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ABSTRACT This paper addresses a set of multiagent, unmanned, aerial vehicles (UAVs) in a mission within
a threat-prone environment. Each UAV is considered as a nonholonomic, nonlinear model moving in a two
dimensional space. The system is composed of a fleet of UAVs, competing UAVs and a target. The approach
proposed in this paper is based on a biological model representing collective behavior in predator-prey
systems. The fleet of UAV’s (prey) is moving cohesively towards a target and they can come under attack
from competing UAV’s (predators) which are also expected to avoid a certain area around the target, treating
it as an obstacle that they have to avoid. Prey and predators are expected to obey certain social behaviors
within their respective species that include coherent motion, separation to avoid collision, and alignment.
The prey are also connected through an adaptable network. During attacks, this networked population of
prey could be divided into several small groups that are still connected and naturally observe the same social
behavior. To identify these groups and their members, the density-based algorithmDBSCAN is used. The aim
of this work is to use this biologically inspired model along with a robust feedback linearization controller
to achieve both target pursuance and effective evasion from two predators. Simulation results demonstrate
the different aspects and features provided in the proposed approach.

INDEX TERMS Nonlinear nonholonomic system, biology-based control, density-based clustering, adapt-
then-combine (ATC) algorithm.

I. INTRODUCTION
The use of unmanned aerial vehicle technology is expected
to increase and be an integral part of the operation of sev-
eral commercial industries. Big tech giants - for example,
Amazon with their ‘‘Amazon Prime Air’’ (Misener P, 2014,
unpublished data) - plan to revolutionize their supply chain
systems using unmanned aerial vehicles for home deliveries.
The digitization of the economy and the use of artificial
intelligence (AI) is catalyzing the development of smarter
and more autonomous systems. The increasing use of UAVs
continues to make the control design for such systems an
active area of research.

Unmanned aerial vehicles belong to the class of nonholo-
nomic systems. A common constraint attributed to this class
of models is their inability to be stabilized by a smooth static-
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state feedback controller, particularly because such models
can usually have an underactuated structure and hence fail
to satisfy Brockett’s Condition [1] and [2]. In the litera-
ture, several control strategies have been developed to tackle
this problem. Discontinuous feedback control laws [3], [4]
and continuous feedback laws [2], [5] have been proposed.
Reference [6] discussed the problem of achieving complete
tracking of a wheeled robot using a torque nonlinear con-
troller. They proposed two fuzzy controllers for solving this
problem. Reference [8] proposed a backstepping control tech-
nique for a spherical robot for use in unmanned terrain. The
backstepping control technique showed asymptotic tracking
convergence to the desired trajectory, which was also verified
using simulations. Researchers have also considered sliding-
mode control to achieve tracking goals for nonholonomic
systems. A non-smooth feedback using sliding-mode control
to track the desired state function of a nonholonomic system
has been studied in [4].
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Several authors have addressed the tracking problem
for nonholonomic systems, which is of importance to our
research. Reference [9] proposed an approach where the
tracking challenge is converted into a two-system stabiliza-
tion problem by using a transformation and a cascade tech-
nique. A linear matrix inequality (LMI) was then designed to
stabilize, that is, to track the given reference. Reference [10]
proposed an improvement of [9]. The update allowed for
exponential convergence to a desired trajectory. In [11],
the authors derived an algorithm that allows a nonholonom-
ically constrained rigid body to track a straight line without
twirling. The authors derived a function called the steering
function by differentiating the trajectory’s curvature as a
linear combination of the vehicle’s position error, orientation
error, and current trajectory curvature. A practical approach
to solve the problem of tracking and visual servo control for
a nonholonomic wheeled robot can be devised using videos
of the desired paths [12]. Reference [13] also considered
the combined tracking and visual problem; however, they
included parameter uncertainties in their analysis. Position-
ing and distributed path planning can also be formulated as
an optimization problem (see, for example, [14]). In [15],
distributed path planning for a fleet of UAVs using the par-
ticle swarm optimization (PSO) method was developed and
validated experimentally.

Also notable is the use of biologically inspired algorithms
based on the collective behavior of animal groups to sim-
ulate real world scenarios. These biological behaviors have
been found to be extremely useful in several engineering
applications. Reference [16] harnessed the movement flow
model of a school of fish to investigate the output power
efficiency of vertical axis wind turbines as opposed to the
commonly used horizontal axis wind turbines. Among other
biological applications is robot rescue in times of danger, such
as fire or natural disasters. Several other biological behaviors
can be imitated for other applications. Our work highlights
one of these applications. We propose the application of the
foraging and evading behaviors of a school of fish to a fleet of
mobile UAVs. The idea is easily applicable to rescuemissions
heading for a target.

The collective behavior of animals is incredibly fascinat-
ing [17]. The self-organizing formations of a group of birds in
flight [18], schooling fish [19]–[21], or a swarming bees [22]
or the hunting techniques used by carnivores in the wild [23]
are among some of the behaviors actively being researched.
Reference [24] stated that bioinspired schemes could be
implemented in robotic systems and incorporated the for-
aging behaviors of bottlenose dolphins. In [25], a flocking
control for systems with many agents has been developed by
identifying team leaders and followers. The results were then
applied to a group of nonholonomic robots. The work in [26]
built on [25] by using a decentralized flocking controller for
situations when the target to be tracked is fixed. In all these
studies, the systems studied are composed of one specie.

The predator-prey system was considered in [27]. The
study defined the term collective ’’in the sense of the

collective motion of defense or attack often found in behav-
iors of animal groups.’’ In their assumed nonlinear model,
both prey and predator motion is considered in a two-
dimensional plane. A game is set between predator and prey
such that the birth, death and evolution processes are deter-
mined by who is winning or losing the game. Coordinated
animal group movements, defined as social behavior, serve
as a defensive mechanism against predation. In [28], three
simple attack strategies were studied: attacking the nearest
victim, a peripheral victim or a split victim (an individual
separated from the group). Comparison of these tactics was
studied in [29]. The simulations showed that the ’’attacking
the center’’ strategy is the least successful for the predator.
From the prey point of view, social behavior is more advan-
tageous than individualistic behavior. Fuzzy models called
synflocks have been used to model fuzzy logic-based bird
flocking [29]. The evolution of swarming behaviors has also
been studied by [30]. Reference [31] presented a composite
attacking tactic in which the predator either uses one of
the simplicities mentioned above with a given probability or
disperses the group and then attacks the isolated prey. The
study assumed a single predator agent and used a genetic
algorithm (GA) to maximize the probability of selecting a
specific tactic, the distance at which the predator stops dis-
persing the prey, and the radiuswithinwhich it will be looking
for isolated prey.

In this work, we consider two predators using a simple
attacking tactic wherein the nearest prey is selected. We also
assume that the predators are not competing with each other.
In addition, the prey are always inclined to engage in social
behaviors where they obey cohesion, separation, and align-
ment requirements. We specifically apply the concept of
mobile adaptive networks proposed by [32]. Adaptive net-
works have been used as the backbone of many biologically
inspired networks [20]–[22], [33]. In [32], the author wrote
a survey on the study of adaptive networks and advances
in the field. A summary of different distribution strategies
and the best strategy to use for certain applications was
provided in [34]. In [35], an adaptive diffusion least-mean-
squares algorithm was formulated to ensure cooperation
among each node. This work has been extended by adding
data-normalized algorithms and a dynamic topology [36].
Reference [37] studied diffusion in concurrent collective
strategy diffusion of Multiagents. The study focused on spa-
tial diffusion model. To improve the robustness of diffusion
networks in the presence of disturbances, adaptive combiners
are added to the networks as in [38]. A similar case of
disturbancewas analyzed by [39].More recent advances were
investigated in [40]–[42].

The use of biologically inspired control of nonholonomic
systems under a single threat has been proposed in [43].
A control law based on backstepping control can introduce
system oscillations, and a careful selection of the gains is
required. The transformation used in the control designmakes
the analysis complex. The analysis assumes that the speed of
the predator is certain. The case where the pursuers move at
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uncertain speeds have been studied in [44]. Reference [45]
proposed solutions to the flocking and target interception
problems of multiple nonholonomic unicycle-type robots
using a distance-based framework. They proposed control
laws designed using graph theory and exploited the rigidity
properties of a graph modeling the sensing/communication
interactions among the robots. The authors proposed an input
transformation to prove the stability of the network.

CONTRIBUTION
In this paper, building on the pioneering work of [21], [46]
and [47], we propose a biologically inspired algorithm for
a fleet of mobile autonomous nonholonomic systems in a
multithreat environment.
1) A biologically inspired predator-prey model is used

tomodel the system: The three actors interact according
to norms similar to the collective behavior in animal
groups. The fleet of UAVs acts like prey while facing
attacks from adversarial or competing UAVs. The latter
acts like predators and uses a simple attack technique
based on the nearest victim. Bot species follow collec-
tive social behavior defined as the ability to have cohe-
sive motion, separation to avoid collision and alignment
for formation control.

2) The work is a direct extension of [43]: The context of
this study includes three actors: a target, multiple threats,
and a fleet of UAVs. Unlike [43], each actor possesses
some cognitive skills and abilities. The fleet of multi-
agent UAVs can evade, move in a particular formation
toward the target, and in the face of a close incoming
threat, evade following a planned path. During its move-
ment, the bioinspired fleet follows a predefined navi-
gation trajectory under a designed tracking controller.
The fleet is composed of nonholonomic homogeneous
UAVs under the Pfaffian constraint, and a local feedback
linearization controller is used to ensure path tracking in
normal and evasive modes.

3) Different dispersed groups of the original population
are identified using density-based clustering: Within
the communication range and in the absence of threats,
the strongly connected network, with theUAVs as nodes,
moves harmoniously toward the target while maintain-
ing a safe distance between agents. This is called the
foraging phase. However, during attacks, this unified
network is broken as the UAVs under perceived attack
break from the group looking for safety. Several small
groups build up during this phase. We propose a density-
based technique to identify these groups and apply
the same diffusion algorithm to keep them connected,
thus forming several clusters of local networks that can
reconnect together when they are within the range of
communication.

4) The prey can also be the predator: The target has
his own dynamic and considers the fleet of UAVs as
predators. Once these predators are within its safe zone,
the target follows evading paths. Thus, the role of prey
changes to that of predators.

5) Obstacle avoidance: On the other hand, the threat con-
siders the target as an obstacle. Their role as predators
is to attack and hunt each member of the fleet of UAVs.
They work together in a non-competitive manner in the
sense that if one predator is pursuing a prey, the other
predators will have to pursue different predators. Both
predators and prey also have to avoid colliding with their
own species and must maintain a safe distance between
members of their own groups.

In summary, the novelty resides in
• the use of biology to address all the behavioral aspects
of nonlinear nonholonomic systems composed of fleets
of UAVs, multiple attackers, and mobile targets.

• the use of clustering techniques to identify strongly con-
nected groups of agents in a multi-threat environment.

• ensuring robust control of the whole predator-prey-
target system during evasion and during foraging while
observing social behavior as previously defined.

The paper is organized as follows. Section I is an intro-
duction and highlights the contributions of the paper. The
problem is formulated is in section II. We introduce the
nonholonomic model, and we set up both the problem and
the necessary assumptions. In section III, we build on the
foundation of the navigation algorithms. First, we discuss the
fish-prey algorithm and its application to UAVs. The biolog-
ical behaviors of foraging fishes are modeled and applied.
In section IV, we introduce density-based clustering and the
requirement for coherent motion. We then design cogni-
tive evasive strategies for UAVs in the presence of multiple
threats and identify the different velocity estimates in section
V. The tracking problem is treated elaborately in section VI.
Control strategies are designed to track the path planned
by the navigation algorithm for both single and multiple
UAVs. Section VII shows the simulations, results, and dis-
cussions of the research carried out, and finally, we conclude
in section VIII.

II. PROBLEM FORMULATION
A. UAV NONHOLONOMIC UNICYCLE MODEL
In this paper, we consider a fleet of multiagent UAV systems,
two UAV attackers, and a target of each model as a unicycle
moving in the plane. The kinematic model of the unicycle
is usually described by a simple nonholonomic nonlinear
model, although themethods presented can be extended to the
3-D case [23]. This The particularity of this model is that the
velocities are constrained and the states are not completely
integrable [53]. Each of these elements is equipped with
a global positioning system (GPS) and proximity sensors.
A communication system connects the fleet of the UAVs, and
the information exchanged is limited. The target will be either
mobile or stationary, and its position is known to all UAVs.
The attackers play the role of predators, are not connected
and are assumed to have identifiers that allow them to dis-
tinguish themselves as friends and not foes. They are also
equipped with proximity sensors and radar to locate the fleet
of UAVs.
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Assumption 1: The predators do not compete with each
other. A particular prey cannot be attacked by a predator j
if it is already in pursuit by a predator i. The predators do
not collaborate during the hunt and must keep a predefined
distance from each other. The predators should also keep a
predefined distance from the target and hence treat it as an
obstacle that they have to avoid.

This assumption is not restrictive and is in place to fulfill
the following objectives:
• Avoid the obvious case where two predators run behind
one prey.

• Maximize the hunt, which is a biological behavior.
• Exhibit various social behavior as the predators are
assumed to be of different species. An example of such
social behavior would be that they maintain a distance
between them to avoid colliding with each other, espe-
cially during the hunt.

The kinematic model of a unicycle considers the steering
angle (orientation or heading) θ and the Cartesian position
(x, y) of the UAV moving within a plane. The inputs encom-
pass the linear velocity u1 and the angular velocity u2. The
motion of the UAV under this model is constrained by the
inability to make a sudden change in its inputs and therefore
its positions and heading. These constraints are known as the
Pfaffian constraints [54] and can be represented as a nonin-
tegrable first-order differential equation. This puts a limit on
the instantaneous maneuvers that the UAV can execute. The
kinematic model of the nonholonomic unicycle UAV is as
follows:

ẋ = u1 cos θs
ẏ = u1 sin θs
θ̇s = u2 (1)

Let q = [x y θs]T be the state vector of the model
comprising the position and orientation states of the UAV.
The generalized velocities of the UAV that form the inputs
of q̇ are coupled and have to satisfy the following Pfaffian
constraint [54]: D(q)q̇ = 0, with D(q) =

[
sin θs − cos θs 0

]
.

This implies that the system has zero lateral velocity, and thus,
all available velocities are within the null space of the matrix
D(q). For subsequent work, we will define the position in
the plane of the UAV, target and predator as x, wf and wp,
respectively. Each position has two components, one in the
x-dimension and one in the y-dimension. Given the vector
v = [v1 v2]T , we define u(v) = v/||v|| and v⊥ = [−v2 v1]T ,
where v(1) = v1, v(2) = v2, and ||v|| is the L2 norm. Let N
be the number of UAVs; Ni is the set of UAVs considered
neighbors of UAV i; wpl,k and wfk represent the position of
predator l and of the food at time instant k , respectively; r is
the safe distance betweenUAVs; rdown is the distance between
UAV and predator below which the UAV is declared inactive;
rpp is the distance between predators; rft is the radius of the
zone around the target that predators cannot enter; rtp is the
sensing range of the target; Rps is the sensing range of the
predators; and 1t is the sampling period.

FIGURE 1. UAVs in the presence of multiple attackers.

FIGURE 2. State transition diagram for UAV.

B. PROBLEM SETUP
We consider a field where we have a fleet of UAVs nav-
igating toward a target in an environment where they can
be subject to multiple attackers (see Figure 10). Each UAV
has several modes of operation depending on the realization
of the following events: navigation toward the target if no
attackers are present within the predefined safe zone, evasion
from a pursuing attacker, and hunting the target depending
on whether the target is in motion or stationary. During
these active modes, the UAV can be completely inactivated
by the attackers. Figure 2 illustrates the automata system
representing the different UAV navigation and operation
modes.
Remark 1: When the UAV is inactived by the predator or

breaks away from the fleet, the network size and configura-
tion change; thus, there is a need to consider Adapt-Then-
Combine (ATC) and Combine-Then-Adapt (CTA) diffusion
algorithms for the adaptive network (see [21]).

Using biology, there are four phases to this system:

• Foraging phase: The fleet of UAVs, like a school of fish,
forage in search of the target. This mode occurs when
there is no close threat. Like the school of fish, UAVs
should observe social behavior by moving in a harmo-
nious manner, respecting distancing, avoiding collisions
and using the instinctive behavior to remain connected.

• Evasive phase: the UAV, like a prey, has to evade attack-
ers and look for safety by breaking away from the school
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FIGURE 3. Predator state transition diagram.

FIGURE 4. Target state transition diagram.

and adopting different velocities and headings. If the
evasion is successful, the UAV has to follow a self-
organizing behavior phase to reunite with the closet
cluster of fish.

• Pursuit phase: If the target can be in motion, the UAV
fleet starts behaving like a predator and pursues the
target. If the target is stationary, the UAVfleet will gather
on the target.

• Inactive phase: If a predator succeed to catch a UAV then
it will be inactivated and dropped from the fleet.

The following are the assumptions regarding the system’s
capabilities: Assumptions
• Each UAV has a GPS.
• Each UAV shares its position and orientation with its
local neighborhood.

• The target position is known by all.
• UAVs are not aware of the position and orientation of the
attackers until the latter enter the UAV safe zone. The
predator-prey behavior is active only then.

• Each UAV is assumed to have physical dimensions [49],
with motion governed by physical laws.

• The adaptive network can be in several strongly con-
nected clusters. A cluster can be composed of only one
UAV.

• For attacking UAVs assuming the role of predators,
the target is an obstacle and has a zone that they cannot
access. Figure 5 shows the state transition model and the
conditions for moving from one state to another.

In this work, the target will follow two scenarios, either idling
or moving. The following Figure 4 illustrates the two modes
and the conditions for transitioning from one state to another.

III. BIOLOGICALLY INSPIRED NAVIGATION CONTROL
A. DIFFUSION ADAPTATION AND THE
MEASUREMENT MODEL
Diffusion adaption is concerned with the performance of
adaptive networks, which are defined as a collection of nodes

that have the ability to learn and interact with each other.
In this study, we consider a collection of N UAVs (nodes)
distributed in space. Let ūk,i be a random process representing
some information or measurements related to node k at time
i. Every node k , k = 1, . . . ,N , evaluates a scalar random pro-
cess dk (i) as a ūk,i, where dk (i) and ūk,i are correlated. Each
node k calculates the unknown and possibly time-varying
weights wk,i such that

dk (i) = ūk,i wk,i + nk (2)

where nk is a random disturbance or a perturbation, which
is usually taken as zero-mean white noise. In the distributed
algorithms, a node passes to its neighbors or a subset
of the network, which in turn communicates the received
data to other subsets of the network. Node Nk ’s neigh-
bors are a set of nodes immediately connected to it and
can be defined as those within its communication range,
Nk =

{
l ∈ 1, . . . ,N , l 6= k, | ||[xk , yk ]T − [xl, yl]T || ≤ R

}
.

The network aims to compute the parameter wo such that it
minimizes the global objective function [20]. In this work,
the Adapt-Then-Combine (ATC) diffusion algorithm pro-
posed by [35] and [39] is used. In this algorithm, a real
positive coefficient al,k is assigned to each communication
link between node k , k = 1, . . . ,N , and its neighbors l,
l ∈ Nk . The weighting coefficients are selected such that

N∑
l=1

al,k = 1, al,k = 0, ∀ l /∈ Nk (3)

According to the ATC algorithm, the different weights are
updated at each time instant i according to the following
relations:

ψk,i = wk,i−1 + µk ūTk,i[d̂k (i)− ūk,iwk,i−1]

wk,i =
∑
l∈Nk

al,k ψl,i (4)

where µk is a non-negative step size applied by node k , and
d̂k (i) is the linearly regressed form of dk (i). Let the vector wo

represent the estimated location of the target. The distance
between the UAV k and the target wo is given by dok (i). UAV
k is located at xk,i. The unit direction vector from the fish
location to the target is given by ūok,i and is a function of θk 5,
where ūok,i and d

o
k (i) are the exact values. The estimate d̂k (i)

of dk (i) takes into account any disturbance or measurement
errors (see [21]).

dok (i) = ūok,i(w
o
− xk,i)

ūok,i = [cos θk (i) sin θk (i)]

d̂k (i) ∼= dk (i)+ ūk,ixk,i (5)

B. MOTION CONTROL ALGORITHM:
Using the Euler approximation, each k th UAV coordinate
(xk,i, yk,i, θk,i) in the networked school is updated according
to

xk,i+1 = xk,i +4t.
[
cos θk,i sin θk,i 0

]T u1k,i (6)

θk,i+1 = θk,i +4t.u2k,i (7)
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FIGURE 5. Control Schematic - Single UAV.

FIGURE 6. Biology-based model and zones around predators [21].

where i is the time instant and 4t represents the sampling
time, which is assumed to be uniform in this paper. The inputs
u1k,i and u2k,i are controlled in a closed loop to drive the UAV
to the desired (xdk,i, θ

d
k,i) that varies depending on the different

operational modes. Since the predators are always in motion,
each UAV calculates a local estimate of the target location
wfk,i and the predator positions wpk,i in real time. To further
illustrate how the UAVs cognitively compute their velocities,
Figure 5 gives the control configuration for each UAV.

C. MOVEMENT TO THE TARGET
This mode is valid when no predator is within the safe zone
boundaries and the UAV is still active.When a particular UAV
is within a predefined distance rdown < rp from a predator,
it becomes inactive and is no longer part of the group. For
all other UAVs, the scenarios illustrated in Figure 6 and
formulated in Algorithm (1) apply. These different scenarios
relate to zones I, II, III, and IV (Figure 6) and are used to
define the next action by each active UAV.
γ is a design parameter used to balance the attractive forces

in both velocity and position. vf is the velocity of the target,
and vx is the velocity of the UAV. In this work, the target can
be in motion. The indicator function Ivf is equal to zero when
the target is at rest (vf = 0) and to 1 otherwise. UAVs are

also aware of the speed of the target and therefore adapt their
velocities accordingly.

The velocity of the UAV in each of these zones can be
defined with respect to the nearest predator as in Algorithm 1:
To find the desired position and angular orientation of the

Algorithm 1 Fish Behavior
1: Data required: Target position, individual UAV status

(active or inactive), and active UAV positions.
2: Initialization: All velocities are set to zero.
3: Distance Predator to UAV: Let Xi,k = [xi,k yi,k ]T .

Compute ||Xi,k − wpl,k || for i = 1, . . . ,N and
l = 1, . . . ,Np

4: UAV inactive: if ||Xi,k − wpl,k || ≤ rdown then UAV i is
inactive, else

5: For active UAVs: Find the nearest predator l to a partic-
ular UAV i.

6: Foraging zone I (Figure 6): if ||Xi,k − w
p
l,k || > 2 ∗ rp

vai,k = u(wfk − Xi,k ) (8)

7: Evasion zones II and III (Figure 6): Let c1 =

sign
(
(Xi,k − w

p
l,k )(w

p
l,k − w

p
l,k−1)

⊥

)
. if ||Xi,k−w

p
l,k || <

2 ∗ rp and ||Xi,k − w
p
l,k || > rp

vai,k = c11u
(
(Xi,k − w

p
l,k )
⊥

)
(9)

8: Evasion zone IV (Figure 6):

vai,k = u
(
Xi,k − w

p
l,k

) (
rp − ||Xi,k − w

p
l,k ||

)
(10)

target, the following relations are used:

wfdk+1 = wfdk +4t · V
f
dk

θdk+1 = a tan
(
V f
dk (2),V

f
dk (1)

)
wfdk+1 =

θ
f
dk+1
− θ

f
dk

4t
(11)

D. SELF-ORGANIZING BEHAVIOR
During evasion maneuvers, the connected network of the
fleet is broken, and small groups of UAVs form several local
networks (see Figure 10). These small networked groups are
copies of the original group and therefore obey the same
conditions of social behavior. There is a need to cluster them
to recognize where they are and to reconnect them with
clusters having edges within the communication zone.

IV. AGENT CLUSTERING USING DBSCAN
Clustering is a technique used in data mining and consists
of finding structure in the collected data by grouping objects
having similar characteristics. The resulting groups are called
clusters. The similarity is often captured through features
such as distance in a normed data set. Typical methods in clus-
tering are based on solving the k-means problem. Detailed
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FIGURE 7. Partition of the fleet network due to predator attack.

reviews of popular clustering algorithms are provided in sev-
eral books (see, for example, [58]). DBSCAN is a density-
based clustering algorithm first presented in [59]. Since
then, it has been implemented in many real-life applications.
In addition to being available in many toolkits, the algorithm
has been studied in many publications (see, for example, [57]
and [55]). The main idea that governs the DBSCAN algo-
rithm and its extensions and revisions is that points in the
dataset belong to the same cluster if they are density reachable
from each other [56]. Formally, let D be the dataset and
p ∈ D be a set of points in D. The following definitions are
from [59], but the notation and presentation are identical to
those of [56].
Definition 1 (ε-Neighborhood): The ε-neighborhood,

Nε(p), of a data point p is the set of points within a specified
radius ε around p:

Nε(p) = q ∈ D|d(p, q) < ε (12)

where d is a prescribed distance measure and ε is > 0.
Definition 2 (Point Classes [56]): A point p ∈ D is classi-

fied as
• a core point if Nε(p) has high density, i.e., |Nε(p)| ≥
minPts where minPts is a positive integer and the user-
specified density threshold,

• a border point if p is not a core point but is in the
neighborhood of a core point q ∈ D, i.e., p ∈ Nε(q),
or

• a noise point otherwise.
Figure 8 illustrates the definition of point classes in

density-based clustering algorithms such as DBSCAN.
Definition 3 (Directly Density-Reachable): A point q ∈ D

is directly density-reachable from a point p ∈ D with respect
to ε > 0 and minPts if and only if
1) |Nε(p)| ≥ minPts and
2) q ∈ Nε(p)

That is, if p is a core point and q is in its ε-neighborhood.
Definition 4 (Density-Reachable): A point p is density-

reachable from q if there exists in D an ordered sequence of

FIGURE 8. Point Classes: Core (P1), border (P2), and noise (P3).

TABLE 1. Estimating UAVs in outer boundaries of clusters.

points p1, p2, . . . , pn with q = p1 and p = pn such that pi+1
is directly density-reachable from pi ∀i ∈ 1, 2, . . . , n− 1.
Definition 5 (Density-Connected): A point p ∈ D is

density-connected to a point q ∈ D if there is a point o ∈ D
such that both p and q are density-reachable from o.
Definition 6 (Density-Based Cluster): A density-based

cluster C is a non-empty subset of D satisfying the following
conditions:
1) Maximality: if p ∈ C and q is density-reachable from p,

then q ∈ C.
2) Connectivity: ∀p, q ∈ C, p is density-connected to q.
The DBSCAN algorithm starts with a random point p

and performs a depth-first search (DFS) to identify all its
ε-neighbors. This will form the first cluster. The algorithm
continues to apply the same DFS to expand the cluster,
which is complete only if no more core points are found.
Another random point is then selected from the remaining
points, and the algorithm starts all over again. After all points
are processed, points that do not belong to an identified
cluster are considered noise points. Selecting the appropri-
ate ε and minPts is crucial and may change the identified
clusters.

Once a predator attacks the fleet of UAVs, the net-
work is broken into smaller groups as stated previously.
For their reunion and biological organization to take place,
each UAV at the outer boundaries of the smaller groups
must calculate the position of the other groups and advance
to them. First, each UAV determines if it is on the
edge:

xkl,i = W (vk,i)T (xl,i − xk,i) (13)

where xkl,i is the position of UAV l with respect to k , andW (v)
is an orthonormal matrix defined in [21]. Table (1) is used to
determine the position of UAV l w.r.t. k . The edge UAV k
searches for other UAVs and pulls its related cluster toward

107152 VOLUME 8, 2020



S. El-Ferik: Biologically Based Control of a Fleet of UAVs Facing Multiple Threats

them using

vbk,i+1 =


0, if l̂ = empty set
xl̂,i − xk,i
||xl̂,i − xk,i||

, otherwise
(14)

Algorithm 2 Network Configuration Procedure
1: Data required: Previous group average speed, updated

list of UAV neighbors, individual UAV status (active or
down), list of clusters from DBSCAN.

2: procedure Update group average speed
3: for Each UAV i i = 1, . . . ,N do
4: if UAV is inactive then set all velocities to zero.
5: else(only active UAVs)
6: for Each neighbor of UAV i i = 1, . . . ,N do
7: Compute required input velocity to avoid

collision and respect safe distance.
8: end for
9: Identify clusters
10: for doEach non-neighbor of UAV i
11: Compute distance from non-neighbors.
12: Identify possible new (left, right, or front

neighbors) from non-neighbors.
13: Reunite with new neighbors.
14: end for
15: end if
16: end for
17: end procedure

A. COHERENT MOTION
For UAVs to adequately follow the social behaviors of a
school of fish, they must move collectively to confuse the
predator and keep a safe distance r from each other to
prevent collision with their neighbors. Therefore, the dis-
tance between UAV l and UAV k must satisfy the following
equation:

r − ε ≤ ||Xk − Xl || ≤ r + ε ∀ l ∈ Nk \{k} (15)

where r is the predefined safe distance required between the
UAVs and ε is a very small positive number. The cohesion and
anticollision objectives are attained by solving an objective
function (see [47]). The solved minimization problem is used
to obtain the following potential field forces:

δi,k =
1

|Ni| − 1

∑
l∈Ni \{i}

(
1−

r
||xl,k − xi,k ||

)
(xl,k − xi,k )

(16)

The velocity of UAV k due to coherent motion can be defined
as vci,k+1 = vgi,k + γ δi,k , where v

g
i,k is the local velocity value

of the network’s center of gravity and γ is a nonnegative num-
ber. Using the diffusion adaptation technique in equation (4),

the distributed vgi,k can be estimated as follows:


ψi,k = (1− µvk )v

g
i,k−1 + µ

v
kvi,k

vgi,k =
∑
l∈Ni

avl,k ψl,k (17)

where superscript v shows a relation with vg and avl,k satisfies
equation (3).

B. MOTION CONTROL FOR THE TARGET
V. DISTRIBUTED VELOCITY ESTIMATE
Combining all the identified biological behaviors, UAVs will
adapt their velocities according to the combined velocity
estimate:

vi,k = λ . Ii,k (αvai,k+1 + βv
b
i,k+1)+ (1− λ . Ik,i)v

g
i,k + γ δi,k

(18)

where γ , β, α and λ are nonnegative weighting elements,
while Ii,k is a switching function that is either zero if
vai,k+1 and vbi,k+1 are zero or 1 otherwise. To ensure that
the distributive velocity estimate meets the nonholonomic
constraints of a UAV, a maximum velocity vmax is set for the
UAVs.

A. THE EVASION PHASE
When the UAVs are attacked by a predator, they will search
to evade and look for safety by making acrobatic maneuvers
to prevent such attacks from damaging or inactivating them.
This scenario has been envisioned in [50]. The author con-
ceived of a fully autonomous UAV that would be capable of
executing evasive strategies when challenged by an adver-
sary. This is the essence of the evasion phase. We propose
evasive strategies whereby each UAV would track a certain
planned straight-line trajectory to maneuver and evade the
predator.

1) PATH PLANNING AND TRAJECTORY GENERATION
During evasion, the UAV changes its path by following a
trajectory composed of a straight-line segment at an angle
θd adjacent or perpendicular to the original direction of the
UAV. Given a Cartesian plane, the line direction that the UAV
would track depends on its current location and the direction
from which the predator is coming. To analyze this further,
the plane will be partitioned into four trigonometric quadrants
to consider all the possibilities.

The UAV computes the distance dpk between the predator
and itself in real time. At time t0, once d

p
k < rp, the UAV

senses the danger within the defined safety zone and switches
from its planned foraging trajectory and social behavior to
an individualistic evasion mode. The position of the UAV
(x(t0), y(t0)) is stored, as it would serve as a reference point
during the trajectory generation.
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TABLE 2. Direction of evasion path for predators.

The straight line for the evasion path is defined using a set
of parametric equations:

xdk = x0 + λ̂(n) cos(θdk )

ydk = y0 + λ̂(n) sin(θdk )

λ̂(n) = 4t + (n− 1)4t (19)

The variable λ̂(n) is called the path parameter. It is set as
an arithmetic progression that increases to define the tracked
trajectory. n is the iteration number during the execution of
the evasion maneuvers.

I (pj) =
{
1 if (xk,i − w

pj
k,i)

T (xk,i − w
p
k,i)
⊥ > 0

−1 otherwise
(20)

2) EVASION STRATEGIES
There are several ways to design evasion trajectories. In [43],
four quadrants were used to compute the inverse tangent of
the angles.
• The four-quadrant inverse tangent ‘‘a tan 2’’ is used for
the computations of the angles because it gives an angle
value between −π and π .

• θnp is defined as the actual UAV-to-predator angular
direction and is used to decide to which direction the
UAV turns to evade the predator.

• θd is the desired heading of the UAV path that leads
to a safer region. θd is computed using the four-
quadrant inverse tangent a tan 2; therefore, its value is
also between −π and π .

• θp is the estimate of the predator’s approach angle.
In deciding the orientation that the UAVwill choose to evade,
we compare the angles θp and θnp−180 and θp and θnp+180
as follows:
a) Quadrant 1: In the first quadrant, once a danger

approaches, i.e. dpk < rp and θp ≥ θnp − 180, the desired
evasion angle is given as

θd = θp + θc (21)

where θc is the tangential angle (for example, pi/4) desired
for evasion. Here, the adversary UAV approaches at an angle
between−π and−

π

2
; theUAVevades the predator and tracks

an orientation between 0 and π . The detailed conditions for
evasion and the respective desired angles for each quadrant
are given in table (2).

FIGURE 9. Evasion Strategy.

B. ESTIMATING THE GLOBAL VELOCITY & LOCATIONS OF
THE ADVERSARY & TARGET
The goal is for the UAV to compute the adversary’s location
wp. In reality, the location of the predator or the target is
obtained using a GPS. Using the ATC diffusion algorithm
discussed in equation (4), the global location estimates of the
predator wpk,i and the target wfk,i are calculated with respect
to the position of each UAV. In addition, the estimates of the
predator and target velocities with respect to each UAV are
given by

vpl,k =
1
4t

(wpl,k − w
p
l,k−1) (22)

vfk =
1
4t

(wfk − w
f
k−1) (23)

C. PREDATOR BEHAVIORS
The predators are also nonholonomic UAVs, as stated pre-
viously. The algorithm below (3) allows computation of the
required velocities of the predators. Let V p

d , w
p
dl,k , and θ

p
dk be

the desired velocity, position, and orientation of predator l
at instant k , respectively. To estimate the same quantities at
k + 1, we use the following relations:

wpdl,k+1 = wpdl,k +4t · V
p
dk

θdk+1 = a tan 2d (V p
dk (2),V

p
dk )(1)

wdk+1 =
θdk+1 − θdk

4t
(24)

γ3, γ4, γ5 are positive design parameters that can be selected
to balance the different requirements of the velocities.

D. TARGET BEHAVIORS
The target is at rest until a UAV is within a certain dis-
tance. Once the target is in motion to flee the pursuing
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Algorithm 3 Predator Behavior
1: Data required: Predators’ positions, target position,

individual UAV statuses (active or down), active UAV
positions.

2: Initialization: All assignments of velocities are set to
zero.

3: Start motion if ||wpl,k − xj, k|| ≤ Rps, set the predators
in motion.

4: Obstacle avoidance: if ||wpl,k − w
p
j,k || ≤ rpp, then

δp(k) = (rpp − ||w
p
l,k − w

p
j,k ||) u

(
wpl,k − w

p
j,k

)
(25)

5: Collision avoidance: if ||wpl,k − T (k)|| < rpp, then

δTk = (rft − ||w
p
l,k − Tk ||) u

(
wpl,k − Tk

)
(26)

6: Attack mode: Let

||xj,k − wpl, k|| = mini=1,...,N ||xi,k − w
pl, k||

(27)

vphk = u(xj,k − wpl, k) (28)

7: Setting up the desired predator speed:

vpl,k = γ3 v
p
hk + γ4 δ

p
k + γ5 δ

T
k (29)

8: Idle mode: if ||wpl,k − xj, k|| > Rps, then v
p
l,k = 0

UAV, its desired speed can be determined using
algorithm (4):

Algorithm 4 Target Behavior
1: Data required: Target position, individual UAV statuses

(active or inactive), active UAV positions.
2: Initialization: All velocities are set to zero.
3: Start: Let ||xj,k−w

f
k || = mini=1,...,N ||xi,k−w

f
k ||; set the

target in motion if ||xj,k − w
f
k || < rft

vfk = u(wfk − xj,k )(rft − ||w
f
k − xj,k ||) (30)

4: Idle mode: if ||xj,k − w
f
k || > rft , then vTk = 0

To find the desired position and angular orientation of the
target, the following relations are used:

wfdk+1 = wfdk +4t · V
f
dk

θdk+1 = a tan (V f
dk (2),V

f
dk )(1)

wfdk+1 =
θ
f
dk+1
− θ

f
dk

4t
(31)

VI. TRACKING CONTROL OF UAVs
In this section, we will integrate all the concepts proposed
in the previous sections by developing control techniques
that ensure the desired trajectories planned by the navigation
algorithms are followed as expected. We discuss the tracking
problem for a single UAV and then explore implementing the

control algorithm on a fleet of UAVs.We also shed more light
on the trajectory generation process and trajectory switching
conditions. The control schematic for a single UAV closed-
loop system is shown in Figure (5).

A. TRAJECTORY GENERATION
Based on the information in Table 2, the trajectory generation
algorithms are combined in a concise manner as follows. Let
[xd yd ] be the desired states from the trajectory planning,
θd − the desired steering angle for θs, ṽd − be the desired
UAV linear velocity in the presence of attacks obtained from
the evasive control strategy, Vd − be the desired UAV linear
velocity in the absence of attacks, and wd − be the desired
UAV angular velocity in either the presence or absence of
attacks. A more elaborate definition will be given for the
desired velocities in the next subsections based on the pres-
ence or absence of predators.

1) ABSENCE OF PREDATORS
When there are no predators within the prescribed safe area,
each UAV mimics the behaviors dictated by the bioinspired
predator-prey algorithm. The velocity obtained is used to
obtain the next desired position of the planned trajectory.
It is important to note that this trajectory should also satisfy
the nonholonomic constraints of the UAV. Thus, the desired
trajectory in the absence of predators is given by:

xdk+1 = xdk +4t · ||Vd || cos θdk
ydk+1 = ydk +4t · ||Vd || sin θdk
θdk+1 = a tan (Vdk+1 (2),Vdk+1 (1))

wdk+1 =
θdk+1 − θdk

4t
(32)

2) PRESENCE OF PREDATORS
In this case, the UAV will track a desired straight line, which
was described in section (V-A2), based on its state when it
first senses the presence of the predator. The desired trajecto-
ries are given in equation (19).

B. SINGLE UAV TRACKING ANALYSIS
Before considering a fleet of UAVs, we first develop a con-
trol technique that ensures the tracking of the desired path.
A tracking controller is thus developed for the nonholonomic
UAV model. Indeed, during evasion, the UAV is trying to
escape and therefore is not required to synchronize its move-
ment with that of the other members of the fleet. However,
during foraging, the fleet must observe social behavior. In the
next two sections, we will describe the controller design for
the case of a single UAV and then treat the design for the case
of the fleet as a flocking problem.

1) ROBUST FEEDBACK CONTROLLER
DURING EVASION MODE
A nonlinear controller based on the backstepping method
is designed to achieve asymptotic tracking of the UAV to a
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desired trajectory. Let θ̃ = θ − θd , X =
[
x
y

]
, and X̃ =

X − Xd =
[
x − xd
yd

]
.

Theorem 1: Let vd be given by equation (18) and Ac ∈ R2

be a Hurwitz matrix designed according to the dynamics
of the desired error. For a single UAV under unknown but
bounded disturbances given by equation (38), the following
control law ensures that the system is uniformly asymptoti-
cally stable.

u1 = ||v|| cos θ̃ − ηsign(X̃ ) (33)

θd = atan(vd (2), vd (1)) (34)

u2 = −k1 θ̃ + θ̇d (35)

v = G(θ̃ )−1(vd + Ac X̃ − ηsign(X̃ )) (36)

G(θ̃ ) =

 cos2 θ̃ −
1
2
sin 2θ̃

1
2
sin 2θ̃ cos2 θ̃

 (37)

where the design parameters k1 and η are positive scalars.
Proof: We will follow in this proof the same procedure

as in [45]. Let the system in (1) be written as follows:[
ẋ
ẏ

]
=

[
u1 cos θs
u1 sin θs

]
+1 (38)

θ̇s = u2 (39)

Let u1 = ||v|| cos θ̃ and vd =
[
vdx
vd y

]
be the desired velocity

set by the guidance and navigation algorithm. vx and vy are the
corresponding velocities along the x- and y-axes, respectively.
This leads to

θd = atan2d(vy, vx) (40)

in the case where vx = 0, θd = 90o and in the case
where vy = 0, θd = 0. Therefore, vx = ||v|| cos θd and
vy = ||v|| sin θd . This allows us to write (38) as

Ẋ =
[
||v|| cos θ̃ cos θd
||v|| cos θd sin θd

]
(41)

Using trigonometric properties and recognizing that
θ = θ̃ + θd , equation 41 leads to

Ẋ = G(θ̃ ) v (42)

with

Ẋ = G(θ̃ ) v (43)

where

G(θ̃ ) =

 cos2 θ̃ −
1
2
sin 2θ̃

1
2
sin 2θ̃ cos2 θ̃

 (44)

G(θ̃ ) is nonsingular if θ̃ = 90o. In navigation, 90o is always
avoided and practically impossible to achieve. We will there-
fore assume that the desired angle that requests a 90o differ-
ence from the actual angle will not be considered. Hence,

the following direct feedback linearizing controller can be
proposed:

v = G(θ̃ )−1(vd + Ac X̃ ) (45)

This allows us to write the dynamic of the error as

˙̃X = Ac X̃ (46)

where Ac is a Hurwitz-stable matrix with the desired eigen-
values. Because the system dynamics are subject to an
unknown but bounded external disturbance1, a robustifying
term is required. Using a Lyapunov candidate functional
W = 1/2X̃T X̃ , the control law in equation (47) can be made
robust as follows:

v = G(θ̃ )−1(vd + Ac X̃ − ηsign(X̃ )) (47)

where η > 1̄ and 1̄max(1). This leads to

˙̃X = Ac X̃ − ηsign(X̃ ) (48)

2) TRACKING THE FORAGING TRAJECTORY
In this subsection, we will consider the case where the fleet is
not under attack. This is the case for multiple nonholonomic
UAVs schooling toward a target; it represents a typical flock-
ing or schooling problem except that in this case, because
the UAV operation mode changes to foraging after an attack,
the original network could be fragmented and composed of
several strongly connected groups each with its own network.
The clustering technique presented in section IV identifies
each subnetwork.
Remark 2: In the case where the network is composed

of a cluster containing one UAV, the control law given in
theorem 1 will be used.

LetCk be the number of clusters as identified byDBSCAN .
The algorithm also identifies the corresponding UAVs that
form a given cluster Ci.
Theorem 2: Let Ci be a cluster of strongly connected net-

works formed by NCi UAVs under unknown but bounded
disturbances. Let the desired velocity vdi,k be given by equa-
tion (18) and Aci ∈ R2 be a Hurwitz matrix designed
according to the dynamics of the desired error. For the ith UAV,
the following control law ensures that the system is uniformly
asymptotically stable:

ui1 = ||vi,k || cos ˜θi,k − ηisign( ˜Xi,k ) (49)

θdi,k = atan(vdi,k (2), vdi,k (1)) (50)

ui2 = −ki2 ˜θi,k + θ̇di,k (51)

vi,k = Gi, (θ̃ )−1(vdi,k + Aci ˜Xi,k
−ηsign(X̃k )) (52)

Gi(θ̃i) =

 cos2 θ̃i −
1
2
sin 2θ̃i

1
2
sin 2θ̃i cos2 θ̃i

 (53)

where the design parameters ki1 and ηi are positive scalars.
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Proof: The proof of this theorem is composed of three
parts: the design of the controller and the stability of the
multiagent system, the guarantee that the error in positions
is according to the required safety distance r , and the con-
sensus on velocity to guarantee coherent motion. For part 1,
Theorem (1) can be easily used to show that the system is
uniformly asymptotically stable. For part 2, since each cluster
Ci is a strongly connected system, the Adapt-Then-Combine
diffusion algorithm equations (15)-(18) ensure that each node
will respect the distance r given in equation 16. Based on
equations (15)-(18), the coherent motion will be such that
vi,k will converge to v

g
i,k (equation 17), the local speed of the

center of gravity of network Ci.
Remark 3: • Theorem 2 can also be proven using equa-
tions (15)-(18) and graph theory for strongly connected
systems, as in [45].

• During path planning for a nonholonomic UAV,
the objective of tracking certain trajectories can also be
achieved using non-smooth paths. Unfortunately, such
non-smooth paths usually occur as a result of a large
velocity input, which can be too large and impossible for
the nonholonomic model to achieve in real applications
due to the nonholonomic constraints. Thus, to attain
smooth tracking of the reference paths, a maximum value
is used to limit the velocities.

• Using Algorithm (3) and equation (24), Theorem 1 can
be used to find the necessary local control law for preda-
tors during hunting.

• Using Algorithm (4) and equation (31), Theorem 1 can
be used to find the necessary local control law for the
target during evasion.

VII. SIMULATION EXAMPLE
We consider several examples to highlight some of the
important features in this approach. The simulation requires
inputting the initial positions of the UAV fleet, predators and
target. It also requires inputting different radii to set up the
dynamic motion of the scenario at hand. Figure 10 shows
the fleet in motion toward the target. The initial distribution
of the group of N = 25 UAVs was such that the following
requirements had to bemet: the distance between neighboring
agents was set according to equation 16) with r = 4 and
ε = 0.5, the initial target position was wfk,1 = (60, 60) and
the predators initial positions were set to wpk,1 = (60, 65) for
predator 1 and at (60, 55) for predator 2. In all the coming
simulations, the simulation time = 200 sec; the sampling
time = 0.1 sec. The zone around the target that the predators
have to avoid is set to a circle centered at the target with
radius rft = 12. Figure 10 illustrates the obstacle avoidance
capabilities of the algorithm and how the foraging motion
toward the target is harmonious.

Figures 11 and 12 illustrate the model performed with
N = 9 and N = 4, respectively. The target is placed at
wfk,1 = (50, 50). Figure 11 shows the group initially placed at
positions less than the required minimum separation r = 4.

FIGURE 10. Several UAVs in formation and obstacle avoidance.

FIGURE 11. Several UAVs starting with initial separation less than what is
required as a single cluster.

FIGURE 12. Several UAVs starting with initial separation greater than
what is required as a single cluster.

The fleet starts by adjusting their distances and repositioning
themselves as required. In Figure 12, the initial positions of
the group are such that the separation between them is greater
than what is required, r = 3, with ε = 0.5. The figure shows
how the individual UAVs correct their positions as required.
The time to adjust the positions is not instantaneous, as we are
dealing with nonholonomic systems and not points of mass.
In both tests, the fleet starts as a single network. In Figure 13,
we repeat the same test with N = 25 and r = 3 with
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FIGURE 13. Several UAVs starting in two different clusters C1 an C2 with
initial positions less than what is required.

FIGURE 14. Transient of the UAV fleet under attack by predators.

FIGURE 15. Dispersion of the initial population of UAVs to different
clusters or social groups.

ε = 0.5, but the system initially starts as two different
groups. The two clusters start by correcting the positions of
the different UAVs to satisfy the distance requirements and
then move harmoniously in the foraging phase toward the
target. Figure shows the transient UAVs evading the predator.
One can see that the distance between two UAVs becomes
smaller than what it is required. However, two other UAVs
start moving in a direction that accommodates the distance
requirement. During attacks, the network can be divided into

FIGURE 16. Different paths showing evasion and obstacle avoidance.

TABLE 3. Execution time as a function of the UAV fleet size.

FIGURE 17. Execution time of the algorithm based on the UAV fleet size.

several groups. In Figure 15 and 16, an attack by the predator
is already underway. One can see the network divided into
several groups, somewith only oneUAV. The different groups
are in different modes. Some UAVs have been inactivated by
predators, some are still in evasion mode, others are back
to foraging and observing social behavior, and one group
is already in pursuit of the target, having initiated its own
evasion strategy. The tail of the UAVs in 16 shows the evasion
paths the UAV took to evade the predators. The two paths of
the predators are also clear and show how they avoided the
target by going around it.
Remark 4: One can also see from 16 the presence of an

outlier, defined as a UAV performing an evasion that keeps
going away from the field and target. It seems natural that the
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best choice for the predator is to go back and abandon the
chase. In the literature, there are several proposed methods
for addressing this phenomenon (see, for example, [31]).
However, we did not consider this in our work.

COMPLEXITY OF THE ALGORITHM
The complexity of the algorithm is measured by looking at
the execution time as a function of the size of the UAV fleet.
Table gives an estimate of the execution time required to
complete a simulation that runs in 200 sec. Using EXCEL fit-
ting, we can see from Figure 17 that the complexity increases
linearly as a function of the size of the UAV population.

VIII. CONCLUSION
In this work, we used a biological model of a school of
fish and of predators such as sharks to control a fleet of
nonholonomic UAVs in an environment where they can come
under attack by enemy UAVs. The problem we considered
was designed in the contexts of a flocking problem, an obsta-
cle avoidance problem, a tracking problem, and a collision
avoidance problem. During a predator attack, DBSCAN is
used to cluster the divided network. Each cluster can be in a
different operational mode. The path tracking controller was
based on a feedback linearization approach, and the same type
of controller was implemented to control both the predators
and the UAVs. The motion of the UAV fleet follows social
behavior requirements during foraging, but because each
system takes time to adjust, the distance requirement could
not be satisfied during transient or evasion modes, where the
behavior tends to be individualistic.

For future work, there is a need to quantify the transient
period during which distancing is not satisfied. The adopted
biological model assumes a simple attack strategy based on
nearest prey. There is no priority given in selecting the prey,
and all are considered equally important. A better approach
could be to assume a game between the predator and the prey
with high score values given to those prey that are closer to
the target. The motion of the predator-prey system considered
in this work is modeled in 2-D. A 3-D model could be used,
and therefore, more realistic group behavior can be studied.
In addition, better and complex evasion strategies can be
designed. In addition, the system developed does not learn.
Neither the predators nor the prey can learn each other’s
moves and plan their actions accordingly. This system could
be a good base for the application of machine learning and
the use of AI in path planning and evasion countermeasures.
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