTI-CHANNEL SIGNAL FEATURES WITH A 1D CNN
	THE CONVOLUTION LAYER
	THE POOLING OPERATION LAYER
	THE SYNTHESIS FEATURE MATRIX FOR MULTI-CHANNEL SIGNALS

	A RADIAL BASIS PROBABILISTIC NEURAL NETWORK
	THE CNN-RBPNN MODEL
	FEATURE EXTRACTION AND PARAMETER REPRESENTATION FOR INPUT SIGNALS
	INTEGRATION OF MULTI-CHANNEL SIGNAL FEATURES
	RBPNN CLASSIFICATION USING A COMPREHENSIVE FEATURE MATRIX


	THE CNN-RBPNN LEARNING ALGORITHM
	SIGNAL FEATURE SIMILARITY MEASUREMENTS BASED ON DTW
	DYNAMIC C-MEANS CLUSTERING
	THE CONSTRUCTION OF A CROSS-ENTROPY OBJECTIVE FUNCTION
	THE CNN-RBPNN TRAINING ALGORITHM

	APPLICATION TO THE CLASSIFICATION OF 12-LEAD ECG SIGNALS
	EXPERIMENTAL DATA
	THE CNN-RBPNN MODEL FOR ECG SIGNAL CLASSIFICATION
	EXPERIMENTAL RESULTS AND ANALYSIS
	EXPERIMENTAL CONFIGURATION
	COMPARATIVE ANALYSIS


	CONCLUSION
	REFERENCES
	Biographies
	LU WU
	YINGLONG WANG
	SHAOHUA XU
	KUN LIU
	XUEGUI LI


