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ABSTRACT Electric motor is a prominent rotary machinery in many engineering applications due to its
excellent electrical energy utilization. With the increased demand in production and complex operating
conditions, motors often run in a severe loading condition. Overload, overheating and many other intricate
operating conditions account for the stator related faults in motors. Motor current signature analysis (MCSA)
and vibration analysis have been popular techniques to diagnose different stator and rotor related faults in
motors. But it is difficult to find the fault magnitude or fault threshold by using only one approach due
to nonstationary motor operations. This paper presents a comprehensive review of a permanent magnet
brushless DC motor’s (BLDC motor) fault diagnosis combining vibration and current signals collected from
sensors. Since the insulation break in the stator winding is the most commonly occurring fault in the stator,
a short-circuit was artificially created between two windings. Based on the motor operating conditions, three
health states are chosen from the experimental sensor data with different fault magnitudes. Health states
are labeled as healthy state, incipient failure state, and severe failure state. Two effective fault diagnosis
indices named kurtosis and third harmonic of motor current are selected for analyzing the vibration signals
and current signals, respectively. Proposed diagnostics framework is validated using experimental data and
proven to detect the stator fault at the early stage as well as distinguish between different fault states.
Monitoring bothmechanical and electrical characteristics of BLDCmotor provides a thorough understanding
of fault magnitude and threshold in different health states.

INDEX TERMS BLDC motor, condition monitoring, fault diagnosis, MCSA, stator fault, vibration signals.

I. INTRODUCTION
Predictive maintenance (PdM) is considered as a pivotal fac-
tor inmany engineering systems to prevent unexpected failure
and maximize productivity. To ensure maximum reliability of
a system, a PdM framework helps to make some decisions
by inspecting the trend of historical data or using a physical
model of the system. However, lack of proper mathematical
modeling and the ease in sensing, storing and analyzing
big data have made the data-driven predictive maintenance
framework a primary choice in industries [1]. There are
two major steps in PdM: the first one is fault detection and
diagnosis (FDD), which is to ascertain the current state of
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the component and inspect the root cause of the failure.
The second one is the prognosis, which is to learn the trend
of failure and predict the future state of the component based
on historical data [1], [2]. A reliable prognostics method-
ology of PdM strategy mostly depends on the accuracy of
the historical diagnostic framework. Therefore, robust fault
diagnosis is a fundamental concern for different electrical and
mechanical devices starting from a tiny transistor to large AC
machines [3].

A. MOTIVATION
The most recent development on electric motors has been the
invention of brushless dc (BLDC) motor, which is essentially
a permanent magnet synchronous machine. The major advan-
tage of BLDCmotor is that it does not require anymechanical
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commutator, unlike conventional DC motors. Despite hav-
ing greater reliability, a BLDC motor can also fail due to
manufacturing defects, overload, earth fault, demagnetiza-
tion, electromagnetic interference, etc. [4]. Winding related
faults are the most commonly occurring faults in the stator
coils of BLDC motors. Primary causes for winding faults
are excessive heat, loose insulation, aging due to operation,
contaminations, etc. [4]. Detecting these irregularities in an
early stage can not only prevent a catastrophic failure but also
protect human and environmental properties. Several studies
have been conducted on fault diagnosis and condition moni-
toring of BLDCmotor’s stator related faults. MCSA has been
the most popular technique to diagnose stator faults in motors
[5]. Motor current carries significant information about the
precision of stator winding operation [6]. Many studies have
shown that the faults in the winding can be diagnosed at
the earliest possible time by analyzing the current signature
[7], [8]. J. K. Park et al. proposed stator current frequency
analysis and input impedance monitoring for inter-turn faults
of BLDCmotors [9], [10]. S. Rajagopalan et al. usedWigner-
Vile Distribution of motor currents to detect rotor related
faults in nonstationary conditions [11]. S. T. Lee et al. used
the analysis of third harmonic components of motor current
to detect stator-related faults [12]. O. Moseler et al. proposed
a model-based parameter estimation method for online fault
detection [13]. A detailed survey of BLDC motors faults can
be found in [14].

On the other hand, vibration analysis for fault diagnosis
has been a prominent tool for rotary machinery like motors
[15], wind turbines [16], gearboxes [17], and bearings [18].
Several kinds of research have undergone using the features,
indexes and characteristics obtained from vibration signals
in the presence of different faults [15], [18]–[21]. Kurtosis
is considered as one of the most effective diagnostic features
among them. Spectral kurtosis (SK) is an improvement over
time-domain kurtosis and it can handle both stationary and
nonstationary signals and localize the fault frequencies [22].
SK can be compared to narrowband amplitude demodula-
tion techniques in the field of fault diagnosis and it does
not require any historical data or prior knowledge. These
qualities have made SK quite popular for the fault detection
and isolation of different rotary machinery faults. Several
studies have undergone diagnosing rotary machinery faults
by using spectral kurtosis. For example, J. Tian et al. detected
motor bearing fault from SK-based feature extraction [23].
J. Antoni et al. proposed STFT-based calculation of SK
to characterize non-stationary signals [24]. Later, he used
negentropy of squared envelope spectrum to represent impul-
siveness called the Infogram [25]. Y. Lei et al. proposed
wavelet packet transformation-based SK computation for the
fault diagnosis of rolling element bearings [26]. Later, A.
Moshrefzadeh et al. came up with the Autogram, to find
the optimal demodulation band even in presence of strong
noise in rotary machinery [27]. All these methods have a
strong theoretical background and performance are validated
using several machinery data such as rolling element bearing,

gearbox etc. However, a detailed study on the brushless DC
motor’s fault diagnosis using SK has not been reported till
date despite having a useful cyclostationarity behavior. In lit-
erature, most of the studies on BLDC motor’s fault diagnosis
deal with single sensor data. In practice, a motor is used to
serve different purposes with unique operational complexity
and environmental influence. It is understood that a higher
load will cause the motor to draw larger amount of current
from source than usual. Motor speed and torque can also get
affected under certain stress and load. And, vibration for a
motor totally depends on the system where it is operating.
Therefore, monitoring only one parameter will not be suf-
ficient to draw a conclusion about the motor health state.
Moreover, A same fault can exhibit unique type of character-
istics for different operating conditions and all the parameters
do not show similar deviation from normal behavior at the
same time. This is why authors of this study are motivated
to establish a well-defined fault diagnostic framework using
multiple sensor data. The main contribution of this proposed
approach is the detection of motor winding related faults at
the earliest possible time and categorize different fault states
using the current and vibration signals, respectively.

B. PROPOSED METHOD
In this study, we propose an optimal diagnostic framework
by combining Fast Kurtogram (FK), Autogram, and MCSA
to diagnose BLDCmotor winding short-circuit fault. Motor’s
vibration response for entire lifecycle is recorded using a
piezotronics accelerometer. We divide the motor health states
into three parts. One is the healthy state, at the beginning of
the tests where all parameters are kept at rated values as per
the manufacturer. Next state is when the fault is introduced
by shorting two windings of the motor. We name this state
as incipient failure state. The last one is the near breakdown
stage when motor’s performance dropped significantly, and
we call it a severe failure state. Several parameters are con-
sidered to find the health state thresholds such as- stator coil
temperature, noise and vibration, efficiency, motor, output
voltage, rotating speed etc. Vibration signals from each health
state are analyzed using fast kurtogram and Autogram to
inspect the fault frequency and its magnitude. At the same
time, third harmonic of motor current is analyzed to detect
the fault at primary stage. To obtain a thorough understanding
of current harmonics, this study presents a short-time Fourier
transform (STFT) of motor current. STFT provides a better
representation of current harmonics where the frequency is
expressed as a function of time. A combination of motor
current and vibration analysis gives a strong diagnosis frame-
work and the transitions between different health states are
accurately categorized with the help of combined electrical
and mechanical characteristics investigation.

The remaining part of this paper is organized as follows.
Section II of this paper highlights the theoretical background
of the methods used to diagnose motor faults. Experimental
setup and winding fault used for this study are explained in
section III. Section IV presents the result analysis, discussion
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and effectiveness of proposed diagnostics framework. Con-
clusion and prospect of using this type of technique are
discussed in later section V.

II. RELATED THEORIES
The motor is necessarily an ergodic dynamical system
that shows similar vibration response averaged over a cer-
tain timestamp. Naturally, there is a marginal discrepancy
between a healthy state and a faulty state, which can be
identified by simple frequency domain analysis. However,
during the transition of health states, such as the beginning
stage of health degradation, vibration changes so abruptly
that only a time or frequency domain analysis cannot pro-
vide sufficient information to estimate the health state of the
system. To capture these abruptly changing characteristics,
analyzing the cyclostationarity of motor vibration signals is
important and spectral kurtosis is a provenmethod for finding
the impulsiveness of rotary machinery [24].

A. SPECTRAL KURTOSIS
Kurtosis is a widely used term in the probability theory and
statistics which measures the deviation of a random dataset
from the Gaussian distribution [28]. In any engineering field
where data tends to be normal, kurtosis plays an important
role in the detection of non-Gaussianity of the data. In the
field of engineering maintenance, kurtosis acts as an indica-
tor of signal impulsiveness, especially for rotary machinery
vibration response [29], [30]. Statistical measurement of kur-
tosis is expressed in eq (1):

kurtosis (x) =
E{(x − µ)4}

σ 4 − 3 (1)

where, x, µ and σ are time series signal, mean of the signal
and standard deviation of the signal, respectively. Spectral
kurtosis is an addition to the statistical measures that can
detect the non-Gaussian component of the signal as well as
find their locations in the frequency domain. Introduced by
R. F. Dwyer, initially it was proposed to be complemented
to power spectral density (PSD), a function that provides the
frequency composition of energy of a signal [31]. V. Capde-
vielle et al. improved the definition of SK for higher order
statistics and defined it as the fourth order cumulant of the
Fourier transform [32]. J. Antoni presented an elaborated
study on SK and established a formal theory to identify non-
Gaussian characteristics for both stationary and nonstationary
signals [33].

B. FAST KURTOGRAM
Kurtogram is a useful tool for the representation of spectral
kurtosis. It assumes that in the fault state, uneven transients
are associated with an optimal frequency/frequency resolu-
tion that maximizes the kurtosis values. Computation and
representation of spectral kurtosis for a nonstationary sig-
nal are quite complicated because it is inherently used for
Gaussian and stationary signals. J. Antoni had some research
on finding solutions to these problems and came out with a

FIGURE 1. f/1f plane representation for 1/3 binary tree Kurtogram
estimation.

formal representation of SK based on fast kurtogram [33],
[34]. He used Wold’s theorem, which was initially proposed
for the decomposition of linear time variant signals for a
dynamic evolution approximation. According to this theo-
rem, finite time variant signals, in our case themotor vibration
signals, can be expressed as the sum of two time series, one
deterministic and another stochastic. Wold’s decomposition
for a finite length vibration signal, x(n) can be expressed as

x (n) =
∫ 1

2

−
1
2

H (n, f )ej2π fndZx(f ) (2)

where, dZx (f ) is an orthonormal spectral increment and
H (n, f ) is the complex envelope of x(n) at frequency f. Based
on this envelope, SK can be expressed as

Kx (f ) =

〈 ∣∣H (n, f )4
∣∣〉〈 ∣∣H (n, f )2
∣∣〉 2 − 2 (3)

The above equation holds several properties. The facts, that
SK of a stationary process is proportional to frequency and
SK of a stationary gaussian process is identically zero, will
allow us to localize the presence of any additive sidebands in
the signal. When there is a presence of fault in the vibration
signal, some extraneous frequencies are found the spectrum.
Kurtogram uses a (f, 1f) brace representation where f is
the optimal frequency and 1f is frequency resolution which
maximize the kurtosis. Figure 1 illustrates the (f,1f) plane of
kurtogram representation in 1/3 binary tree for N number of
decomposition levels. Frequency localization and frequency
concentration are two most important propositions of kur-
togram to be implemented efficiently in practice. For the
kurtogram to be interpreted as the kurtosis od the signal at
a (f, 1f) pair, it should act like a band-pass filer i.e. (f −1f;
f + 1f). Also, to localize the frequency band to demodulate
the signal, estimator should fulfill the Bedrossian’s theorem

106970 VOLUME 8, 2020



T. A. Shifat, J. W. Hur: Effective Stator Fault Diagnosis Framework of BLDC Motor Based on Vibration and Current Signals

which implies 1f ≤ f . To comply with these proposi-
tions, an effective 1/3 binary tree structure is used during
the computation of Fast Kurtogram [33]. Major steps of FK
computations are:

Step 1: Two prototype filters h0 (n) = h(n)ejπn/4 and,
h1 (n) = h(n)ej3πn/4 are chosen to produce a tree of filter
banks. This filter bank will generate a sequence of coef-
ficients cik (n) from the ith filter at the k th level of decom-
position. Here, i is the sequence number of filter and k is
decomposition level number. It is worthy to mention that at
k = 0, c0 (n) = x(n).

Step 2: Later, high-pass sequences are transformed into
low-pass sequences by taking a product of (−j)n after filtering
with h1 filter in order to preserve the frequency ordering.
Step 3: After a down sampling by a factor of 2, cik (n)

produces two new sequences c2ik+1(n) and c
2i+1
k+1 (n) at level k

+ 1.
Step 4: Step 2 is iterated from k = 0 to K − 1. At each

level the number of filtered sequences is increased, and length
is decreased by a factor of 2, so that the overall amount of
datapoints remains the same.

Step 5: Computed coefficients cik (n) are interpreted as the
complex envelope of signal x(n) as the frequency ordering

is kept unchanged (Step 2). Then, the central frequency and
the frequency resolution can be found as

fi =
(
i+ 2−1

)
2−k−1 (4)

(1f )k = 2−k−1 (5)

Step 6: The kurtogram is finally estimated by com-
puting the kurtosis of all sequences cik (n) where, i =
0, 1, 2 . . . . . . . . . 2k − 1 and k = 0, 1, 2, . . . . . . . . .K − 1 and
can be expressed as follows:

K i
k =

〈 ∣∣∣cik (n)4∣∣∣〉〈 ∣∣cik (n)∣∣2〉 2 − 2 (6)

C. AUTOGRAM
A. Moshrefzadeh et. al. proposed Autogram, based on unbi-
ased autocorrelation (AC) to detect the transients even in
presence of strong noise [25]. This method is already proven
to be quite successful in detecting fault related information
in bearings and gearboxes. Unlike using a filter-bank as men-
tioned in previous section, Autogrammeasures the kurtosis of
complex envelope’s unbiased autocovariance function mak-
ing the best use of the cyclostationarity behavior [34]. There
are mainly four steps of Autogram computations: briefly
described below:

Step 1: Vibration signal is decomposed into frequency
bands by means of wavelet transform. Unlike the filter-bank
proposed in FK, Autogram uses Maximal Overlap Discrete
Wavelet Packet Transform (MODWPT) for finding the opti-
mal frequency bands. MODWPT is introduced to strengthen
the WT coefficients that might get hampered due to down

sampling. An elaborated description of MODWPT can be
found in [35].

Step 2: The novelty of Autogram is that it uses autocovari-
ance function to characterize 2nd order cyclostationarity of
motor vibration signals. In this step, unbiased AC of squared
envelope is computed for each node. AC has several advan-
tages such as- it can remove uncorrelated components of the
signal which are directly related to fault, also, since AC is
performed in each node separately, SNR of the demodulated
signal is increased. Instantaneous autocovariance function
can be described as:

Rxx (ti, τ ) = E {x(ti − τ/2)x(ti + τ/2)} (7)

Rxx (ti, τ ) = Rxx (ti + T , τ ) (8)

here, τ = q
FS
; q = 0, 1, 2 . . . . . . . . .N − 1

E{.} is the expectation operator, x is the vibration signal,
τ is the time lag and ti is the instantaneous time.

Later, unbiased AC is computed as below:

R̂XX (τ ) =
1

N − q

N−q∑
i=1

X (ti)X (ti + τ ) (9)

X is the vibration signal filtered by MODWPT in Step 1.
Step 3: In this step, efficient frequency band for demod-

ulation is selected for motor fault diagnosis. In kurtogram,
it is done using the computed kurtosis from the filtered time
signal. In Autogram, kurtosis values of all nodes resulting
from step 2 is presented in a colormap. In this representation,
color scale is proportional to kurtosis value, vertical axis
presents the MODWPT decomposition level and horizontal
axis presents the frequency. The modified equation of kurto-
sis, indicator of the impulsiveness of AC at each node, can be
modified and expressed as

KX =

∑N/2
i=1

[
R̂XX (i)−min(R̂XX (τ ))

]4
[∑N/2

i=1

[
R̂XX (i)−min(R̂XX (τ ))

]2]2 (10)

KX ,u =

∑N/2
i=1

∣∣∣R̂XX (i)− X̄T (i)∣∣∣4
+[∑N/2

i=1

∣∣∣R̂XX (i)− X̄T (i)∣∣∣2
+

]2 (11)

KX ,l =

∑N/2
i=1

∣∣∣R̂XX (i)− X̄T (i)∣∣∣4
−[∑N/2

i=1

∣∣∣R̂XX (i)− X̄T (i)∣∣∣2
−

]2 (12)

where N is the length of vibration signal. |� |+ and |� |−
mean that only positive and negative values are considered,
respectively. X̄T (i) is the threshold level and is defined as
follows:

X̄T (i) =
1
k

i+k−1∑
j=i

R̂XX (i) (13)

Step 4: Lastly, fault characteristics frequencies are
extracted for further diagnosis information from the signal.
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FIGURE 2. Winding distribution and fault location of BLDC motor used for
testing.

The level and node where the impulsiveness takes place the
most is also calculated as squared envelope spectrum (SES)
[25], [35]. SES can be further extended to calculate other
decomposition levels too to get an intuition about the strength
of faulty level SES magnitude.

III. TEST BENCH AND DATA DESCRIPTION
Precise control, noiseless operation and reliability are the
main advantages of BLDCmotor. Since it lacks a mechanical
commutator unlike conventional DC motors, commutation
is done by electromagnetic induction between stator (elec-
tromagnets) and rotor (permanent magnet). The magnetic
poles of stators are controlled by the current-carrying stator
windings. When a coil is energized, it creates corresponding
pole following the current polarity. And, the pole of sta-
tor electromagnet influences the nearest magnetic pole of
rotor to rotate by continuous attraction and repulsion [36].
Since the BLDC motor’s entire commutation is based on
this electromagnetic property, a fault in the stator winding
will largely affect the overall performance of BLDC motor.
Winding short-circuit is one of the most commonly occurring
faults in BLDC motors due to the insulation breakdown in
high temperature or manufacturing defects.

There are many kinds of BLDC motors used for different
purposes based on the kind of inputs, number of poles, rotor
position, etc. The motor used for this study is a 2-pole interior
permanent magnet (IPM) type of BLDCmotor with 12 wind-
ings in the stator. An increased number of winding coils
certainly gives better control and smooth operation of motor.
Besides, this increases the chance of having a short-circuit
among the windings due to manufacturing defects or aging
caused by complex operations. In this experiment, we have
created winding short-circuit deliberately by shorting two
different windings. The illustration of BLDC motor’s elec-
trical commutation is presented in Fig. 2. The motor used for
tests has 12 coil windings in the stator where 4 of them are

interconnected to create a single phase. Thus, there are three
combinations of phases each having four common windings
connected together. Internally, these three phases are con-
nected in a star connection with single common terminal and
in the outer part, we have three terminals namely phase A,
phase B and phase C. These phases are energized using an
external input source with constant power supply. A motor
driver is used to convert the DC input whose working prin-
ciple is based on switching phenomena controlled by some
transistors. Hall effect sensor (HES) is installed on each phase
of the stator to know the exact location of rotor’s poles, N
and S. Based on the pole position, stator coils are excited
with a positive current, negative current and no current at
a certain time. This is done by the pulse width modulation
(PWM) technique. For instance, in Fig. 2, phase C is excited
with positive current and phase A is with negative current
whereas phase B is not excited. For the next commutation
step, phase A is negative, phase B is positive and phase C is
kept disconnected. Rotary part, which is necessarily a perma-
nent magnet, tries to align with the electromagnet’s polarity
but never catches it as the stator windings are energized with
different polarity at a specific time interval, continuously.

Now, if there is a short-circuit between two adjacent wind-
ings, two different phases will be energized with same polar-
ity at the same time. This will create a misalignment between
the signal of HES and windings response. On the other hand,
rotor will face interference on every rotation it makes leaving
a series of impulses on motor’s vibration. The magnitude of
this impulsiveness is dependent on the speed of rotor and
the number of windings having short-circuit. Several studies
have shown the generation of noise and vibration due to
imbalanced electromagnetic interference in permanent mag-
net motors [8], [37]. In practice, a variety of reasons cause this
type of short-circuit staring from manufacturing defects to
excessive heat in the stator coil due to complicated operating
conditions. To investigate winding related faults, we created
winding short-circuit fault by connectingA1 andB1windings
shown in Fig. 2 using a copper wire. This short-circuit caused
excessive heat in initial stage and later gradual degradation
of motor exhibiting irregular noise and vibration. Several
motor parameters during the test were closely monitored such
as motor currents, torque, speed, coil temperature, output
voltage at the generator end etc. Threshold for different motor
health states are obtained by analyzing the trend of changes in
these parameters. For example, motor speed was dropped by
a few hundred with time, but the noise and vibration produced
by the motor increased significantly. A list of parameter
thresholds can be found in Table 1.

To perform tests on BLDC motor, a conventional
generator-motor (G-M) setup is used to avoid complexity and
ease in collecting data different motor operating conditions.
G-M setup allows us to build, control andmodifymotor exter-
nal parameters to smoothly. Figure 3 represents the test bench
photo where the tests were performed for the condition moni-
toring of the motor. The motor is controlled using a controller
driver which has embedded hall effect sensors (HES) and
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FIGURE 3. Test rig view of BLDC motor test.

TABLE 1. Thresholds for different health states.

speed control potentiometer in it. 24 VDC input was applied to
the motor to power it up and some loads were connected with
the generator in a delta configuration. Voltage produced at the
generator indicates the efficiency of BLDC motor, which is
also used as a parameter to categorize different health states.
A brief description of major parameters for the motor test is
shown in Table 2. During performing tests, vibration data was
recorded using NI 9234 IEPE module and the sampling rate
was set to be 25.6 kHz. Line currents were collected using NI
9246 module and sampled over 5 kHz frequency.

IV. RESULT ANALYSIS
A. FAULT DETECTION AND DIAGNOSIS
For this study, vibration response of the motor is monitored
for the entire lifetime of motor and the data is represented

TABLE 2. Parameters for motor test.

in Fig. 4 for three different health states. Entire lifetime of
the motor tested was around 450 hours. In the Fig. 4(a),
only the stages where motor showed a transition from one
health state to another are shown. Vibration was compar-
atively lower in healthy state compared to failure stages.
Also, as the time goes, motor’s vibration started to produce
nonstationary signals with impulses. To closely speculate
vibration signals, we took 10000 samples from each health
states and the time series signal is presented in Fig. 4(b), 4(c)
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FIGURE 4. (a) Motor vibration response in different health states, (b) Healthy state vibration, (c) Incipient failure state vibration, (d) Severe failure
state vibration, (e) Healthy state vibration in frequency domain, (f) Incipient failure state vibration at frequency domain, (g) Severe failure state in
frequency domain.

and 4(d). Frequency domain representation is obtained by dis-
crete Fourier transform (DFT) using a fast Fourier transform
(FFT) algorithm. It can be noticed from Fig. 4(e)-4(g) that
as the fault propagates, the presence of fault sidebands also
increases as seen from the DFT transform of vibration signals
in different states. FFT spectrums illustrated in Fig. 4 give
us the intuition of the presence of fault frequencies in the
signal. However, specifying the fault location and finding an
optimum demodulation band is a challenging task just by
observing the frequency domain representations. Therefore,
a further efficient and adaptive technique; spectral kurtosis is
used to represent the signals into different frequency levels.

Spectral kurtosis (SK) is proven to be highly efficient tool
to detect impulsiveness in rotary machinery signals. How-
ever, in intricately varying circumstances, analyzing only the
global kurtosis values might lead to an erroneous estimation.
As seen from Figure 4(e)-4(g), there is a certain discrepancy
between the frequency response of healthy state and faulty
states. But, in terms of two faulty states, repetitive and fluc-
tuating frequencies are making it difficult to come into a
conclusion for a certain frequency range. This can be resolved

by observing the signal’s SK distribution in the frequency
dyad. Finding the fault magnitude as a form of maximum
spectral kurtosis will allow us to categorize different fault
states. Therefore, we took the help of two different SK repre-
sentation approaches of to find the most effective one.

For the fast kurtogram (FK) computation, we use the
original sampling frequency 25.6 kHz which was used to
acquire the vibration signals. Number of levels for frequency
resolution was selected by a trial and error basis. After inves-
tigating different values, we choose 5 to balance the time-
frequency resolution as well as a better fault identification.
Figure 5 illustrates the FK representations of vibration signals
separated by five levels in 1/3 binary tree. By analyzing
these FK representations, we can easily determine the fault
frequency, bandwidth, and frequency with the highest kurto-
sis etc. Figure 5(a) represents FK of motor vibration signal
at healthy state with maximum kurtosis, Kmax = 0.9 at
level 1.6. Fig. 5(b) and 5(c) represent the FK for incipient
and severe failure states with Kmax = 2.6, and 5.7 at level
3.5 and 4, respectively. Center frequencies, fc where the
kurtosis is maximum is identified as 10.67 kHz, 11.20 kHz
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FIGURE 5. Vibration representations in Fast Kurtogram, (a) Healthy state,
(b) Incipient failure state, (c) Severe failure state.

and 4.40 kHz for healthy, incipient failure and severe failure
states, respectively. Bandwidth of Kmax is also obtained from

TABLE 3. Features computed from fast kurtogram.

FK analysis which indicated the range of frequency where
the fault was stronger. Energy of the signal at the bandwidth
carries significant information about the fault and can be
considered as a diagnostics index too. On the Fig. 5(a), 5(b)
and 5(c), bandwidth for maximum kurtosis is shown with red
dotted lines for healthy, incipient failure and severe failure
state, respectively. Summary of the diagnostic information
extracted from FK computation is presented in Table 3.

On the other hand. Autogram computes the SK of vibration
signals using a different type of filter named MODWPT as
explained in section II. During computation, this filter is
applied to vibration signals at each level of decomposition
making it a slower process compared to FK computation.
Moreover, computation becomes a bit more complex as the
unbiased autocorrelation of the filtered signal is computed in
this approach. As Autogram takes the measurements at each
node separately with some complex estimations, it requires
more computational time compared to FK. Autogram repre-
sentation of vibration signals are shown in Fig. 6(a), 6(b) and
6(c) for healthy, incipient failure and severe failure states,
respectively. Autogram shows brighter regions in colormap
indicating maximum kurtosis values that are 5.8, 9.8 and
22.72 at level 5, 4 and 3 for healthy, incipient failure and
severe failure states, respectively. The bandwidths computed
by each technique is quite similar, but, the center frequency
where the fault is localized, varies due to the different
approach of computations. Maximum kurtosis calculated by
Autogram is greater than that of FK approach for each health
state signals. This implies Autogram will be robust technique
for fault detection even in the presence of noise. Param-
eters measured from Autogram computation are presented
in Table 4.

Analysis of spectral kurtosis for finding fault frequency
and bandwidth provides significant information to distinguish
between fault states with different fault magnitudes. Major
advantage of SK compared to other non-stationary signal
analysis techniques is that it can automatically indicate the
demodulation frequency bandwidth without any prior knowl-
edge. However, the initial degradation of health states and
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TABLE 4. Features computed from Autogram.

the incipient failure moment cannot be detected effectively
by this technique. Since a winding short-circuit was made in
the stator winding of themotor, there was a significant change
in phase current too.

Analyzing only the time series motor current is not suf-
ficient to detect the variations in phase currents. Therefore,
motor current is analyzed by determining frequency compo-
nents using fast Fourier transform (FFT) and the density of
frequency components using power spectral density (PSD).
Fig. 7 represents the line current trends of BLDC motor in
all three states of health. Time series current signals of all
health states are presented in Fig. 7(a), 7(d) and 7(g). As
the motor propagates to breakdown, it starts to draw more
current from the source to keep the synchronous constant
speed under similar loading and operating condition. Max-
imum current recorded for phase A is 2.6A at the healthy
and incipient failure states whereas it increased to 4.5A at
the severe failure state. Since the winding-short circuit was
on phase A and phase B, both phases show identical char-
acteristics throughout the entire lifecycle of motor operation.
To avoid redundancy in fault characteristics, we present the
current analysis of phase A only. The motor used for testing
had a 120◦ conduction in a sex step continuous operation of
phase A, phase B and phase C. Therefore, in a normal opera-
tion, tripled harmonics (3rd, 6th, 9th . . .) which are necessarily
zero sequence components, are not present in a phase current.
This phenomenon follows the Kirchhoff’s current law (KCL)
which states the sum of three phase currents must be zero
[7], [12]. Violation of KCL results a peak for every third
harmonics of motor current spectra which can be observed
from Fig. 7(b), 7(e) and 7(h). Third harmonic for healthy state
current is not present whereas it has a noticeable peak for
the faulty states. Power spectral density (PSD) gives a better
intuition about the current characteristics by showing spectral
energies as a function of frequency. Healthy state current
signal has a lower signal strength compared to faulty states
indicating distinguishable information. Maximum spectral

FIGURE 6. Vibration representations in Autogram. (a) Healthy state,
(b) Incipient failure state, (c) Severe failure state.

energy recorded for healthy state current is -17 dB. On the
other hand, -12 dB and -7 dB are recorded for incipient failure
and severe failure states, respectively. However, PSD ofmotor
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TABLE 5. Diagnostic information from MCSA.

current does not show variety of trends between incipient
failure signal and severe failure signal making it not suitable
for fault classification. Diagnostic features from MCSA are
briefly presented in Table 5.

Since the FFT does not include the time domain informa-
tion, we took the advantage of using short-time Fourier trans-
form (STFT) to analyze current signals. In STFT, magnitude
of frequency is presented as a function of time series samples
acquired from sensor. Figure 8 is the STFT representation
of motor current for different health states. The presence of
third harmonic is clearly visible in the STFT spectrogram and
the frequency magnitude of each harmonic is presented in a
colormap format. 3rd and 6th harmonics of motor current are
shown with red dashed rectangle in the STFT spectrogram
presented in Fig. 8.

Besides localizing the impulsiveness in the vibration sig-
nal, the envelope responsible for the highest kurtosis, named
squared envelope spectrum (SES) can also be extracted using
these techniques. SES is commutated by taking FFT of the
envelopes at the nodewith highest kurtosis using both demod-
ulation approaches. Figure 9 represents the SES of different
vibration signals extracted using FK and Autogram. Figure
9(b) and 9(e) are the complex envelopes of incipient and
severe failure signals extracted at level 3.5 and 4 from FK
at frequency 11.2 kHz and 4.4 kHz, respectively.

SES computed from Autogram are represented in Fig. 9(c)
and 9(f) for incipient failure signal and severe failure signal at
frequency level 10.8 kHz and 10.4 kHz, respectively. These
SES imply the strength of faults in each health states of
motor. One thing is noticeable from Fig. 9 is that the SES
calculated from Autogram has a significantly higher peaks
compared to that of FK computation. Since these spectrums
indicates diagnostic information in the demodulation band,
using Autogram to classify faulty types and fault magnitudes
will provide a better outcome over FK.

B. PERFORMACE ANALYSIS OF PROPOSED METHOD
As in the initial state vibration does not change significantly,
motor current signature analysis is an effective approach to
monitor motor performance. MCSA is the most effective
and in many cases the only way to diagnose stator-related
faults at the incipient stage. This is also highlighted at the
MCSA presented for this study too. Third harmonic of motor
current is used as a diagnostic parameter and it showed
clearly distinguishable trend in healthy and incipient failure
state. However, the fluctuation of motor current did not occur
drastically as the fault propagates which makes it difficult to
categorize different fault types. As seen from third harmonic
analysis, magnitude and frequency of harmonic components
remain almost same for incipient and severe failure states.
On the other hand, vibration analysis by taking advantage of
spectral kurtosis provided distinguishable characteristics in
both fault states. Meaningful information was extracted from
different fault states by comparing the magnitude of spectral
kurtosis at different frequency levels. Fast kurtogram and
Autogram have shown great performance in extracting and
analyzing fault magnitude from motor vibration signals. Due
to the implementation ofMODWPTfilter and autocorrelation
techniques, Autogram computation is more time consuming
compared to fast kurtogram computation. However, extrac-
tion of a better SES for the faulty node has made Autogram
a more advantageous technique. Information carried by SES
can be further implemented for characterizing signals with
higher noise.

Table 6 summarizes the proposed diagnosis framework
combining multiple sensor data and fault detection tech-
niques. For early fault detection, analyzing the motor current
has been the best approach. To know the magnitude of fault
and the frequency band in fault signals, spectral kurtosis can
be computed using FK and Autogram. If the data size is large,
FK should be used to find the demodulation band with fault
as it requires a lesser amount of time. However, for a smaller
dataset or noise affected dataset, Autogram will be preferred
over FK.

Fault in the stator is regarded as a crucial form of fault in
motors because at the beginning it might not show any exter-
nal sign of warning. Gradually, it turns into a root cause of
excessive heat, imbalanced line currents, reduction in torque,
unusual vibration, etc. In cases, a trivial insulation break in
stator winding can lead to breakdown of the motor’s entire
operation. Not to mention, in industrial applications this can
create a catastrophe causing serious damage to properties as
well as humans. Being an electromechanical system, moni-
toring both the electrical and mechanical behaviors of motor
at the same time will provide the best possible outcome for
the condition monitoring of motors. As seen from the study
MCSA is a handy tool in detecting third harmonics in motor
currents at the earliest stage of stator faults. On the other
hand, FK and Autogram are two robust approaches to find the
demodulation frequency band with highest kurtosis making a
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FIGURE 7. MCSA using FFT and PSD at different health states.

FIGURE 8. Time-frequency representation of motor current, (a) Healthy state, (b) Incipient failure state, (c) Severe failure state.

distinguishable fault patterns between incipient failure stage
and severe failure stage.

Many other parameters can also be monitored for the
FDD of motor such as- stator coil temperature, rotor bar
magnetism, motor torque to name a few. But vibration and
line current monitoring are quite simple techniques due to
ease in data collection and comparatively cheaper measuring

instruments. Moreover, vibration and current of a BLDC
motor can be monitored continuously without interrupting
the motor operation. This type of online condition monitoring
will reduce the risk of system failure by detecting the faults
at the earliest stage. Also, demodulation frequency and fault
magnitudes extracted from vibration analysis can be further
implemented for decision making and prognostics.
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FIGURE 9. (a) Vibration signal at healthy state, (b) FK computation of SES at healthy state, (c) Autogram computation of SES at healthy
state, (d) Vibration signal at incipient failure state, (e) FK computation of SES for the level with fault, (f) Autogram computation of SES for
the level with fault, (g) Vibration signal at severe failure state, (h) FK computation of SES for the level with fault, (i) Autogram computation
of SES for the level with fault.

TABLE 6. Summary of proposed diagnostics framework.

V. CONCLUSION
This study reports the diagnosis and detection of wind-
ing short-circuit fault in a permanent magnet BLDC motor
using multi-sensor data. A fault was deliberately created by
shorting two windings of stator coil causing irregularity in
the electromagnetic commutation. Due to this fault, initially
excessive heat was produced at the stator coil andmotor’s nor-
mal operation declined gradually over time. To diagnose and
categorize different health states, data acquired frommultiple
sensors such as- current and vibration are used. Monitoring

both the electrical and mechanical behavior of BLDC motor
at the same time provides a thorough and accurate condi-
tion monitoring in the presence of winding fault. Spectral
kurtosis computed from vibration signals is considered as a
diagnostic index as it carries significant information about
the signal impulsiveness. Fast kurtogram and Autogram are
used to compute and represent kurtosis at different frequency
levels and their performance is evaluated based on different
health states of motor. Both methods are found to be quite
effective in detection and localization of transients and hidden
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nonstationary. However, the early fault or the incipient failure
moment is a difficult to detect by estimating the kurtosis
values since the vibration will be varied in different operating
conditions. So, we took the advantage of motor current signa-
ture analysis for early fault detection as it carries significant
information about the irregularity in stator winding. Inspec-
tion of third harmonic of stator current provided distinctive
evidence to categorize healthy and faulty states. Besides,
analyzing the motor current in time-frequency domain gives
a better intuition about the fault magnitude and instance at the
earliest possible time.Monitoring and analyzing multi-sensor
data have presented better intuition about the fault magnitude
and threshold.

This work can be further extended to diagnosis of several
other motor faults such as rotor bar related faults, eccentricity
faults, demagnetization faults etc. Diagnostics information
found from this study will further be implemented for the
prognostics of BLDC motor which is a crucial part of pre-
dictive maintenance.
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