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ABSTRACT To improve the user experience, an increasing number of mobile applications offload their
computing tasks to servers with powerful computing capabilities. The fog radio access network (F-RAN)
incorporates the concept of ‘‘fog computing’’ into the access network architecture, endowing an edge
network with computing, storage, communication and control functions. In this paper, we consider a
multiple fog access point (F-AP) and a multiuser F-RAN, where each user generates two different tasks:
communication and computation. To satisfy the diverse quality of service requirements of different users,
we jointly optimize the spectrum access, computation offloading and radio resource allocation. The problem
is modeled as a mixed integer nonlinear programming problem, which is difficult to solve. In view of
this, we propose a genetic algorithm based on convex optimization, i.e., the genetic convex optimization
algorithm (GCOA), which divides the mixed integer nonlinear programming problem into two parts,
i.e., optimization and convex optimization, to solve it in polynomial time. Simulation results are provided to
verify the effectiveness of the algorithm.

INDEX TERMS Fog radio access network, resource allocation, access strategy, offload selection, genetic
convex optimization algorithm.

I. INTRODUCTION
In the fifth generation (5G) mobile radio system, the rapid
popularity of mobile terminals will greatly challenge the
existing communication infrastructure and network topol-
ogy [1]. At the same time, the development of diverse Internet
mobile applications, such as the Internet of Things (IoT),
social networks, and real-time video communications, places
higher requirements on the transmission rate and network
capacity. Some researchers have stated that from 2015 to
2020, the expected network traffic will increase by more than
1000 times [2], [3]. Cloud radio access network (C-RAN) has
the characteristics of high capacity, low latency, high energy
efficiency and flexible deployment. C-RAN has become one
of the solutions for future 5G cellular networks that can
provide high energy efficiency and high data rate [4]–[6].
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The fog radio access network (F-RAN) is an extension
of the edge of the cloud radio access network. It refers
to a large number of processors with computing, storage,
communication and other functions, called the fog-access
point (F-AP, also edge computing node), placed at the edge
of a cloud network (e.g., cell base stations and routers),
forming a heterogeneous network in which cloud servers,
F-APs and users coexist. It is considered to be data inten-
sive and delay sensitive for a large number of mobile
users [7]–[16].

In recent years, researchers from academia and industry
have studied a wide range of issues related to the F-RAN.
They may include system and network modeling, optimal
control, multiuser resource allocation, implementation, and
standardization. In [17], [18], and [19], the joint allocation
of radio and computing resources to save time and energy
when offloading tasks to the cloud was considered. Simi-
larly, the authors of [20] studied joint resource allocation
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and collaborative offloading methods in the F-RAN. Sepa-
rable tasks can be performed cooperatively in the fog and
cloud, but the authors did not explain how to determine the
cooperative factors between fog and cloud networks. In [21],
the authors studied the problem of delay-aware wireless com-
munication resource allocation and used Lyapunov’s method
to design a resource allocation scheme that can reduce system
delay. The authors in [22] proposed a computing resource
allocation algorithm in a multi-F-AP scenario. This algo-
rithm can overcome the limitation of the computing capac-
ity of a single F-AP and obtain a delay performance gain.
In addition, [23] proposed awireless communication resource
allocation algorithm that can meet the constraints of sys-
tem computing resources and designed a loosely coupled
architecture to reduce the burden on the fronthaul link and
to achieve ultralow latency. References [24] and [25] stud-
ied the optimization of wireless and computing resources to
minimize energy consumption in a single-cell and multicell
network under a given delay constraint by deleting them
jointly. However, all tasks in this case are performed in the
cloud, and the access relationship between the user and the
base station is set in advance. References [26] and [27]
considered the fog node cooperation mode and selected the
appropriate number of fog nodes to perform user computing
tasks on the premise of meeting the communication resource
constraints. References [28] and [29] considered the opti-
mization problem of minimizing the sum of the energy and
delay consumed by offloading in the case of multiple users,
a fog node and a cloud server. Since only one fog node exists,
there is no need to consider optimizing user and fog node
access. Reference [30] is similar to [28] and [29] but con-
siders users with multiple fog nodes, where user tasks are not
further transmitted to the cloud and fog processing scenarios.
In [31], the research on access scheduling and interference
coordinationmethods in heterogeneous cellular networkswas
conducted.On this basis, some studies have proposed a lay-
ered cloud computing system. The layered cloud computing
system can use both cloud computing and fog computing
resources. Despite providing users with flexible choices,
due to the distinctive features of different offload strategies,
optimizing offload decisions is complicated. In [32], radio
resource management was optimized to maximize its own
quality of experience (QoE), and a distributed algorithm was
designed for fixed task allocation scenarios. In [33]–[38],
the joint design of resource allocation and offload determi-
nation was studied. In particular, an algorithm based on the
branch and bound concept was proposed in [33] to seek the
best solution for the offload cost. Based on the simplified
radio resource model, [34] and [35] combined computing and
communication resources to optimize the computing offload
decision and designed a suboptimal algorithm to reduce
the computing complexity. A similar algorithm was studied
in [36] to ensure fairness. In [37], a distributed optimization
framework was designed based on the alternating direction
method of multipliers (ADMM), and in [38], it was extended
to a nonorthogonal multiple access scheme.

To the best of our knowledge, the types of tasks considered
in the above work are computing tasks, that is, communi-
cation resources exist to satisfy the demands of computing
tasks. Even if the communication resources are allocated,
it is also necessary to better meet the needs of the computing
tasks, such as obtaining lower latency or lower energy con-
sumption. There are few articles that consider the types of
tasks that are mainly based on communication needs (such as
high-speed audio and video calls). Few articles have consid-
ered how communication tasks and computing tasks coexist
in the same system and how to balance the resources used
by these two types of tasks to meet the user QoS. In addi-
tion, the resource constraints considered in the above work
are mostly computing resources, communication resources,
computing offload, energy consumption, etc.

This work studied cloud wireless access systems with
cloud servers, multiple users and multiple fog nodes. Each
user has to share the tasks performed by the fog wireless
access network and interacts with only one of the many
fog nodes. Depending on the computing power of the fog
node and the load of the fronthaul link, tasks can be per-
formed in the fog node or the cloud, and users compete with
each other. By adjusting the user association and computing
offload and combining communication resource allocation
and computing resource allocation to achieve a balance
between communication load and computing load, the max-
imum communication rate is achieved, while the computing
delay is minimized. Through resource allocation and the
balance between the communication load and computing
load, the maximum communication rate and the minimum
computing delay can be achieved.

The contributions of this article include the following
aspects:
• Motivated by improving the quality of service of users,
this paper jointly considers communication and com-
puting resource allocation in the F-RAN. We jointly
consider edge computing, cloud computing, edge com-
puting task migration, and network spectrum resource
allocation to establish the system model. By adjusting
the user association and computing offload, and by com-
bining communication resource and computing resource
allocation to achieve a balance between the commu-
nication load and computing load, the objective is to
maximize the user rate of all communication tasks and
minimize the delay of all users to generate computing
tasks.

• We formulate a mixed integer nonlinear program-
ming (MINLP) problem. Considering the 0-1 integer
constraints of user association, computing migration,
computing resources, and frequency band resource allo-
cation in the model, drawing on the idea of the branch
and bound method, a genetic convex optimization algo-
rithm for hierarchical optimization of user association
and resource allocation is proposed.

• We carry out simulation analysis in the case of comput-
ing tasks and communication tasks of different priorities
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and analyze the different impacts of F-AP nodes,
radio frequency remote head(RRH) nodes, bandwidth,
computing resources and task importance on resource
allocation.

• We numerically prove that the algorithm proposed
herein has polynomial-level computational complexity
and that its performance is better than that of discrete
particle swarm optimization, the greedy heuristic algo-
rithm and the traditional genetic algorithm.

The rest of this paper is organized as follows. Section II
introduces the systemmodel. We formulate the MINLP prob-
lem in section III. We propose a genetic convex optimization
algorithm in section IV. Numerical results are provided in
section V. Finally, we conclude the paper in section VI. A list
of notation and abbreviations used throughout the paper is
provided in Table 1.

II. SYSTEM MODEL
The system model is shown in Figure 1. We consider a
multi-cell solution with F-RAN architecture. This solution
consists of the following network equipment: M F-APs,
R RRHs, 1 HPN, and K randomly distributed F-UEs.
F-AP set, RRH set and F-UE set are expressed as M =

{1, 2, · · · ,m, · · ·M}, R = {1, 2, · · · , r, · · ·R} and E =
{1, 2, · · · , e, · · ·E}, respectively. There are N RF remote
heads, where N = M + R. The entire available spectrum
bandwidth is B Hz.

Radio frequency remote head, which mainly includes RF
module, related amplifier/filter and antenna. It also includes
digital signal processing, digital/analog conversion, analog-
to-digital conversion and other modules. The radius of the cell
is denoted as dBS . The computing power of each F-AP is the
same, and the computing rate is fF−AP. F-AP and RRH have
the same service radius dRRH .
F-UE i randomly generates the following two tasks, which

are represented by a task indicator ei ∈ {0, 1}, where ei = 0
indicates that the F-UE i requests a computing task, and
ei = 1 indicates that the F-UE i requests a communication
task. Computing tasks and communication tasks are modeled
as follows.

A. COMPUTING TASKS
In order to simplify the model, it is assumed that the offload-
ing strategy of the F-UE itself is known, and the computing
tasks retained in the F-UE itself are not considered. All the
computing tasks expressed are tasks that need to be offloaded
to the F-AP or BBU pool. Computational tasks are expressed
using a hard deadline task model. Expressed as follows,
the computing task can be represented by a three-field symbol
c = {L, τD,X}.This common symbol contains information
on the task input data size L (in bits), completion deadline
τD (in seconds), and computing intensity X (CPU cycles per
bit). It is required that task must be completed before the hard
deadline τD.

TABLE 1. Summary of notations in this paper.

There are three ways to complete a computing task. The
first is to execute in the F-AP, the second is to offload the
computing tasks to the BBU pool for execution through F-AP
or RRH, and the third is to directly offload the computing
tasks to the BBU pool for execution through HPN.

B. COMMUNICATION TASKS
In actual scenarios, there are many tasks that require little
or no computing resources. For example, when a user needs
to perform audio and video communication, the main task
requirement is the bandwidth requirement, that is, stable and

108312 VOLUME 8, 2020



Y. Ma et al.: Joint Allocation on Communication and Computing Resources for Fog Radio Access Networks

FIGURE 1. System model.

sufficient bandwidth is required for data transmission. This
creates a communication task with communication resources
as the main constraint. Users can use their own computing
power to meet the computing resource requirements without
occupying the computing resources in the F-AP and BBU
pools in the system.The communication task of user i in this
paper can be expressed by the user’s minimum transmission
rate Cmin

i .
This paper balanced the QoS of two different tasks by con-

trolling the user association, allocated bandwidth, computing
resources, and uploading policies.

III. PROBLEM FORMULATION
Denote ei ∈ {0, 1} as the task indicator, where ei = 0
indicates that F-UE i generates a communication task, and
where ei = 1 indicates that F-UE i generates a computing
task.

A. COMMUNICATION MODEL
The F-UE selects different association methods according
to actual requirements. It is assumed here that the user is
a single antenna user and can only connect to one RRH or
F-AP. In addition, users who do not belong to any RRH or
F-AP can also directly connect with HPN. Therefore, the user

association indication matrix can be defined as

L∗ =


l11 · · · l1M l1(M+1) · · · l1(M+R) l1
l21 · · · l2M l2(M+1) · · · l2(M+R) l2
...

. . .
...

...
. . .

...
...

lE1 · · · lEM lE(M+1) · · · lE(M+R) lE


(1)

where lij ∈ {0, 1}, lim = 1 indicates that the user is connected
to the F − APm, and li(M+e) = 1 indicates that the user i
is connected to the RRHe and li = 1 indicates that user i is
directly connected to HPN. And only one value of each row
of the matrix is 1, and the rest are all 0.

The association matrix between users, RRH and F-APs is

L−=


l11 · · · l1M l1(M+1) · · · l1(M+R)
l21 · · · l2M l2(M+1) · · · l2(M+R)
...

. . .
...

...
. . .

...

lE1 · · · lEM lE(M+1) · · · lE(M+R)

 (2)

In addition, if the computing resources need to be offloaded
to the BBU pool, the corresponding RRH or F-AP must also
be connected to the BBU pool. Use L+ =

[
lE1 lE1 · · · l

E
E

]T
to indicate the association indication matrix for F-UE i to be
connected to the BBU pool through the RRH and F-AP. li = 1
to indicate that the user needs to connect to the BBU pool
through the RRH or F-AP, other-wise it is not required.
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The spectral efficiency of F-UE i connected to RF unit n
and the spectral efficiency of F-UE directly connected toHPN
can be expressed as

ci,n = log2

(
1+

pi,nhi,n
N0

)
(3)

ci,H = log2

(
1+

pi,Hhi,H
N0

)
(4)

where pi,n is the transmission power when the F-UE is con-
nected to the RRH, pi,H is the transmission power when
the F-UE is connected to the HPN, hi,n is the channel gain
between the i-th cell and the n-th radio frequency unit, and
gi,H is the F-UE and The channel gain of the HPN connection
can be expressed as

hi,n = h̃i,nξGi,n

(
d0
di,n

)α
(5)

hi,H = h̃i,H ξGi,H

(
d0
di,H

)α
(6)

where h̃i,n and h̃i,H are Rayleigh random variables, α is the
path loss constant, ξ is the log-normal shadow, antenna gains
are Gi,n and Gi,H , and di,n is the distance between the user
and the RRH.

The frequency band resources are divided and allocated to
the end users as needed, and the end users access the RRHs
and F-AP in the same manner as FDMA. Let Bi denote the
bandwidth allocated to user i, then the transmission rate from
F-UE i to F-AP is

Ri =
∑
n

li,nRi,n (7)

where Ri,n = ci,nBi.
The transmission rate of F-UE i directly to the BBU pool

is

Ri,H = lici,HBi (8)

Fibers are used to connect from the F-AP to the BBU pool,
and the rate assigned to each task is fixed at Re.

B. COMPUTING MODEL
Computing tasks can be performed in F-AP or BBU pools,
and the most important consideration for computing tasks is
to complete the task within a hard deadline.

1) IF F-UE COMPUTING TASKS ARE OFFLOADED TO F-AP
Let fF−AP denote the total computing resources of F-AP i, and
ai,m ∈ [0, 1] denote the proportion of computing resources
allocated by F-AP m to F-UE i. The computing delay caused
by offloading the task to the F-AP is

τi,m =
X

fF−APai,m
(9)

The amount of data uploaded by the F-UE i for computing
is L, then the delay caused by communication is

τ ui,m =
L
Ri,m

(10)

The total delay is

τ ai =
∑
m

li,m
(
τi,m + τ

u
i,m
)

(11)

2) F-UE COMPUTING TASKS ARE OFFLOADED TO THE BBU
POOL THROUGH F-AP(RRH)
Assume that the computing capacity in the BBU pool is ideal,
that is, the computing capacity is sufficient. If the computing
tasks are offloaded into the BBU pool, the computing delay
is approximately zero. The delay consumption is mainly con-
centrated on the communication requirements.

In this case, the tasks to be transmitted not only need to be
transmitted to the F-AP(RRH), but also need to be relayed to
the BBU pool through the F-AP(RRH). The amount of data
that F-UE i needs to upload is calculated as: L, then the delay
from F-AP to BBU pool is:

τHi,n =
L
Re

(12)

The total delay is:

τ bi =
∑
n

li,n
(
τ ui,n + l

H
i τ

H
i,n

)
(13)

3) F-UE COMPUTING TASKS ARE DIRECTLY
OFFLOADED TO THE BBU POOL
The delay loss only includes the transmission delay, which is:

τ ci = li
L
Ri,H

(14)

So, no matter how the tasks are related and where they are
performed, the total delay is

τi =
∑
n

li,nτ ui,n + l
H
i τ

H
i,n +

(
1− lHi

)
τi,n + τ

c
i (15)

In order to minimize the computing delay of the computing
task and maximize the total rate of communication tasks, this
chapter considers user association, computation migration,
spectrum, and computational resource allocation modeling
together. The problems formed are as P0.

P0 : max
l,B,a

λ
∑

i
(1− ei)

(
Ri + Ri,H

)
− (1− λ)

∑
i
eiτi

s.t.

C1 : Ri > Cmin
i , ∀i

C2 :
∑

i
ai,m 6 1, ∀n

C3 : τi 6 τmax
i

C4 :
∑

i
Bi 6 B

C5 : l ∈ {0, 1}

C6 : 0 6 ai,m 6 ei
C7 : 0 6 ai,m 6 li,n

C8 : 0 6 li,n 6
dRRH
di,n

C9 : 0 6 lHi,n 6 ei (16)
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where, ei is a task indicator, and λ is the importance of the
communication task. C1 indicates that the communication
rate of all users who generate communication tasks must be
greater than the required minimum value Cmin

i . C2 represents
a computing resource constraints of F-AP. C3 indicates that
the maximum delay of the user who generates the computing
task cannot exceed the rated delay τmax

i . C4 represents the
constraint of total radio resources. C5 uses the 0-1 variable
to indicate the user’s access policy. C6 and C7 represent con-
straints of available computing resources allocated to user i.
C8 indicates that when the service distance dRRH is greater
than the distance di,n between the user and the RRH, the user
and the RRH can establish a connection. C9 indicates that
the offload indicator will be 1 only when a computing task is
generated.

Since the backpack problem is a complete NP-hard prob-
lem, and the problem P0 is an extension of the backpack
problem, the problem P0 is an NP-hard problem.

IV. PROPOSED ALGORITHM
In this section, through analyzing and transforming the opti-
mization problem, a convex optimization-based genetic algo-
rithm (GCOA) is proposed.

By observing the problem P0, we know that P0 is a
MINLP problem which is NP-hard. A common solution is
to use the branch and bound method to get an acceptable
approximate solution. However, the computational complex-
ity of the branch and bound method is only reduced by 2-3
times compared to the brute force search algorithm, and it
is still exponential. With the increase in the number of users
and F-APs, the computational complexity is unacceptable.
Therefore, it can only be solved using the greedy algorithm.
At present, the genetic algorithm and particle swarm algo-
rithm perform better in this respect.

First convert the problem P0 and expand it to get in (17),
as shown at the bottom of this page.

By observing P0, it can be known that among all unknown
constraint variables, l is an integer variable of 0-1, while
spectrum resource B and computing resource a are contin-
uous variables, and integer variables are coupled with each
other and between integer variables and continuous variables.
The module is a MINLP problem. The general solution to
the MINLP problem is the branch and bound(BB) method.
In the worst case, the workload required by BB increases
exponentially as the problem size increases. Therefore, when
the number of users and the number of base stations increase,
BB cannot be an effective solution.

When the correlation matrix l is determined, the problem
P0 can be converted into the problem P1

P1 : max
B,a

λ
∑

i
(1− ei)

[(∑
n ci,nBi + ci,EBi

)]
− (1− λ)

·

∑
i
ei

[∑
n

[
L

ci,nBi
+

L
Re
+

X
fF−APai,n

+ li
L

ci,HBi

]]
s.t. C1− C4,C6,C7 (18)

The inverse function in form is a convex function. Since
the non-negative weighted sum and composition with affine
mapping are operations that preserve the convexity of the
function, all constraints of the problem P1 can be equivalently
converted to some form where the convex function is less
than or equal to a constant. Obviously, the feasible region of
the problem P1 is a convex set, and the objective function of
the problem P1 is a convex function. Therefore, the problem
P1 is a convex optimization problem, which can be solved by
a recent convex optimization algorithm.

In this way, the problem can be divided into two parts: solv-
ing the convex optimization of each association matrix and
finding the optimal association matrix. Genetic algorithm can
be used to find the optimal correlation matrix, and each corre-
lation matrix is solved by convex optimization method. For-
mation of genetic convex optimization algorithms (GCOA).

The detailed steps are as follows.

A. CHROMOSOME EXPRESSIONS
The main goal of the genetic algorithm is to find the optimal
power correlation matrix when the optimal power alloca-
tion scheme for each connection mode is known. Therefore,
the user association matrix L∗ and the upload indication
matrix L+ can be used as chromosome expressions, i.e.,

L∗ =


l11 · · · l1M l1(M+1) · · · l1(M+R) l1
l21 · · · l2M l2(M+1) · · · l2(M+R) l2
...

. . .
...

...
. . .

...
...

lE1 · · · lEM lE(M+1) · · · lE(M+R) lE


(19)

where lij ∈ {0, 1}, li,m = 1 indicate that the user is connected
to the F − APm, and li,M+e = 1 indicates that the user i is
connected to the RRHe and li = 1 indicates that user i is
directly connected to HPN. And only one value of each row
of the matrix is 1, and the rest are all 0. L+ =

[
lE1 lE2 · · · l

E
E

]T
indicates the association indication matrix that F-UE i needs
to connect to the BBU pool through the F-AP, and li = 1
indicates that the user needs to connect to the BBU pool
through the F-AP, otherwise it is not needed.

P0 : max
l,B,a

λ
∑

i
(1− ei)

[(∑
n

(
li,nci,n

)
Bi + lici,EBi

)]
− (1− λ)

∑
i
ei

∑n

 li,n
L

ci,nBi
+ lHi

L
Re
+
(
1− lHi

)
·

X
fF−APai,n

+ li
L

ci,HBi




s.t. C1− C9 (17)
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B. SELECTION OF PRIMARY POPULATIONS
The selection of the initial population will affect the conver-
gence speed and convergence point. In this paper, all users are
directly connected to the BBU pool, all users access accord-
ing to optimal channel conditions, and all computing tasks
are offloaded to the BBU pool for computing, and all users
access and calculate according to optimal channel conditions
The tasks are all calculated in the F-AP node as three primary
chromosomes, and the rest are randomly generated.

C. GENETIC MANIPULATION
Genetic operations are a crucial step in genetic algorithms.
Divided into retention and cross mutation.

In this paper, the top 25% of the optimal chromosomes
are retained, but only the optimal one is fully retained. The
remaining superior chromosomes contain excellent genes,
so they are not completely replaced. Instead, it randomly
changes the access base station of one of the users, or changes
the computing offloading strategy of the F-AP. The specific
change strategy of the computing offloadingwill be described
in detail in the subsequent mutation.

1) Crossover:According to the roulette selectionmethod,
chromosomes are selected for cross mutation, and
the probability of each chromosome being selected is
pi =

adi∑
ad . Randomly select a column in the middle

of the chromosome as the intersection point. A gene
fragment of a chromosome with a higher fitness func-
tion is retained before the intersection, and a gene
fragment of a chromosome with a lower fitness func-
tion is retained after the intersection to obtain a new
chromosome.

2) Variation: Variation of chromosomes is an important
means to ensure the diversity of chromosomes. In this
design, there are two factors that affect the final result,
one is the association strategy between the user and
the F-AP (RRH), and the other is the F-AP computing
offload strategy. Set the mutation number seed rand1 ∈
{0, 1, 2}. If rand1 = 0, no mutation operation is per-
formed. If rand1 = 1, the correlation matrix mutation
operation is performed. If rand1 = 2, the mutation
operation of the upload matrix is performed. The corre-
lation matrix mutation operation is as follows. Set the
mutation number seed rand2 ∈ {0, 1}. If rand2 = 0,
randomly change the value of a position of the cor-
relation matrix and observe the value of the upload
parameter at that position. If the upload parameter
is 0, it will be maintained. If the upload parameter
is 1, the value of the upload parameter is randomly
taken. If rand2 = 1, the value of the association
matrix is changed randomly. The upload matrix muta-
tion operation is as follows. Set the mutation number
seed rand3 ∈ {0, 1, 2}. If rand3 = 0, invert all values
of the upload matrix. If rand3 = 1, randomly change
the upload matrix value. If rand3 = 2, then upload all
Set the matrix value to 0.

D. EVALUATION FUNCTION
The design of the evaluation function will affect the results
of the algorithm. It can be seen from the observation that the
objective function of this design is the problem of maximum
value. The higher the value, the better the effect, so it can
be used directly as the evaluation function in this article.
However, it is known through experiments that directly using
the evaluation function will cause the bandwidth to be con-
centrated on users and base stations with good channel condi-
tions. The bandwidth allocated by other users can only meet
their own needs. In practical applications, we always hope
that the user experience of each user is not much different.
In addition, because the communication rate is generally in
Mbps, and the value of the computing requirement often
exists between 0.1-0.2s, in order to prevent the final result
due to the magnitude of different task values, the objective
function needs to be redesigned. The value of the objective
function of this design is as follows:

ad = 0.1× log

[
λ
∑
i

(1− ei)
(
Ri + Ri,H

)]
− (1− λ)

∑
i

eiτi (20)

The reason for the design is as follows: Through computing,
we find that with the support of the same bandwidth, the value
of the communication rate is Ci ∈ [1, 100] MBps, and the
value of the delay is calculated as τi ∈ [0.1, 0.2] s. By taking
the logarithmic method, the communication rate is almost
equal to the calculated rate value, and the bandwidth is not
allocated to a certain user as much as possible, resulting in a
large user experience gap.

Algorithm 1 shows the process of the proposed algorithm.

Algorithm 1 Genetic Convex Optimization Algorithm

1: Initialization:
2: Get the values required by the algorithm: B, R, F, ei, X,

L, ci,n, ci,E
3: Generation of primary genetic factors
4: Calculate the optimal bandwidth allocation strategy B0i

and optimal computing resource allocation strategy a0i
using convex optimization according to each initial
genetic factor

5: Calculate the fitness function ad0i of each primary
genetic factor

6: Set the number of iterations n
7: while m < n do
8: Calculate the probability of selecting each genetic fac-

tor Pi based on adm−1i
9: Pick the top 25% of the best genetic factors

10: Keep the best fit
11: The remaining 25% randomly change the base station

accessed by a user or change the F-AP computing
offload strategy

12: Generate Variation Seed rand1 ∈ {0, 1}
13: if rand1 = 1 then
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14: Randomly change the base station access strategy of
a user

15: else
16: Change the computing offloading strategy of F-AP
17: Generate upload mutation random seed rand3 ∈

{0, 1, 2}
18: if rand3 = 0 then
19: lEi = 1− lEi
20: else
21: if rand3 = 1 then
22: Randomly changing an lEi
23: else
24: lEi = 0
25: end if
26: end if
27: end if
28: Genetic factors that cross over based on Pi selection
29: Crossing selected genetic factors pairwise
30: Generate Variant Random Integer randint ∈ {0, 1, 2}
31: if randint = 0 then
32: Does not change
33: else
34: if randint = 1 then
35: Mutation Association Matrix
36: Generate Variant Random Number Seed rand2 ∈

{0, 1}
37: if rand2 = 0 then
38: Randomly change the association strategy of a

user
39: else
40: Change Association Policy for All Users
41: end if
42: else
43: Change the computing offloading strategy of F-

AP, like 18-24
44: end if
45: end if
46: Best bandwidth allocation strategy Bmi and best com-

puting resource allocation strategy ami
47: Calculate the fitness function admi for each new genetic

factor
48: end while
49: output: L∗,L+,Bi, ai
50: Calculate the target value

V. SIMULATION RESULTS
This section analyzes the performance of the proposed algo-
rithm based on simulation results. Consider a typical F-RAN
network with an area size of 1000m1000m. The network
contains 1 macro base station, 2 F-APs, 2 RRHs, and several
users randomly distributed in the base station area. Each
F-AP is equipped with an edge computing server, which
can provide computing services for user-generated comput-
ing tasks. RRH does not have an edge computing server,
and can only handle the communication tasks of forwarding

users. All small base stations are connected to the BBU pool
using optical fiber, and the optical fiber allocates a fixed
bandwidth for each task. The computing power of the BBU
pool is assumed to be ideally infinite. Assume that each user
randomly generates one of two tasks, a computing task and
a communication task. All generated communication tasks
require a minimum rate of 1MBps or more. The size of the
data required for the generated computing tasks is randomly
distributed between [100, 1000] KB, and the number of CPU
computing cycles required for the task size is distributed
between [0.2, 1] Gcycles. The transmission power of each
user is 100mW, and the maximum tolerance delay for the
completion of computing tasks performed by the terminal
is randomly distributed between 0.2 s and 0.1 s. The main
parameters used in the simulation are shown in Table 2.

TABLE 2. Units for magnetic properties.

A. PERFORMANCE ANALYSIS UNDER DIFFERENT
NUMBER OF USERS AND F-APS NUMBERS
Figures 2 and 3 respectively show the impact of different
numbers of F-APs on computing tasks and communication
tasks when the pay the same attention to communication tasks
and computing tasks. When the number of RRHs increases to
four and the number of F-APs decreases to zero, the system
degenerates into the H-CRAN model.

FIGURE 2. The total computing delay of the system.

Figure 2 shows the total computing delay of the system
as the number of user terminals increases. As can be seen
from the Figure 2, as the number of users increases, the total
delay in computing increases regardless of the number of
F-APs. With the same number of users, as the number of
RRHs increases, the number of F-APs decreases, and the
total system delay increases continuously. When the number
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of terminals is 10, the number of F-APs has little effect on
the computing of the total delay. This is because the total
number of computing tasks is small and the corresponding
amount of computing resources is relatively small. As the
number of terminals increases, the total amount of computing
resources required by the system continues to increase. The
more F-APs, the less time required for computing. However,
the total computing delay difference reaches the maximum
when the number of users is 25, and when the number of
users is > 25, the increase in the computing delay difference
caused by the increase in user terminals under different F-AP
numbers is almost zero. This is because when the number of
user terminals increases, the utilization of local computing
resources has reached its maximum.

FIGURE 3. The total communication rate of the system.

Figure 3 shows how the total communication rate of the
system changes as the number of user terminals increases.
It can be seen that under the same communication and com-
puting tasks, an increase in the number of F-APs cannot
bring about a large increase in communication rate. However,
the overall number of F-APs is still larger, and the overall
communication rate is slightly improved. This is because the
increase of computing resources makes the system not need
enough bandwidth to reduce the delay of the computing task
at the communication rate, and allocates more bandwidth to
the communication task. In addition, it can be found that even
if the number of users increases, the total communication
rate of the system is still decreasing. This is because the
increase in the number of users also brings an increase in
computing tasks, requiring more bandwidth and communi-
cation resources to meet the low latency This reduces the
bandwidth allocated to communication tasks and reduces the
overall communication rate.

In order to further explore the relationship between the
increase in the number of F-APs and the computing delay.
In Figure 4, we study the change of the total computing delay
with the increase of the number of user terminals when all
computing tasks are generated in the system. It can be clearly
found that the larger the number of RRHs and the smaller the
number of F-APs, the greater the total system delay. However,
the increase in the number of users has little effect on the

FIGURE 4. The total system delay with full generation of computing tasks.

total delay difference. This is because the delay reduction that
F-AP computing resources can bring is limited. To further
reduce the delay, you can only increase the number of F-APs
or increase the computing capacity of F-APs.

B. IMPACT OF DIFFERENT MISSION IMPORTANCE
ON SYSTEM EFFICIENCY
The degree of attention paid to different tasks will have a great
impact on the allocation of resources in the system,whichwill
affect the total computing delay and communication rate of
the system. The situation where the two kinds of tasks have
the same degree of attention has been analyzed above, and
will not be repeated here.

FIGURE 5. Total system delay when the importance of a computing task
is much greater than the importance of a communication task.

Figures 5 and 6 respectively show the changes in the
computing delay and communication rate with the increase
of the number of user terminals when, that is, the attention of
computing tasks is much greater than the attention of com-
munication tasks. And that means, compared to the increase
in bandwidth of communication users, it is more desirable for
computing users to obtain lower latency.

Figure 5 shows the total computing delay of the system
as the number of user terminals increases. It can be clearly
seen that when the number of RRHs is larger and the number
of F-APs is smaller, the total system delay is increasing.
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FIGURE 6. Total system rate when the importance of a computing task is
much greater than the importance of a communication task.

And this phenomenon is gradually obvious as the number of
user terminals increases.

Figure 6 shows how the total communication rate of the
system changes as the number of user terminals increases.
It can be seen that when the attention of computing tasks
is much greater than the attention of communication tasks,
the increase of the F-AP ratio in the system has no gain in the
increase of the communication rate.

It can be seen that when the attention of computing tasks
is much greater than the attention of communication tasks,
the increase in the proportion of F-AP in the system greatly
improves the system gain, and the computing can be greatly
improved when the communication rates are not much differ-
ent Capacity, thereby shortening the time delay, so you can
use as many F-AP nodes as possible when biasing towards
computational tasks.

FIGURE 7. Total system delay when the importance of a computing task
is much less than the importance of a communication task.

Figures 7 and 8 respectively show the changes of the
computing delay and communication rate with the increase
of the number of user terminals when, that is, the attention of
computing tasks is much less than the attention of communi-
cation tasks. And that means, compared to computing users

FIGURE 8. Total system rate when the importance of a computing task is
much less than the importance of a communication task.

to obtain lower latency, it is more desirable for the increase
in bandwidth of communication users

Figure 7 shows the change of the total computing delay of
the system as the number of user terminals increases. It can
be seen that when the attention of computing tasks is much
less than the attention of communication tasks, the band-
width allocated to computing tasks only meets the minimum
requirements of computing tasks. Therefore, regardless of the
number of F-AP nodes, the total computing delay is almost
equal, depending on Calculate the delay threshold of a task.

Figure 8 shows how the total communication of the system
changes as the number of user terminals increases. It can be
seen that even though we pay more attention to the commu-
nication tasks, as the number of users increases, the system
with more F-APs has a larger total communication rate.
This is because due to the increase in computing power,
the delay caused by computing is smaller. Under the same
delay requirement, less bandwidth can be allocated for com-
puting tasks. In this way, more bandwidth can be allocated to
communication tasks, thereby greatly improving the commu-
nication rate of the system.

To better understand the impact of different attention lev-
els on system performance between tasks, Figures 9 and
10 use four F-AP nodes uniformly, and simulates the per-
formance of the system with attention levels on system per-
formance between tasks Changes in the number of users.
lamuda = λ

1−λ , The larger the lambda, the greater the atten-
tion paid to communication tasks.

Figure 9 shows how the total communication rate of the
system changes with the number of users under different
attention levels situations. It can be seen that, As expected,
the higher the focus on communication tasks, the higher
the overall communication rate. As the number of users
increases, the difference in overall communication rates
becomes more apparent. However, it is worth noting that the
increase in the attention of the communication task results in
a smaller increase in the total communication rate compared
to the decrease in the total communication rate due to the
increase in the attention of the computing task.
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FIGURE 9. Total communication rate of the system changes with the
number of users under different mission importance situations.

FIGURE 10. Total system delay of the system changes with the number of
users under different mission importance situations.

Figure 10 shows how the total system latency varies with
the number of users for different task concerns. It can be
clearly seen that the higher the attention of the computing
task, the smaller the total system delay. And as the number of
users increases, the difference in total latency becomes more
apparent. But again, the delay caused by the increased atten-
tion of the communication task is increased compared with
the decrease of the delay caused by the increased attention of
the computing task.

C. THE IMPACT OF THE IMPROVEMENT OF THE
FRONTHAUL LINK RATE ON THE SYSTEM EFFICIENCY
The fronthaul rate will have a greater impact on system
performance. Figures 11 and 12 simulate the changes in the
total information rate and total delay of the system with the
increase of the fronthaul rate when there are 4 F-APs.

Figure 11 shows how the total system delay varies with user
growth when the fronthaul link rate increases from 5MBps to
50MBps. It can be clearly seen that the higher the fronthaul
rate, the lower the total system delay. This is because the
increase in the fronthaul link rate has brought about a reduc-
tion in the time cost of offloading computing tasks from the
F-AP to the BBU pool. As a result, the delay in offloading

FIGURE 11. The total system delay varies with user growth when the
fronthaul link rate increases from 5MBps to 50MBps.

the F-AP node to the BBU pool including users is reduced.
As more tasks are offloaded to the BBU pool for execution,
each F-AP can allocate more computing resources to tasks
left for local execution. This results in time and cost savings.

Figure 12 shows the change of the total information rate of
the systemwith the increase of users under different fronthaul
rates. It can be seen that the increase in the fronthaul rate
will bring a certain increase in the overall system rate, but
the increase is not significant.

FIGURE 12. The total communication rate varies with user growth when
the fronthaul link rate increases from 5MBps to 50MBps.

D. THE IMPACT OF DIFFERENT RESOURCE ALLOCATION
STRATEGIES ON SYSTEM PERFORMANCE
This section compared the proposed algorithm with the user
access methods for users accessing according to the channel
optimal strategy.

In the simulation in this section, there are four F-AP nodes,
excluding RRH nodes, the forward rate R = 20, and the task
importance index lamuda = 1.
Figure 13 shows how the total system delay varies with the

number of user terminals under different allocation strategies.
It can be seen that when the number of users is small, the user
accesses on the optimal channel, and the total delay of the
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FIGURE 13. The total system delay varies with the number of user
terminals under different allocation strategies.

system where all computing tasks are performed locally is
lower than the full offload to the BBU pool for execution on
the optimal channel access. of. This is because the computing
resources in the F-AP node are sufficient, so the delay caused
by computing is lower than the delay caused by offloading
tasks to the BBU pool. This situation starts to change when
the number of users is N = 20. This is because the com-
putational load of the F-AP has reached its maximum. The
computing delay caused by continuing to offload tasks to the
F-AP node is greater than the delay caused by communication
offloading it to the BBU. However, the algorithm proposed in
this paper is better than the two methods proposed above in
the case of large or small number of users.

FIGURE 14. The total communication rate varies with the number of user
terminals under different allocation strategies.

Figure 14 shows the change of the total system rate with
the increase of the number of user terminals in the case of
different allocation strategies. It can be seen that when the
number of users is small, the communication rates of the
three offload situations are notmuch different. This is because
all users access according to the optimal channel situation,
and as the number of users increases, the three The gap has
gradually widened. Among them, the algorithm proposed in
this paper performs best. This is because with the increase in

FIGURE 15. The total system delay varies with the number of user
terminals for different algorithm.

FIGURE 16. The Sum Rates varies with the number of user terminals for
different algorithm.

the number of users, the access strategy depends not only on
the channel gain, but also takes into account load balancing,
and offloads some computing tasks to suboptimal channel
conditions, but the computing tasks assume fewer nodes.
As a result, the computing delay is reduced, the bandwidth
allocated to the computing task is saved, and more bandwidth
is allocated to the communication task.

E. COMPARISON BETWEEN THE ALGORITHM PROPOSED
IN THIS PAPER AND DISCRETE PARTICLE
SWARM OPTIMIZATION
This section compared the proposed algorithm with other
commonly used optimization algorithms. For the MINLP
problem formed by computing unloading, the currently
commonly used algorithm is the greedy heuristic algo-
rithm(GHA). In addition, the discrete particle swarm opti-
mization algorithm(DPSO) and the genetic algorithm(GA)
have a good performance on this problem. In the simulation
in this section, there are 4 F-AP nodes, excluding RRH nodes,
the forward rate R = 20, and the task importance index
lamuda = 1.

Figure 15 shows how the total delay of the deffirents
algorithms changes with the increase in the number of user
terminals. It can be seen that as the number of users increases,
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the total delay obtained by the algorithm proposed in this
paper is significantly better than that of other algorithms.

Figure 16 shows the changes in the total system rate of dif-
ferent algorithms as the number of user terminals increases.
It can be seen that as the number of users increases, the total
system rate using the algorithm proposed in this article grad-
ually outperforms other algorithms.

VI. CONCLUSION
In this paper, we considered the joint resource allocation
of computing and communication in F-RAN. In order to
satisfy the QoS of users of different types of tasks, we formu-
lated the MINLP problem with the limited processing power
and fronthaul of each F-AP. A genetic convex optimiza-
tion algorithm considering user access, computing offload,
computing resource allocation, and spectrum resource allo-
cation is proposed to obtain a feasible suboptimal solution.
The simulation analyzes the impact of different number of
users, different F-AP numbers, two different kinds of tasks
with different attention levels, different fronthaul link rates,
and different resource allocation strategies on system perfor-
mance. The simulation results showed that the genetic convex
optimization algorithm has a better payoff than than discrete
particle swarm optimization, greedy heuristic algorithm and
traditional genetic algorithm.
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