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ABSTRACT Although there has been a rapid development of practical applications, theoretical explanations
of deep learning are in their infancy. Deep learning performs a sophisticated coarse graining. Since coarse
graining is a key ingredient of the renormalization group (RG), RG may provide a useful theoretical
framework directly relevant to deep learning. In this study we pursue this possibility. A statistical mechanics
model for a magnet, the Ising model, is used to train an unsupervised restricted Boltzmann machine (RBM).
The patterns generated by the trained RBM are compared to the configurations generated through an RG
treatment of the Ising model. Although we are motivated by the connection between deep learning and
RG flow, in this study we focus mainly on comparing a single layer of a deep network to a single step
in the RG flow. We argue that correlation functions between hidden and visible neurons are capable of
diagnosing RG-like coarse graining. Numerical experiments show the presence of RG-like patterns in
correlators computed using the trained RBMs. The observables we consider are also able to exhibit important
differences between RG and deep learning.

INDEX TERMS Restricted Boltzmann machines (RBMs), deep learning, deep neural networks, learning
theory, renormalization group (RG).

I. INTRODUCTION
The power of machine learning and artificial intelligence is
established: these are powerful methods that already outper-
form humans in specific tasks [1]–[4]. Much of the research
carried out in machine learning is of an applied nature.
It establishes the practical utility of the method but does not
construct an understanding of how deep learning works or
even if such an understanding is possible [5]–[10]. Conse-
quently, deep learning remains an impressive but mysterious
black box. A possible starting point for a theoretical treatment
suggests that deep learning is a form of coarse graining [3],
[11], [12]. Since there are more input than output neurons this
is almost certainly true. The real question is then if this is a
useful observation, one that might shed light on how deep
learning works. This is the question we take up in this paper.

We argue that understanding deep learning as a form of
coarse graining is a useful observation, and make the case by
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adopting and adapting several ideas from theoretical physics.
Specifically, in theoretical physics there is a sound framework
to carry out coarse graining, known as the renormalization
group (RG) [13]. RG provides a systematic way to construct
a theory describing large scale features from an underlying
microscopic description, which can be understood as recog-
nizing sophisticated emergent patterns, a routine achievement
of deep learning. Further, RG is applicable to field theories,
that is, to systems with a large number of degrees of freedom
so that it seems that RG is well positioned to deal with
massive data sets. Finally, the way in which RG works is,
in contrast to deep learning, well understood and can be
described in precise mathematical language. These features
suggest that RG may provide a useful framework in which to
describe deep learning and attempts to argue that this is the
case have been made in [14]–[17]. We focus on unsupervised
learning by a restricted Boltzmann machine (RBM).

Two distinct possible connections to RG have been
attempted, both relevant to our study. The first [14] is an
attempt to link deep learning to the RG flow. The RG flow
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is a smooth process during which degrees of freedom are
continuously averaged out, so that we flow from the initial
microscopic description to the final macroscopic description.
In deep learning one stacks layers of networks to obtain
a deep network. The proposed connection of [14] suggests
that each layer in the stack performs a small step along the
RG flow.1 We contribute to this discussion by developing
quantitative tools with which this proposal can be explored
with precision. The basic objects that appear in our analysis
are correlation functions between the visible and the hidden
neurons. This allows us to decode the mechanics of the
RBM’s pattern generation and to compare it to what the RG
is doing. Although there are important differences, our results
indicate remarkable similarities between how the RBM and
RG achieve their results. The second approach [15], [16]
builds an RBM flow using the weight matrix of the neural
network after training is complete. The results of [15], [16]
suggest that the RBM flow is closely related to the RG flow.
We carry out a critical examination of this conclusion. The
central tools we employ are correlation functions defined
using the patterns generated by the RBM. We give a detailed
and precise argument showing that the largest scale features
of RG and RBM patterns are in complete agreement. The
correlation functions involved are non-trivial probes of the
statistics of the generated pattern2 so the conclusion we reach
is compelling. We also find that if one probes smaller scale
features there are important differences between the two pat-
terns. We will comment further on the interpretation of these
results in the conclusions.

At this point, a comment is in order. The word ‘‘deep’’
in ‘‘deep learning’’ indicates that many layers are stacked
to produce the network. Each layer in our network is an
unsupervised RBM. The word ‘‘flow’’ in ‘‘RG flow’’ indi-
cates that many small steps of coarse graining are carried out.
Each step performs a local averaging and one basic step is
being repeated. In this study we are developing methods that
allow a comparison between one step of the renormalization
group flow to one layer of the deep network. Thus, although
we spend much of our effort on comparing a single RBM
layer to a single step in the RG flow, we are interested in
understanding learning achieved through the composition of
many layers as an RG flow. It is in this sense that although we
study a single layer we nevertheless claim we are exploring
the problem of deep learning.

The setting for our study is the two dimensional Ising
model [19]. This is a simple model of a magnet, built for
many individual ‘‘spins’’ each of which should be thought
of as a microscopic bar magnet. Each spin can be aligned
‘‘up’’ or ‘‘down’’. Spins align at low temperatures producing
a magnet. At high temperatures, spins are aligned randomly
and there is no net magnetic field. The spins themselves
define a binary pattern (the two states are up or down) and it is

1For a critical discussion of this proposal, see [12], [18].
2The studies carried out in [15], [16] used averages of the RBM pattern.

Our correlation functions provide more sensitive probes into the structure of
the pattern.

these patterns that the RBM learns. An important motivation
for this choice of model is that it is well understood. The
theory exhibits a first order phase transition terminating at
a critical point. The theory at the critical point enjoys a con-
formal symmetry so that it can be solved exactly. It exhibits
many interesting observables which we use to explore how
deep learning is working [20], [21]. For example, if a neural
network generates a microstate of the model, we can ask what
the corresponding temperature of the microstate is. At the
critical point special observables known as primary operators,
can be defined. Their correlation functions are power laws
with powers that are known. These are the natural variables
which encode, completely, the long scale features of the
patterns. In this way, the Ising model gives a framework to
explore deep learning both through the results of numerical
experiments and using the complete understanding of the
large scale features of the coarse grained system. To probe
whether deep learning is a type of coarse graining, we will
see that this knowledge of correlations on large length scales
is a valuable tool.

Our study of an Ising magnet may seem rather far removed
from more usual (and practical) applications, including for
example image recognition and manipulation. However, one
might be optimistic that lessons learned from the Ising model
are applicable to these more familiar examples. Indeed,
the energy function of the Ising model tries to align nearby
spins with the result that nearby spins are correlated. This is
not at all unlike an image for which the color of nearby pixels
is likely to be correlated [22].

A description of deep learning in the RG framework would
have important implications. RG explains how macroscopic
physics emerges from microscopic physics. This understand-
ing leads to an organization of the microscopic physics into
features that are relevant or irrelevant, so that in the end the
emergent patterns depend only on a small number of relevant
parameters. Carried over to the deep learning context, a sim-
ilar understanding will strive to explain what features of the
data and which weights in the network are important for deep
learning. Such an understanding would have implications for
what architectures are optimal and how the learning process
can be improved and made more efficient.

We now sketch the content of the paper and outline how
it is organized. In Section II we give a quick review of
RBMs, RG and the Ising model, providing the background
needed to follow subsequent arguments. In Section III we
consider the RBM flows defined using the matrix of weights
learned by the network [15], [16]. By studying correlation
functions of primary operators of the Ising conformal field
theory, we argue that although the RBM and RG patterns
agree remarkably well on the largest scales of the pattern
they differ on the short scale structure. In Section IV we
examine the possibility that deep learning reconstructs an
RG flow, with each layer of the deep network performing
one step of the flow. Our discussion begins with a critical
look at the argument given in [14] that claims that deep
learning is mapped onto the RG flow. The argument shows
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a system of equations that is obeyed by both the RBM and a
variational realization of the RG flow. Our basic conclusion
is that the argument of [14] only shows that aspects of the
RBM learning are consistent with the structure of the RG
transformation. Indeed, we explicitly construct examples that
satisfy the equations derived by [14] that certainly do not
perform an RG flow or arise from an RBM. Nevertheless,
the arguments of [14] are compelling and we find the possible
connection between deep learning and RG fascinating and
deserving of further study. Towards this end we couch some
of the qualitative observations of [14] as statements about
the behavior of well chosen correlation functions. The form
of these correlators, puts certain qualitative observations of
Section IV.B. of [14] onto a firm quantitative footing. Finally
we study the RG flow of the temperature. This turns out to be
interesting as it reveals a further difference between the RBM
patterns and RG. In the final Section of this paper, we discuss
our results and suggest open directions that can be pursued.

II. RBM, RG AND ISING
In this section we introduce the background material used in
our study. The first subsection reviews RBMs emphasizing
both the structure of the network and its implementation.
Following this, the RG is reviewed, with an emphasis on
aspects relevant to deep learning. This section concludes with
a review of the Ising model, motivating why the model is
considered.

A. RESTRICTED BOLTZMANN MACHINES
RBMs perform unsupervised learning to extract features from
a given data set [23]–[25]. They have a visible (input) and a
hidden (output) layer. The visible layer is made up of visible
nodes, vi with i = 1, 2 · · · ,Nv and the hidden layer is made
up of hidden nodes, ha with a = 1, 2, · · · ,Nh as illustrated
in Figure 1.

FIGURE 1. An RBM network with visible nodes vi and hidden nodes ha
where Nv = n and Nh = k . Connections between visible and hidden
nodes are each associated with a weight Wia.

The visible nodes are set with values of ±1 and the
trained network generates a corresponding pattern by setting
the output nodes to ±1. The values of the hidden neurons
are obtained by evaluating a non-linear function on a lin-
ear combination of the visible neurons, perhaps offset by a
constant bias. The nonlinear function we use here is the
hyperbolic tangent which can be seen in equation (12). The

specific linear combination of neurons is represented by con-
nections between nodes, with a weight for each connection.
For the RBM there are connections between every visible
node and every hidden node, while nodes belonging to the
same layer are not connected. The ‘‘unrestricted’’ Boltzmann
machines allow connections between any two nodes in the
network [26], but this generality comes at a cost: training
algorithms are much less efficient [23]–[25]. The connection
between visible node vi and hidden node ha is assigned a
weight, Wia, and visible (hidden) nodes are assigned a bias
b(v)i (b(h)a ). Using these ingredients we define a Hamiltonian
for the RBM

E = −
∑
a

b(h)a ha −
∑
i,a

viWiaha −
∑
i

b(v)i vi, (1)

where ha, vi ∈ {−1, 1}. The RBM defines the probability
distribution for obtaining configurations v and h of visible and
hidden vectors by [27]

p(v, h) =
1
Z
e−E , (2)

where Z is the partition function, obtained by summing over
all possible hidden and visible vectors

Z =
∑
{v,h}

e−E . (3)

As usual, to determine the marginal distribution of a visible
vector, sum over the state space of hidden vectors

p(v) =
1
Z
∑
{h}

e−E . (4)

Similarly, the marginal distribution of a hidden vector is

p(h) =
1
Z
∑
{v}

e−E . (5)

The weights, Wia and biases b(v)i , b(h)a are determined during
training. Training strives to match the model distribution p(v)
to the distribution q(v) defined by the data and it achieves this
by minimizing the Kullback-Leibler (KL) divergence, which
is given by

DKL(q||p) =
∑
{v}

q(v) (log (q(v))− log (p(v)))

=

∑
{v}

q(v) log
(
q(v)
p(v)

)
. (6)

The KL divergence is a measure of how much information
is lost when approximating the actual distribution with the
model distribution [28]. Training adjusts {Wia, b

(v)
i , b

(h)
a } to

minimize the KL divergence. Gradients of the KL divergence
used to update the parameters of the RBM are computed as
follows

∂DKL(q||p)
∂Wia

= 〈viha〉data − 〈viha〉model, (7)
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∂DKL(q||p)

∂b(v)i
= 〈vi〉data − 〈vi〉model, (8)

∂DKL(q||p)

∂b(h)a
= 〈ha〉data − 〈ha〉model, (9)

where the expectation values appearing above are easily
derived using (2). They are given explicitly in Appendix A.
The data set contains an enormous number Ns of sam-
ples implying that the method just outlined is numerically
intractable: the sum over the whole state space of visible
and hidden vectors is too expensive. In this study we con-
sider networks with Nv in the range of 100 to 1024 nodes
and Nh in the range of 81 to 256 nodes. The number of
samples Ns we sum over lies in the range of 281 and 21024.
To make progress, we approximate the KL divergence by the
contrastive divergence [25]. Rather than summing over the
entire state space of visible and hidden vectors, one simply
sets the states of the visible units to the training data [27]. This
is an enormous simplification. Given a set of visible vectors,
the hidden vectors are sampled by setting each ha to 1 with
probability

p(ha= 1|v) =
1
2

(
1+ tanh

(∑
i

Wiavi + b(h)a

))
. (10)

Likewise, given a set of ha, we are able to sample visible
vectors by setting each vi to 1 with probability

p(vi= 1|h) =
1
2

(
1+ tanh

(∑
a

Wiaha + bvi

))
. (11)

Expectation values for the data are computed using ĥ, gener-
ated using (10) and v̂, provided by the training data set.
To determine model expectation values, determine a

sample of visible vectors {ṽ} and a sample of the hidden
vectors {h̃}, using the equations (11) and (10) as we now
explain. The set {ṽ}, is calculated using {ĥ} and equation (11).
We then determine {h̃}, using {ṽ} and equation (10). The
equations for the Ath vectors in the sets {ĥ}, {ṽ} and {h̃} are
thus

ĥ(A)a = tanh

(∑
i

Wiav̂
(A)
i + b

(h)
a

)
, (12)

ṽ(A)i = tanh

(∑
a

Wiaĥ(A)a + b
(v)
i

)
, (13)

h̃(A)a = tanh

(∑
i

Wiaṽ
(A)
i + b

(h)
a

)
, (14)

Expectation values of themodel are approximated using these
sets. Again, summing these much smaller sets (and not the
complete space of hidden and visible vectors) is an enormous
simplification.

Using this approximation the expressions used to train the
RBM are

〈viha〉data =
1
Ns

∑
A

v̂i
(A)ĥa

(A)
, (15)

〈viha〉model =
1
Ns

∑
A

ṽi
(A)h̃a

(A)
, (16)

〈vi〉data =
1
Ns

∑
A

v̂i
(A)
, (17)

〈vi〉model =
1
Ns

∑
A

ṽi
(A), (18)

〈ha〉data =
1
Ns

∑
A

ĥa
(A)
, (19)

〈ha〉model =
1
Ns

∑
A

h̃a
(A)
, (20)

where A = 1, 2, 3, . . . ,Ns denotes samples in the train-
ing data set made up of Ns samples. These approximations
achieve a dramatic speed up in training. Although this method
performs well in practice [1], [29], [30], it is difficult to
understand when and why the approximations work [27],
[31]. This approximation does not follow the gradient of any
function [32].

B. RG
RG is a tool used routinely in quantum field theory and
statistical mechanics [13]. RG coarse grains by first organiz-
ing the theory according to length scales and then averaging
over the short distance degrees of freedom. The result is an
effective theory for the long distance degrees of freedom. RG
thus gives a systematic procedure to determine the dynamical
laws governing macroscopic physics of a system with given
microscopic laws, and it achieves this by employing coarse
graining. The analogy to deep learning should be evident:
deep learning also extracts regularities from massive data
sets.

At this point it is helpful to make a comment onwhat a field
is. A field is a type of observable. A very simple example of
a field could be the temperature inside a room. The measured
value of the temperature depends on exactly where in the
room you make the measurement3 and when you make the
measurement.4 Anything that can be measured everywhere
and/or everywhen is an example of a field.

To illustrate RG consider the example provided by quan-
tum field theory. To have a concrete example in mind, which
is relevant to the discussion that follows, we might study
a field φ(x) describing the magnetization inside a magnet.
The value of the field φ(x) gives the value of the magneti-
zation at position x. φ(x) can be manipulated as we would
normally manipulate a function of x. In particular, we can
take derivatives of φ(x) with respect to x and we can take
its Fourier transform to obtain φ(k). ObservablesO are func-
tions (usually polynomials) of the field and its derivatives.
Examples of observables are the energy or momentum of the
field. To calculate the expected value 〈O〉 of observable O,

3For example, there maybe an air conditioner in the room. Points closer
to the air conditioner will be cooler.

4Temperature measurements at midnight in the middle of winter will
typically be lower than measurements at midday in the middle of summer.
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integrate (i.e. average) over all possible field configurations

〈O〉 =
∫
[dφ]e−SO. (21)

To make sense of this integral one can work on a lattice.
Here we use the term ‘‘lattice’’ to denote an ordered array
of points, and we imagine replacing the continuum of space
with this discrete structure, so that the set of all possible
positions in space is now a discrete set. The integral over
all possible field configurations then becomes a product of
ordinary integrals, with one integral over the allowed range of
the field, at each lattice site. The range of the field is usually
taken to be the real number field. The factor e−S , which
defines a probability measure on the space of fields, depends
on the theory considered. S is called the action of the theory
and is also a polynomial in the field and its derivatives, with
the coefficients of the polynomial providing the parameters
of the theory, things like couplings and masses. A theory is
defined by specifying S.

To coarse grain, express the position space field in terms
of momentum space components

φ(x) =
∫
dkeik·xφ(k). (22)

eik·x oscillates in position space with wavelength 2π
k . High

momentum (big k) components have small wavelengths and
encode small distance structure. Low momentum compo-
nents have huge wavelengths and describe large distance
structure. Declare there is a smallest possible structure,
implemented by cutting off the momentum modes at a large
momentum 3 as follows

[dφ] =
∏
k<3

dφ(k). (23)

RG breaks the integration measure into high and lowmomen-
tum components [dφ] = [dφ<][dφ>] where

[dφ<] =
∏

k<(1−ε)3

dφ(k)

[dφ>] =
∏

(1−ε)3<k<3

dφ(k). (24)

The dimensionless parameter ε defines the split between
the two sets of components. In the end we imagine taking
ε → 0 as explained below. RG considers observables that
depend only on large scale structure of the theory, i.e. observ-
ables that depend only on φ<. In this case, when computing
the expected value ofO we can pullO out of the integral over
φ> and integrate over the high momentum components

〈O(φ<)〉 =
∫
[dφ<]

∫
[dφ>] e−SO(φ<)

=

∫
[dφ<] e−Seff O(φ<). (25)

This procedure of splitting momentum components into two
sets and integrating over the large momenta defines a new
action Seff . Repeating the procedure many times defines the
RG flow under which Seff changes continuously. To obtain

a continuous flow we should take the limit ε → 0, so that
the procedure needs to be repeated an infinite number of
times to flow to low momentum. The parameter ε should be
thought of as a step size in a discrete flow. It is not a physical
parameter and must be taken small enough that the results
of computations are independent of ε. After the flow, one is
left with an integral over the very long wavelength modes.
This completes the coarse graining: we have a new theory
defined by Seff . The new theory uses only long wavelength
components of the field and correctly reproduces the expected
value of any observable depending only on long wavelength
components. Values of the parameters of the theory, which
appear in Seff , change under this transformation. In general,
many possible terms are generated and appear in Seff . Each
possible term defines a coupling of the theory. Each coupling
can be classified as marginal (the size of the coupling is
unchanged by the RG flow), relevant (the coupling grows
under the flow) or irrelevant (the coupling goes to zero under
the flow). It is a dramatic insight of Wilson that almost all
couplings in any given quantum field theory are irrelevant
and so the low energy theory is characterized by a handful
of parameters. This is a dramatic (experimentally verified)
simplicity hidden in the rather complicated quantum field
theory. This simplicity explains why ‘‘simple large scale pat-
terns’’ can emerge from ‘‘complicated short distance data’’.
The possibility that the same simplicity is at work in deep
learning is a key motivation of this paper.

Although the equation (25) defines the relationship
between S and Seff , the connection is rather abstract and a
few clarifying remarks are in order. Consider the situation
in which we started with an action S and we have flowed to
obtain some effective low energy dynamics Seff . The action
S is the original action of the theory. In the case of a magnet,
this would describe the dynamics of atomic spins, where
the relevant length scale is 10−10m. The effective action
would describe the dynamics of a classical magnet, where the
relevant length scale may be 10−3mor even larger. The renor-
malization group is the coarse graining that constructs the
classical macroscopic physics from the microscopic physics.

Conceptually, the coarse graining performed by RG is well
defined. Computationally, it is almost impossible to carry
out. To develop a useful calculation scheme, partition the
momentum components into tiny sets (i.e. follow (24) with
ε infinitesimal) and ask what happens when we average over
a single tiny set. Two things happen: couplings gi change
δgi = βi ε and the strength of the field changes δφ = γ εφ.
One can prove that all observables built using n fields will
obey the Callan-Symanzik equation [33](

µ
∂

∂µ
+

∑
i

βi
∂

∂gi
+ nγ

)
〈O〉 = 0. (26)

The parameter µ here defines the scale of the effective the-
ory: the smallest wavelength in the effective theory is 2π

µ
.

This equation provides a remarkable and simple descrip-
tion of the RG coarse graining that captures the essential
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features of the long distance effective theory. In practice
correlation functions are computed and then inserted into the
Callan-Symanzik equation. The βi and γ functions are then
read from the resulting equations.

If RG (or a variant of it) is relevant to understand-
ing deep learning, it makes concrete suggestions for the
resulting theory. For example, is there an analogue of the
Callan-Symanzik equation? One might assign beta functions
βia, β

(v)
i , β

(h)
a to the weights Wia and biases b(v)i , b

(h)
a . These

would determine which parameters of the RBM are relevant,
irrelevant or marginal.

The RG flow halts at a fixed point, described by a
conformal field theory. This field theory enjoys additional
symmetries including scale invariance. It is interesting to note
that the possibility that scale invariance plays a role in deep
learning has been raised in [12], [14]–[17].

Although we have focused mainly on a physical model in
this article, we should point out that there are many other
applications of the renormalization group formalism. For
example, RG has been used to understand the spread of forest
fires [34], in the modeling of the spread of infectious diseases
in epidemiology [35], for the prediction of earthquakes [35]
and more generally, to any system with self organized
criticality [36].

C. ISING MODEL
The Ising model is a model for a magnet. The two dimen-
sional model has a discrete variable, called a spin, σEk = ±1
on each site of a rectangular lattice. The sites are labeled by
a two dimensional vector Ek , which has integer components.
A state of the system is given by specifying a collection of
spins, {σEk}, one for each site in the lattice. To refer to a
specific state of the spin systemwe use the notation σ = {σEk}.
Spins on adjacent sites i and j interact with strength Jij. Each
spin will also interact with an external magnetic field hj, with
strength µ. The energy of a given configuration {σEk} of spins
is determined by the Hamiltonian

H = −
∑
〈i j〉

Jijσiσj − µ
∑
j

hjσj, (27)

where the first sum is over adjacent pairs, indicated by 〈i j〉.
We simplify the model by setting the external field to zero
hj = 0, and by choosing the couplings in the most symmetric
possible way Jij = J . Since J is an energy we can set
it to 1 by choosing units appropriately. The probability of
configuration σ = {σEk} of spins is given by the Boltzmann
distribution, with inverse temperature β ≥ 0

Pβ (σ ) =
e−βH ({σEk })

Zβ
, (28)

where the constant Zβ , the partition function, is given by

Zβ =
∑
{σEk }

e−βH (σ ). (29)

Averages of physical observables are defined by

〈f 〉β =
∑
σ

f (σ )Pβ (σ ). (30)

We study unsupervised learning of the Ising model by an
RBM. The visible data that is used to train the network is
generated using the probability measure (28). The lattices
have a total of Lv × Lv sites, with each site indexed by a
position vector Ek . We rearrange this array of spins σ into an
Nv = Lv × Lv dimensional vector by concatenating the rows
of the given array. These components of these vectors are the
training data input to the visible nodes of the RBM.

There are good reasons to focus on the Ising model. The
model has a fixed point in its RG flow. The fixed point is
described by awell known conformal field theory (CFT) [37].
This fixed point is an unstable fixed point meaning that
generic flows move away from the fixed point. We must tune
things carefully if we are to terminate on the fixed point.
This tuning is necessary because there is a relevant operator
present in the spectrum of the conformal field theory and
it tends to push us away from the fixed point. We need
to tune the temperature. If the temperature is slightly above
the critical temperature, thermal fluctuations destroy the long
range correlations that are forming, whilst if we are slightly
below the critical temperature, the tendency of spins to align
dominates and we find a state with all spins aligned and no
fluctuations at all. It is only exactly at the critical temperature
that the system exhibits the interesting long range correlations
that are described by the CFT. The papers [15], [16] argue
that the RBM flow always flows to the fixed point. This
challenges conventional wisdom and it suggests a different
kind of coarse graining to that employed by RG, is at work.
A distinct proposal [14] claims that the RG flow arises by
stacking RBMs to produce a classic deep learning scenario.
Each layer of the deep network performs a step in the flow.

At the Ising model fixed point, detailed checks of both
proposals are possible. There are CFT observables, known
as primary operators, whose correlators are power laws of
distances on the lattice. The powers entering these power
laws are known, so that we have a rich and detailed data
set that the RBM must reproduce if it is indeed performing
an RG coarse graining. This is a compelling motivation for
the model. Another advantage of the model is simplicity: it
is a model of spins which take the values ±1 so it defines a
simplemodel with discrete variables, well suited to numerical
study and naturally accommodated in the RBM framework.
Finally, the Ising model is not that far removed from real
world applications: the Ising Hamiltonian favors configura-
tions with aligned neighboring spins. Thus, at low enough
temperatures ‘‘smooth’’ slowly varying configurations of
spins are favored. This is similar to data defining images for
example, where neighboring pixels are likely to have the same
color. In slightly poetic language one could say that at low
temperatures the Ising model favors pictures and not speckle.

We end this section with a summary of the most rele-
vant features of the Ising model fixed point. At the critical
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temperature

Tc =
2J

k ln(1+
√
2)
, (31)

where J is the interaction strength and k is the Boltzmann
constant, the Ising model undergoes a second order phase
transition. The critical temperature is given by Tc ≈ 2.269
when J = 1. There are two competing phases: an ordered
(low temperature) phase in which spins align producing a
macroscopic magnetization, and a disordered (high temper-
ature) phase in which spins fluctuate randomly and the mag-
netization averages to zero. At the critical point the Ising
model develops a full conformal invariance and one can use
the full power of conformal symmetry to tackle the problem.
The field which takes values ±1 in the Ising model is a
primary field, of dimension 1 = 1

8 . The two and three
point correlation functions of primary fields are determined
by conformal invariance to be

〈φ(Ex1)φ(Ex2)〉 =
B1

|Ex1 − Ex2|21
, (32)

〈φ(Ex1)φ(Ex2)φ(Ex3)〉 =
B2

|Ex1 − Ex2|1|Ex1 − Ex3|1|Ex2 − Ex3|1
, (33)

where B1 and B2 are constants. Since we study the Ising
model on a lattice, the positions Ex1, Ex2 and Ex3 appearing in the
above correlation functions refer to sites in a lattice. There is
also a primary operator in the Ising model (which we describe
below) with a dimension 1 = 1. These correlation functions
must be reproduced by the RBM if it is indeed flowing to the
critical point of the Ising model.

III. FLOWS DERIVED FROM LEARNED WEIGHTS
In this section we consider the RBM flows introduced
in [15], [16]. These flows use the weight matrix Wia, and
bias vectors b(v)i and b(h)a , obtained by training, to define a
continuous flow from an initial spin configuration to a final
spin configuration. The flow appears to exhibit a fascinating
behavior: given any initial snapshot, the RBM flows towards
the critical point of the Ising model. This is in contrast to
the RG which flows away from the fixed point. In addi-
tion, the number of spins in the configuration is a constant
along the RBM flow. In contrast to this, the number of spins
in the configuration decreases along the RG flow, as high
energymodes are averaged over to produce the coarse grained
description. Despite these differences, the flow of [15], [16]
appears to produce configurations ever closer to the criti-
cal temperature and these configurations yield impressively
accurate predictions for the critical exponents of the Ising
magnet. Our goal in this section is to further test if the RBM
flow produces configurations at the critical point of the Ising
model.We explore the spatial dependence of spin correlations
in configurations produced by the flow. Our results prove
that on large scales the Ising critical point configurations are
correctly reproduced. However, we are also able to prove
that as one starts to probe smaller scales there are definite
quantifiable departures from the Ising predictions.

A. RBM FLOW
RBM flows [15], [16] are generated using equation (13)
together with the trained weight matrix,Wia, and bias vectors,
b(v)i and b(h)a . Our data set v̂(A) is labeled by an index A. For
each value of A, v̂(A) is a collection of spin values, one for
each lattice site. The RBM flow is generated through a series
of discrete steps, with each step producing a new data set of
the same size as the original. Denote the data set produced
after k steps of flow by ṽ(A,k), and by convention we identify
ṽ(A,0) with the original training set. Apply equation (13) to
v̂(A,k) and then apply (14) to carry out a single step of the RBM
flow,with the result ṽ(A,k+1). The flow proceeds by repeatedly
applying equations (13) and (14). Concretely, for a flow of
length n, we have

ṽi
(A,1)
= tanh

(∑
a

Wiaĥ(A)a + b
(v)
i

)
,

ṽi
(A,2)
= tanh

(∑
a

Wiah̃(A,1)a + b(v)i

)
,

...

ṽi
(A,n)
= tanh

(∑
a

Wiah̃(A,n−1)a + b(v)i

)
. (34)

where

h̃a
(A)
= tanh

(∑
i

Wiaṽ
(A)
i + b

(h)
a

)
,

h̃a
(A,1)
= tanh

(∑
i

Wiaṽ
(A,1)
i + b(h)a

)
,

h̃a
(A,2)
= tanh

(∑
i

Wiaṽ
(A,2)
i + b(h)a

)
,

...

h̃a
(A,n)
= tanh

(∑
i

Wiaṽ
(A,n)
i + b(h)a

)
. (35)

Note that the length of the vector ṽ(A,k) is a constant of
the flow and consequently there is not obviously any coarse
graining implemented.

B. NUMERICAL RESULTS
This section considers statistical properties of configurations
produced by the RBMflow. At the Ising critical point, the the-
ory enjoys a conformal invariance. Using this symmetry a
special class of operators with a definite scaling dimension
1 can be identified. The utility of these operators is that
their spatial two point correlation functions drop off as a
known power of the distance between the two operators,
as reviewed above in equation (32). These two point functions
can be evaluated using the RBM flow configurations and,
if these configurations are critical Ising states, they must
reproduce the known correlation functions. This is one of
the checks performed and it detects discrepancies with the
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FIGURE 2. Estimates of the scaling dimension 1m versus flow length,
obtained using the average magnetization of flows at temperatures
T = 2.1, 2.2 and 2.3. The red line indicates the value of 1 = 0.125 at the
critical point. After approximately 8 flows, 1m converges to this critical
value. The error bars are determined using Mathematica’s
NonlinearModelFit function. Mathematica uses the Student’s
t-distribution to calculate a confidence interval for the given parameters
with a 90% confidence level.

Ising model predictions. There are two primary operators
we consider. This first is the basic spin variable minus its
average value sij = σij − σ̄ . The prediction for the two
point function is (32) with 1s =

1
8 . This correlator falls

off rather slowly, so that this two point function probes the
large scale features of the RBM flow configurations. The
RBM flow nicely reproduces this correlator and in fact, this
is enough to reproduce the critical exponent for the Ising
model consistent with the results of [16]. One should note
however that our computation and those of [16] could very
well have disagreed, since they probe different things. The
critical exponent evaluated in [16] uses the magnetization
computed from different flows generated by the RBM, at
temperatures around the critical temperature. Magnetization
measures the average of the spin in the lattice. It is blind to
the spatial location of each spin. On the other hand, the two-
point correlation function is entirely determined by the spatial
location of spins in a single flow configuration. Thus, the two
point correlation function uses data at a single temperature,
but uses detailed spatial dependence of the lattice state. We
also consider a second primary operator

εij = sij · (si+1,j + si−1,j + si,j+1 + si,j−1)− ε̄, (36)

which has1ε = 1. We have again subtracted off the average
value of the operator. This correlation function falls off much
faster and is consequently a probe of shorter scale features of
the RBM configurations. The RBM flow fails to reproduce
this correlation function, indicating that the RBM configura-
tions differ from those of the critical Ising model. They have
the same long distance features, but differ on shorter length
scales.

Consider an RBM network with 100 visible nodes and
81 hidden nodes. This corresponds to an input lattice of size
10 × 10 and an output lattice of size 9 × 9. The number of

visible and hidden nodes is chosen to match [16], so that we
can compare our results to existing literature. We would like
to study a lattice that is as small as possible but large enough
to detect the power law fall off of the correlation functions
we study. The power law behavior is given in the scaling
dimensions1s and1ε . We demonstrate that when studying a
lattice of size 9×9 or larger we correctly determine the values
for 1s and 1ε using configurations generated from MC
simulations. These results are shown in Figures 6a and 5b.

The network trains on data generated by Monte Carlo
simulations which use the Boltzmann distribution given in
equation (28) [38]. The training data set includes 20000 sam-
ples at each temperature, ranging from 0 to 5.9 in increments
of 0.1. This gives a total of 1200000 configurations. Training
uses 10000 iterations of contrastive divergence, performed
with the update equations (12) to (20) which are derived from
equations (7), (8) and (9) [39].

Once the flow configurations are generated, following
[15], [16], a supervised network is used to measure the tem-
perature of each flow. The supervised network allows us to
measure discrete temperatures of T = 0, 0.1, . . . , 5.9.

We train a network which consists of three layers, an input
layer with 100 nodes, a hidden layer with 80 nodes and an
output layer with 60 nodes which correspond to the 60 tem-
peratures we want to measure. All nodes in the input layer
are connected to all nodes in the hidden layer, and all nodes
in the hidden layer are connected to all nodes in the output
layer. No connections between nodes within the same layer
exist.

The Ath sample of input data, Z (1)
A is transformed by the

hidden layer using the hyperbolic tangent function f (x) =
tanh(x) as follows

Z (2)
Aa = f (

∑
i

Z (1)
Ai W

(1)
ia + b

(1)
a ). (37)

The output layer then transforms Z (2)
A into an output proba-

bility using the softmax function g(x)

Z (3)
Aµ = g(

∑
a

Z (2)
AaW

(2)
aµ + b

(2)
µ ) =: g(U (2)

Aµ), (38)

where the softmax function normalizes the output to sum
to 1 as follows

g(U (2)
Aµ) =

exp(U (2)
Aµ)∑

ν exp(U
(2)
Aν )

. (39)

The output of the trained network can thus be interpreted as
probabilities for the temperatures we measure. The highest
probability in the output is taken as the temperature for the
given input.

We make use of the Keras library [40] to train this network
using the back-propagation algorithm [41]. The cost function
used to train the network is the KL divergence as is used
in [16]. We choose a learning rate of ε = 0.1 and train the
network for 3000 epochs. In Figure 3 we show the validation
and training loss versus the number of training epochs. The
supervised network is trained using the same data set used to
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train the RBM aswell as corresponding labels for each vector.
These labels are one hot encoded vectors which correspond
to the temperatures T = 0, 0.1, . . . , 5.9. Here we use a split
of 40 % of the input data for validation and 60 % of the input
data for training. Figure 3 shows that the supervised network
has converged to a loss very close to zero after 3000 epochs.

FIGURE 3. Plot showing the KL divergence loss function of the supervised
temperature measuring network versus the number of epochs divided by
100. This network consists of an input layer with 100 nodes, a hidden
layer with 80 nodes and and output layer of 60 nodes.

To estimate 1 using magnetization the study [16] selects
flows at temperatures close to Tc, where the average magne-
tization m depends on temperature as

m ≈
A|T − Tc|1m

Tc
. (40)

In [16] the magnetization is expanded about the critical
point to give values for A = 1.22 and 1m = 1/8 = 0.125

m ≈ 1.222
|Tc − T |1/8

Tc
. (41)

We denote 1 obtained by this fitting as 1m. The fit also
determines A. The value of Tc = 2.269 is a known theo-
retical value for the 2D Ising model with coupling strength
J = 1. The fit uses the magnetization computed at tempera-
tures T = 2.1, 2.2 and 2.3. A plot of 1m versus flow length
is given in Figure 5. The error bars shown in Figure 5 (and
all subsequent plots) are determined using Mathematica’s
NonlinearModelFit function. The error bars show the stan-
dard error obtained from the regression. Mathematica uses
the Student’s t-distribution to calculate a confidence interval
for the given parameters with a 90% confidence level.

Our results indicate that we converge to the correct critical
value 1m = 0.125 for flows of length 26. It is evident
from Figure 5 that the flow converges to the theoretical value
depicted by the red horizontal line. The convergence of the
flow is also reflected as a decrease in the size of the error bars
as the flow proceeds. In [16] the value for A/Tc is found to be
0.931. The value of A/Tc which we find after convergence is
0.942 with a 90% confidence interval within ±0.0168794 of
this value. Although the values we obtain for A and 1m are
consistent with the results of [16], they have used a flow of

FIGURE 4. Plot showing the fit for equation (40). The blue line shows the
function m = 0.942(T − 2.269)0.126. This function is fitted using the dots
which show the average magnetization for flows of length 26 at various
temperatures measured using the supervised network. The vertical red
line shows the critical temperature of Tc ≈ 2.269. Equation (40) is fitted
using data points for temperatures near Tc .

length 9, at which point 1m is correctly determined. As just
described, we need longer flows for convergence. The fitting
of 1m and A, for a flow length of 26, is shown in Figure 4.

We now shift our focus to consider spatial two point corre-
lation functions computed using the configurations generated
by the RBM flows. The correlators are calculated using the
flow configuration and the result is then fitted to the function
in equation (32) to estimate1. We denote this estimate by1s
as it is determined using spatial information. For RBM flows
at the critical temperature, the prediction which is determined
by theory is 1s = 0.125 at T = 2.269, as explained above.
We expect that for temperatures below the critical temper-
ature 1s will be less than the theoretical value of 0.125. For
temperatures that are above the critical temperature we expect
that 1s will be greater than 0.125. With a lattice of 10 by
10 spins, we find 1s = 0.1263 using Monte Carlo Ising
model configurations. A plot showing this estimate can be
seen in Figure 5b. The point of this exercise is to demonstrate
that a lattice of size 10 by 10 is large enough to estimate the
scaling dimension of interest and to verify the integrity of the
data set used in the numerical simulations.

Figure 5a shows the scaling dimension 1s versus the flow
length, for RBM flows at temperatures of 2.2 (in gray) and
2.3 (in black). The red horizontal line indicates the scaling
dimension at the critical point. The results are intuitively
appealing. The gray points in Figure 5a show estimates of
1s from flows slightly below the critical temperature, where
the scaling dimension is slightly underestimated. Below the
critical temperature spins are more likely to align and so
the correlator should fall off more slowly than at the critical
temperature. This is what our results show. The black points
in Figure 5a show1s estimated using flows slightly above the
critical temperature. The scaling dimension is over estimated,
again as expected. Selecting flows at Tc would determine the
scaling dimension in between the values shown iin Figure 5a.
This gives a value very close to the theoretical value
of 1s = 0.125.
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FIGURE 5. Plot showing the estimated scaling dimension 1s versus flow
length using the two-point correlation function for (a) flows at T = 2.2
(in gray) and flows at T = 2.3 (in black). Plot (b) shows the estimated
scaling dimension versus temperature for the Ising model data used for
training. The error bars are determined using Mathematica’s
NonlinearModelFit function. Mathematica uses the Student’s
t-distribution to calculate a confidence interval for the given parameters
with a 90% confidence level.

The two point correlation functions for the spin variable
establish that the critical Ising states and the states produced
by the RBM flow share the same large scale spatial features.
We will now consider the two point correlation function of
the εij field, which probes spatial features on a smaller scale.
Using critical Ising data generated using Monte Carlo, on a
lattice of size 10 by 10 and 9 by 9, we estimate1ε at various
temperatures as shown in Figure 6a.We can estimate the error
for the point we are interested in, at 1ε = 1 and T = 2.269
which is depicted by the red vertical and horizontal lines
shown in Figure 6a. The error bar of the estimate for the grey
line (9 × 9 lattice) is ±0.059 for an estimated value of 1ε
being 1.013. For the black line (10 × 10 lattice) we have an
error bar of ±0.044 on an estimated value of 1.023 for 1ε .
This is determined using the average of the values as well as
the errors on either side of the red vertical line at T = 2.269.
Figure 6a, demonstrates that a lattice of size 9 × 9 is large
enough to correctly determine the ε scaling dimension 1ε .

The intersection of the red horizontal and vertical lines
cross the critical temperature and prediction1ε = 1. Interpo-
lating the Ising data with a continuous curve, we would pass

FIGURE 6. Plots showing 1ε calculated using (a) Monte Carlo Ising model
data on a 10 by 10 lattice (in black) and a 9 by 9 lattice (grey), (b) RBM
flows at a temperature of T = 2.2, 2.3 and 2.4. Error bars in plot
(a) indicate a 90% confidence interval. No error bars are shown in (b) as
the error bars are larger than the y range. The error bars shown in (a) are
determined using Mathematica’s NonlinearModelFit function.
Mathematica uses the Student’s t-distribution to calculate a confidence
interval for the given parameters with a 90% confidence level.

through the intersection point, as predicted. These numerical
results again demonstrate that a lattice of size 10 by 10 is
large enough for the questions we consider. The RBM flows
are unable to confirm this prediction. Indeed, the RBM flows
near Tc are summarized in Figure 6b. None of the three
temperatures shown have a value of 1ε that converges with
flow length.

The fact that the RBM produces configurations that cor-
rectly reproduce the correlation function of the spin field sij
but not of the εij implies that although the spatial correla-
tions encoded into the RBM flow configurations agree with
those of the critical Ising configurations at long length scales,
the two start to differ on smaller length scales. This conclu-
sion agrees with [16] which also finds differences between
the RBM flow and RG. Reference [16] considers h 6= 0 and
uses different arguments to reach the conclusion.

IV. FLOWS DERIVED FROM DEEP LEARNING
The RBM flows of the previous section provide one possible
link to RG. An independent line reasoning, developed in [14],
claims a mapping between deep learning and RG. The idea is
not that there is an analogy between deep learning and RG,
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but rather, that the two are to be identified. The argument
for this identity starts from the energy function of the RBM,
which is

E({vi, ha}) = baha + viWiaha + civi. (42)

This energy determines the probability of obtaining configu-
ration {vi, ha} as

pλ({vi, ha}) =
e−E({vi,ha})

Z
, (43)

where λ = {ba,Wia, ci} are the parameters of the RBMmodel
which are tuned during training. Marginal distributions for
hidden and visible spins are defined as follows

pλ({ha}) =
∑
{vi}

pλ({vi, ha}) = trvi pλ({vi, ha}),

pλ({vi}) =
∑
{ha}

pλ({vi, ha}) = trha pλ({vi, ha}). (44)

The equations (44) are key equations of the RBM and [14]
essentially uses these to characterize the RBM. The compar-
ison to RG is made by employing a version of RG known as
variational RG. This is an approximate method that can be
used to perform the renormalization group transformation in
practice. As explained in Appendix B, the variational RG uses
an operator T ({vi, ha}) defined as follows

eH
RG
λ ({ha})

Z
= trvi

eT ({vi,ha})−H ({vi})

Z
. (45)

In this formula, H ({vi}) is the microscopic Hamiltonian
describing the dynamics of the visible spins and HRG

λ ({ha})
is the coarse grained Hamiltonian describing the hidden
spins where here λ defines the parameters of the variational
RG. Block spin averaging is discussed in more detail in
Appendix B-B. The operator T ({vi, ha}) is required to obey
(see in equation (69))

trha e
T ({vi,ha}) = 1, (46)

which obviously implies that

trha e
T ({vi,ha})−H ({vi}) = e−H ({vi}). (47)

Notice that (45) and (47) exactly match (44) as long as we
identify

T ({vi, ha}) = −E({vi, ha})+ H ({vi}). (48)

This then implies that

eH
RG
λ ({ha})

Z
= trvi

eT ({vi,ha})−H ({vi})

Z
= trvi

e−E({vi,ha})

Z

=
e−H

RBM
λ ({ha})

Z
, (49)

which is the central claim of [14].
The above argument proves an equivalence between deep

learning and RG if and only if the equations (44) provide
a unique characterization of the joint probability function

pλ({vi, ha}). This is not the case: it is easy to construct func-
tions pλ({vi, ha}) that obey (44), but are nothing like either
the RBM or RG joint probability functions. As an example,
define

ρ({vi}) =
trha

(
eT ({vi,ha})−H ({vi})

)
Z

,

ρ̃({ha}) =
trvi
(
eT ({vi,ha})−H ({vi})

)
Z

, (50)

where

Z =
∑
vi,ha

eT ({vi,ha})−H ({vi}). (51)

We clearly have trvi (ρ({vi})) = 1 = trha (ρ̃({ha})) which
implies that

Aλ({vi, ha}) = ρ̃({ha})ρ({vi}), (52)

obeys (44). It is quite clear that in Aλ({vi, ha}) there are no
correlations between the hidden and visible spins

〈vjhb〉 = trvi,ha (vjhb Aλ({vi, ha}) )

= trvi (ρ({vi})vj) trha (ρ̃({ha})hb)

= 〈vj〉〈hb〉, (53)

so that we would reject it as a possible model of either the RG
quantity

Z−1eT ({vi,ha})−H ({vi}), (54)

or of the RBM quantity

Z−1e−E({vi,ha}). (55)

In addition to clarifying aspects of the argument of [14],
the joint correlation functions between visible and hidden
spins can be used to characterize the RG flow, as we now
explain. The RG flow ‘‘coarse grains’’ in position space: a
‘‘block of spins’’ is replaced by an effective spin, whose
magnitude is the average of the spins it replaces. Since cor-
relations between microscopic spins fall off with distance,
an RG coarse graining implies that because the hidden spin
is a linear combination of nearby visible spins, the corre-
lation function between hidden and visible spins reflects a
correlation between a hidden spin and a cluster of visible
spins. This produces distinctive correlation functions, some
examples of which are plotted in Figure 7. We will search
for this distinctive signal in the 〈viha〉 correlator, to find
quantitative evidence that deep learning is indeed performing
an RG coarse graining.

A. NUMERICAL RESULTS
Our numerical study aims to do two things: First, we establish
whether there are RG-like patterns present within the correla-
tor 〈viha〉, for correlators computed using the patterns gener-
ated by an RBM flow. If these patterns are indeed present,
this constitutes strong evidence in favor of the connection
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FIGURE 7. Correlation plots for Ising model visible data with lattice size
32 by 32 at Tc and RG decimated Ising data of sizes 16 by 16 (one step
of RG) and 8 by 8 (two steps of RG). (a) shows visible Ising data
correlated with configurations resulting after one step of RG. (b) shows
correlations between configurations resulting after one step of RG and
configurations resulting after two steps of RG. (c) shows correlations
between Ising model visible data and configurations resulting after two
steps of RG. (d) shows one step of RG. The red dots show the original
visible lattice and the blue dots show the lattice obtained after one step
of RG. Each blue dot is surrounded by four red dots. The value of the blue
dot is determined by averaging the surrounding four red dots.

between RG and deep learning. The 〈viha〉 correlator is
calculated using

〈viha〉 =
1
Ns

Ns∑
A=1

v(A)i h(A)a , (56)

whereA = 1, 3, . . . ,Ns withNs being the number of samples,
i = 1, 2, . . . ,Nv labels the visible nodes within a visible
vector and a = 1, 2, 3, . . . ,Nh labels the nodes within a
hidden vector.

For each hidden node ha we can produce a plot which
shows how this hidden node is correlated to the i = 1, 2,
3, . . . ,Nv visible nodes, vi. This gives us a total of Nh plots.
Each panel within the plot for ha shows the Nv correlation
values for 〈viha〉. By arranging these panels according to the
lattice sites of the visible spins we get a grid of Lv× Lv = Nv
values for the correlators 〈viha〉, where a is fixed for the given
plot and i runs from 1 to Nv.

By doing this we can determine if a given hidden node
is correlated to a local patch of visible nodes which are
neighbors on the original lattices produced from MC. This
local information is not encoded inherently in the RBM so
learning about the nearest neighbour interactions present in
the 2D Ising model would show promise that RBMs are
performing a coarse graining related to that of RG. We find
that RG-like patterns do indeed emerge.

Second, according to the proposal of [14], in a deep net-
work each layer that is stacked to produce the depth of the

network performs one step in the RG flow. With this inter-
pretation in mind, it may be useful to compare how a network
with multiple stacked RBMs learns as compared to a network
with a single layer. This issue is explored below.

The training data is a set of 30000 configurations of
Ising model 32 by 32 lattices, near the critical temperature
T = 2.269. The dataset is generated using Monte Carlo sim-
ulations. An input lattice length of 32 allows a large enough
final configuration even after two steps of RG, corresponding
to stacking two RBMs. In each step of the RG, the number of
lattice sites is reduced by a factor of 4. Thus, we flow from
lattices with 1024 sites to lattices with 64 sites. We enforce
periodic boundary conditions. To find signals of RG in the
correlation functions the maximum distance between opera-
tors in a correlator must be large enough that the spin-spin
correlation has dropped to zero. We have confirmed that our
lattice is large enough, judged by this criterion.

Having described the conditions of our numerical experi-
ment, we consider the correlators 〈viha〉 generated when the
hidden neurons ha are generated from the visible neurons
vi using RG. Our goal is to understand the patterns appear-
ing in correlation functions, that are a signature of the RG.
In Figure 7d the process of decimation used in our RG is
explained. The red dots, representing the visible lattice, are
averaged (coarse grained) to produce the blue dots which
define the lattice after a single step of the RG. The four spin
values located at the red dots surrounding each blue dot are
averaged to obtain the value of the spin at the new (blue)
lattice point. This process clearly reduces the number of
lattice sites by a factor of four.

Using the visible data which populates a 32 by 32 lattice,
we populate lattices of size 16 by 16 and 8 by 8 spins by
applying the RG and then calculate the various possible 〈viha〉
correlations.

Figure 7a shows the 〈viha〉 correlation function that
results from a single RG step. Each panel of the three
Figures 7a, 7b and 7c, shows how a given hidden spin is cor-
related with the visible spins. We can clearly see a peak in
correlation values around the spatial location of the hidden
spin. This is the signal of RG coarse graining: small spatially
localized collections of spins are replaced by their average
value. We can go into a little more detail: the patches of large
correlation in Figures 7b and 7c are larger in size than those of
Figure 7a. This makes sense since each step of the RG implies
ever larger spatial regions of the spins are being averaged
to produce the coarse grained variables. The fact that the
spins that are averaged are spatially localized is a direct
consequence of the fact that the Ising model Hamiltonian is
local in space so that spatially adjacent spins have similar
behaviors. In more general big data settings it may be harder
to decide if the coarse graining is RG-like or not, since it
might not be clear what is meant by spatial locality.

Having established the signal characteristic of the RGflow,
we will now search for this signal in the 〈viha〉 correlators
computed using the configurations generated from the RBM
flow. We consider configurations generated by a stacked
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FIGURE 8. Plots showing the correlation values for (a) the stacked RBMs
various layers and (b) the single RBM. (a-i) shows correlations between
visible Ising data (1024 nodes) at Tc and outputs from the first stacked
RBM (256 nodes). (a-ii) shows correlations between outputs from the first
stacked RBM (256 nodes) and outputs from the second stacked RBM
(64 nodes). (a-iii) shows correlations between visible Ising data
(1024 nodes) at Tc and outputs from the second stacked RBM (64 nodes).
(b) shows correlations between visible Ising data (1024 nodes) at Tc and
outputs from the single RBM (64 nodes).

networkwith an RBMhaving 1024 visible nodes and 256 hid-
den nodes cascading into a second RBM having 256 visible
nodes and 64 hidden nodes. We also consider configurations
generated by a single RBM network with 1024 visible nodes
and 64 hidden nodes. The factor of 4 relating the number of
visible to hidden nodes is chosen to mimic the decimation
of lattice sites in each step of the RG. The networks are
trained on the same data used as input for the RG considered
above. Training is through 10000 steps of contrastive diver-
gence [28].

Figures 8a-i to 8a-iii show plots for the stacked RBM and
Figure 8b for the single RBM network. Figure 8a-iii shows
the correlation functions between the visible vectors input to
the first network in the stack and the final hidden vectors
output from the stack and is to be compared to the corre-
sponding RG result in Figure 7c. The two patterns are very
similar suggesting that the trained RBM is indeed performing
something like the RG coarse graining.

To quantitatively compare the patterns we observe in the
〈viha〉 correlators produced by RG to those produced by the
RBM we make use of a two point correlation function. When
we perform an RG coarse graining we average local nearby
nodes from the input (visible lattice) to obtain the output
(hidden lattice). This local averaging is encoded in the 〈viha〉
plots by bright spots. The bright spots correspond to a specific
hidden node being highly correlated to a patch of local visible
spins. In each 〈viha〉 plot, the hidden node we consider is
fixed and we plot its correlation with all visible nodes. If we
denote each value of 〈viha〉 by xi we calculate the two point
correlator 〈xixj〉 between values 〈viha〉 and 〈vjha〉 summed

FIGURE 9. Plots showing 〈xi xj 〉 for RG 〈vi ha〉 plots shown in Figures 7a,
7b and 7c.

over all hidden nodes

〈xixj〉 =
1
Nh

Nh∑
a=1

〈viha〉 × 〈vjha〉. (57)

By calculating this quantity, we learn about the size of the
correlated patches in the 〈viha〉 plots. We can plot the value of
〈xixj〉 versus the distance, |i− j|. This quantity tells us impor-
tant information about the size of the correlated patches. We
average the values of

〈
xixj

〉
where the distances |i−j| are equal.

The patches present in 〈viha〉 will thus be detected regardless
of where they appear in the plot. If we do have local patches
of high correlation,

〈
xixj

〉
will be peaked at short distances and

as distance increases,
〈
xixj

〉
will decrease in value.

For RG, the plots seen in Figure 9 show a linear fall
off in the correlator as distance increases. The fall off of
these correlators is in the order of magnitude of 10−4. In
Figure 10 the behavior of the RBM correlator is shown.
Figures 10a and 10c show similar behavior to that seen for
RG. There is a linear decrease in

〈
xixj

〉
in the same order of

magnitude of 10−4. A difference between these plots is that
the RBMcorrelators are offset.We do not have an explanation
for this offset.

We also study
〈
xixj

〉
where the visible lattice is of size

48 × 48 = 2304 and the hidden lattice is of size 24 × 24 =
576. The 〈viha〉 correlators are determined using a visible set
of 40000 lattices at Tc = 2.269 and the hidden set produced
by an application of RG and by applying a trained RBM
(which is trained on this same visible data set). The results
for

〈
xixj

〉
are shown in Figure 11. For the RBM (Figure 11d)

the fall off of the correlator again matches the behavior of
RG (Figure 11b). For the RBM the fall off trend is clearer
with these larger lattice sizes when compared to the RBMs of
smaller lattice sizes. There is a slight increase in correlation
in Figure 11d as the distance nears Lv/2 = 24. This suggests
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FIGURE 10. Plots showing 〈xi xj 〉 for RBM 〈vi ha〉 plots shown
in Figures 8a-i, 8a-ii and 8a-iii.

FIGURE 11. Plots showing the
〈
vi ha

〉
correlators and corresponding two

point correlator
〈
xi xj

〉
values for one step of RG and a single RBM

starting from an input lattice of size 48× 48 = 2304 which is reduced to
an output lattice of size 24× 24 = 576.

that there are more than 1 local patches of correlation in the
RBM 〈viha〉 plots. In Figure 11c we can see that some plots
show some speckle with a few highly correlated spots in a
single 〈viha〉 plot. We verify this observation by considering
specific 〈viha〉 correlation patterns below.
To gain more understanding of the information encoded

in the two point correlator we consider 〈viha〉 patterns of
white noise in addition to a checkerboard shape with various
sizes for the sub-blocks on the checkerboard. This allows us
to explore the benefit of studying 〈xixj〉 in probing patterns
present in 〈viha〉. We show an example of a single hidden

FIGURE 12. White noise: Plots showing (a) a hypothetical 〈vi ha〉
correlator (for a single hidden node with all visible nodes) consisting of
white noise and (b) the two point correlator 〈xi xj 〉 calculated from the
values of 〈vi ha〉 in (a).

node’s correlation with all visible nodes constructed using
white noise in Figure 12a. In Figure 12b we can see

〈
xixj

〉
calculated from the values shown in Figure 12a. We see
different behavior to that observed in Figures 9 and 10.
As expected, there is no clear relationship between the value
of the two point correlator

〈
xixj

〉
and the distance between

values xi and xj.
We also study 〈viha〉 with a checkerboard pattern as shown

in Figure 13. We explore various sub-block sizes within the
checkerboard pattern. In Figures 13a, 13c and 13e we show
the 〈viha〉 plot with a checkerboard pattern on a lattice of size
32 × 32 with sub-blocks of size 4 by 4, 8 by 8 and 16 by
16 respectively. The corresponding two point correlators are
shown in Figures 13b, 13d and 13f. We can see from these
plots that having many correlated patches in 〈viha〉 which
are of size < Lv/2, produces a two point correlator which is
peaked at a number of points. In the case of Figure 13f, where
the sub-block sizes equal Lv/2 we see similar behavior to
that seen in the RBM and RG correlator plots. The additional
peaks seen in Figures 13b and 13d are due to multiple patches
in the image being correlated. This behavior is not charac-
teristic of the RG local patches as a single highly correlated
patch is present in the RG 〈viha〉 plots.

There is one more interesting comparison that can be car-
ried out and it quantitatively tests the flow. The temperature
is a relevant coupling so it grows as the flow proceeds. In the
block spin RG that we are considering, the length of the
lattice keeps halving. Thus, after 7 steps our unit of length is
27 = 128 ≈ 100 times larger than it was. To get some insight
into the effect of this change of units, imagine we change
units from centimeters to meters. In the new units, a length
of 100cm is now 1m. Anything with the units of length will
roughly halve with each step of the flow. In contrast to this,
the temperature of the system, which in suitable units has a
dimension of inverse length, will roughly double. There will
be small departures from precise doubling due to interactions,
but the temperature must increase by roughly a factor of 2 as
each new layer is stacked. If the RBM is performing an
RG-like coarse graining, the temperature should grow in a
similar way aswe pass through the layers of the deep network.
Figure 14a plots the temperature of coarse grained lattices,
generated by applying three steps of RG to an input lattice
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FIGURE 13. Checkerboard: Plots showing 〈vi ha〉 correlators generated to
depict a checkerboard with varying block sizes as well as the two point
correlator 〈xi xj 〉 corresponding to the given 〈vi ha〉 plots. Plot
(b) corresponds to plot (a), plot (d) corresponds to plot (c) and plot
(f) corresponds to plot (e).

of size 64 by 64, at a temperature of T = 2.7. There is a
clear increase in the measured temperature as the number of
RG steps increase. The temperature of each layer is roughly
T = 2.3, 4.8 and 11 for layers 1, 2 and 3 respectively, which
is indeed consistent with the rough rule that the temperature
doubles with each step.

Now consider a deep network made by stacking
three RBMs. The first network has 4096 visible nodes
and 1024 hidden nodes, the second 1024 visible nodes
and 256 hidden nodes and the third 256 visible nodes
and 64 hidden nodes. The network is trained on Ising
data at the critical temperature, as described above.
Figures 14b-i, 14bii and 14b-iii give the temperatures of the
outputs of the layers of the RBM, given input lattices at tem-
peratures of T = 2.269, 2 and 2.7 respectively. Temperatures
of T = 2 and T = 2.269 lead to the same behavior for the
temperature flow, as exhibited in Figures 14b-i and 14b-ii.
The temperature jumps rapidly to a high temperature in the
first step of the flow, and remains fixed when the second step
is taken. This is an important difference that deserves to be
understood better. It questions the identification of layers of
a deep network with steps in an RG flow.

FIGURE 14. (a) shows the average probability of the measured
temperature of lattices resulting after 3 steps of RG, applied to an input
lattice at Tc with 4096 sites. (b) shows the average probability plot of the
measured temperature of outputs produced by a stacked RBM with
4096 input nodes, 1024 nodes in the first layer, 256 nodes in the second
layer and 64 nodes in the output layer. (b-i) is given input Ising samples
at T = 2.269, (b-ii) is given input Ising samples at T = 2 and (b-iii) is
given input Ising samples at T = 2.7.

Figure 14b-iii shows different characteristics to those
of 14b-i and 14b-ii. Here the temperature of the input is
above Tc at 2.7. Layer 1 is not as sharply peaked near Tc
as observed in Figures 14b-i and 14b-ii. In addition to this,
layers 2 and 3 are not at the same temperature but rather
layer 2 is at a higher temperature than layer 3. This differs
to the RG flow, where temperature increases along the flow.
Figure 14b-iii shows a decrease in temperature from layer
2 to layer 3 rather than an increase. These plots demonstrate
that the flow defined by multiple layers in a ‘‘deep’’ network
show important differences to the RGflow. The discrepancies
we have uncovered are important and precise quantitative
mismatches that may provide useful clues in understanding
the relationship between unsupervised deep learning by an
RBM and the RG flows.

The results above have shown that the correlator 〈viha〉
exhibits RG-like characteristics. This is evident from the
comparison between the 〈viha〉 plots from RG, a stacked
RBM network and a network with a single RBM. We can
see RG-like patterns in the correlators produced by the two
RBM networks. This is a promising result that demonstrates
that a form of coarse graining is taking place when networks
are stacked.

V. CONCLUSIONS AND DISCUSSION
Our main goal has been to explore the possibility that RG
provides a framework within which a theoretical understand-
ing of deep learning can be pursued. We have focused on a
single model, the Ising model, which is naturally related to
RBMs. Thus, at best our conclusions and discussion can only
suggest interesting avenues for further study. We are not able
to draw general definite conclusions about the applicability of
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RG as a framework within which a theoretical understanding
of deep learning can be achieved. Our data set contains the
possible states of an Ising magnet, generated using Monte
Carlo simulation. This is an interesting data set, since we
know that there is a well defined theory for the magnet
defined on large length scales. The existence of this long
distance theory guarantees that there is some emergent order
for the unsupervised learning to identify. Another point worth
stressing is that the RG treatment of this system is well under-
stood and is easily implemented numerically. It is therefore
an ideal setting in which both deep learning and RG can be
implemented and their results can be compared. At the critical
temperature, where the system is on the verge of spontaneous
magnetization, there is an interesting scale invariant theory
which is well understood. By working at this critical point,
we havemanaged to probe the patterns generated by the RBM
at different length scales and to compare it to the expected
results from an RG treatment.

Our first set of numerical results compare the RBM flow
introduced in [15] and further pursued in [16]. From a theoret-
ical point of view the RBM flow looks rather different to RG
since the RBM flow appears to drive configurations towards
the critical temperature. The RG would drive configurations
to ever higher temperatures due to the fact that the tempera-
ture corresponds to a relevant perturbation. Another impor-
tant difference between the RBM flow and RG is that the
number of spins is a constant of the RBM flow, but decreases
with the RG flow. Our numerical results confirm that the
RBMflow does indeed generate RG-like Ising configurations
and we have reproduced the scaling dimension of the spin
variable from the spatial statistics of the patterns generated
by the RBM. This is a remarkable result and it extends and
supports results reported and discussed in [15], [16]. The
spin variable has the smallest possible scaling dimensions and
consequently probes the largest possible scales in the pattern.
When considering correlation functions of the next primary
operators we find that the RBM data does not reproduce the
correct scaling dimension, proving that the spatial statistics of
the patterns generated by the RBM flow and those generated
by RG start to differ as smaller scales are tested. We therefore
conclude that the RBM flow and RG are distinct, but they do
agree on the largest scale structure of the generated patterns.
This is a hint into the mechanism behind the RBM flow and
it deserves an explanation.

Our second numerical study has explored the idea that deep
learning is an RG flow with each stacked layer performing
a step of RG. We have explained why correlation functions
between the visible and hidden neurons, 〈viha〉 are capable of
diagnosing RG-like coarse graining and we have computed
these correlation functions using the patterns generated by
the RBM. The basic signal of RG coarse graining is a ‘‘bright
spot’’ in the 〈viha〉 correlation function, since this indicates
that spins in a localized region were averaged to produce
the coarse grained spin. The numerical results do indeed
show a dark background with emerging bright spots. It would
be interesting if the emergent patterns again guarantee

agreement on the largest length scales, similar to what was
found for the RBM flows, but we can not confidently make
this assertion yet.

Our final numerical study considered the flow of the tem-
perature, a relevant operator according to the RG. We find
three distinct behaviors. Section III-B reviewed that RBM
flows converge to the critical temperature. This is borne out
in our results. The RG flows to ever higher temperatures,
with (roughly) a doubling in temperature for each step. Again,
this is precisely what we observe. Finally, for a deep network
made by stacking three RBMs, the temperature appears to
flow when moving between the first and second layers of a
deep network, but is fixed when moving between the second
and third layers. This is an important difference that deserves
to be understood better. It questions the identification of
layers of a deep network with steps in an RG flow.

Our results are encouraging. There are enough similar-
ities between unsupervised learning by an RBM and the
RG flow that the relationship between the two should be
developed further. Regarding future studies, it maybe useful
to explore models other than Ising. The Ising model has an
unstable fixed point due to the presence of relevant operators.
Consequently, finite flows starting near the critical point all
terminate on different models. In this case its not easy to know
if the RBM has flowed to the ‘‘right answer’’ because there
are many possible right answers! The stable fixed point of the
model is at infinite temperature and the configurations at this
fixed point are randomwith correlators that have a correlation
length of zero. This is hardly a promising answer to shoot
for. It maybe more instructive to study models that have an
attractive RG fixed point. In this case the minimum that the
RBM is looking for would be unique and the connection
between the twomay be easier to recognize. We have in mind
systems that exhibit self organized criticality [36], including
models constructed to understand the spread of forest fires
[34] and models for the spread of infectious diseases [35].

By using Ising model data, generated by Monte Carlo
simulation, starting from a local Hamiltonian we know how
a coarse graining capable of identifying emergent patterns
should proceed: spatially neighboring spins should be aver-
aged. For more general data sets, this may not be the case.
It is fascinating to ask what the rules determining the correct
coarse graining are and in fact, with respect to this question,
deep learning has the potential to shed light on RG.

Another interesting comparison worth mentioning is the
similarity between an average pooling layer within a con-
volutional neural network (CNN) and the averaging per-
formed in variational RG. CNNs are known for their
excellent performance in image recognition and classifica-
tion tasks [42]–[44]. CNNs have a number of layers which
act on groups of nearby pixels in the image. One of these
layers which is similar to the coarse graining performed in
variational RG is called a pooling layer. The pooling layer
performs a down-sampling on the data it receives from previ-
ous layers in the network [45]–[47]. The down-sampled data
is more robust to changes in position of features and gives
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the network the property of local translation invariance. One
way in which the pooling operation is implemented is by
averaging all values in the given patch of data it acts on to
obtain a new value to replace these values. Pooling usually
averages blocks of data which are of size 2 × 2. This results
in an input block of data being reduced by a factor of 2 in
length and by a factor of 4 in the number of values which is
the same factor of rescaling which occurs in variational RG.

In recent years a connection between the renormalization
group and tensor networks [48] has been discovered, pro-
viding a connection to the field of quantum information.
The discovered connection demonstrates that the multi-scale
entanglement renormalization ansatz (MERA) tensor net-
works carry out a coarse graining that agrees in many ways
with the coarse graining performed by the renormalization
group [49]. This suggests that there maybe a link between
tensor networks and deep learning. For related ideas see [50],
[51]. Since tensor networks have been extensively studied for
calculations the connection may prove to be useful for better
understanding deep learning.

Apart from the exciting possibility that the link to RG
might contribute towards a theoretical understanding of deep
learning, one might also ask if the connection would have any
practical applications. One possibility that we are currently
pursuing, is a Callan-Symanzik like equation governing the
learning process. Roughly speaking, one might mimic RG by
dividing the weights to be learned into relevant, marginal and
irrelevant parameters, depending on gross statistical prop-
erties of the training data. If this classification is itself not
too expensive, one could pursue a more efficient approach
towards training, since the classification of weights would
provide an understanding of whichweights are important, and
which can simply be set to zero. We hope to report on this
possibility in the future.

APPENDIX A
RBM EXPECTATION VALUES
The expectation values quoted in equations (7), (8) and (9)
are derived using (2). Data expectation values are evaluated
by summing over all samples, v̂i

(A) in the training set. On the
other hand model expectation values employ sums over the
entire space of visible and hidden vectors. This is such an
enormous sum that its numerically intractable. Consequently,
the approximations described in Section II-A are used. The
complete set of expectation values needed to describe the
RBM are given by

〈viha〉data =
1
Ns

Ns∑
A=1

v̂i
(A) tanh

(∑
k

Wkav̂k
(A)
+b(h)a

)
, (58)

〈viha〉model =
∑
{v,h}

tanh

(∑
k

Wkavk + b(h)a

)

· tanh

∑
j

Wijhj ++b
(v)
i

 , (59)

〈vi〉data =
1
Ns

Ns∑
A=1

v̂i
(A)
, (60)

〈vi〉model =
∑
{h}

tanh

(∑
a

Wiaha + b
(v)
i

)
, (61)

〈ha〉data =
1
Ns

Ns∑
A=1

tanh

(∑
i

Wiav̂i
(A)
+ b(h)a

)
, (62)

〈ha〉model =
∑
{v}

tanh

(∑
i

Wiavi + b(h)a

)
, (63)

with v̂(A)i the Ath sample of the data set, v̂.

APPENDIX B
TWO VERSIONS OF RG
In this section we review two versions of the RG that are
needed in this article. The first of these, the variational renor-
malization group, was introduced by Kadanoff [52]–[54] as a
method to approximately perform the renormalization group
in practice.

A. VARIATIONAL RG
Consider a system of N spins {vi} which each take the values
±1. The partition function describing the system is given by

Z =
∑
vi

e−H ({vi}). (64)

Here the sum is over all possible configurations of the system
of spins and the function H ({vi}), called the Hamiltonian,
gives the energy of the system. This would include the energy
of each individual spin as well as the energy associated to the
fact that the collection of spins is interacting. The Hamilto-
nian H ({vi}) can be an arbitrarily complicated function of the
spins

H ({vi}) = −
∑
i

Kivi −
∑
i,j

Kijvivj

−

∑
i,j,k

Kijkvivjvk + · · · . (65)

The RG flowsmaps the original Hamiltonian to a newHamil-
tonian with a different set of coupling constants. The new
Hamiltonian

H ({ha}) = −
∑
a

K ′aha −
∑
a,b

K ′abhahb

−

∑
a,b,c

K ′abchahbhc + · · · , (66)

gives the energy for the coarse grained spins ha. After many
RG iterations many coupling constants (the so called irrele-
vant terms) flow to zero. Amuch smaller number may remain
constant (marginal terms) or even grow (relevant terms).
To implement this conceptual framework a concrete RGmap-
ping is needed. Variational RG provides a mapping which is
not exact but can be implemented numerically. It does this
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by introducing an operator Tλ({vi, ha}) which is a function of
a set of parameters {λ}. The Hamiltonian after a step of RG
flow is

e−HRG({ha}) =
∑
vi

eTλ({vi,ha})−H ({vi}). (67)

The form of Tλ({vi, ha}) must be chosen cleverly, for each
problem we consider. This is the tough step in variational RG
and it is carried out using physical intuition, but essentially
on a trial and error basis. Once a given Tλ({vi, ha}) has been
chosen, we minimize the following quantity by choosing the
parameters {λ}

log(
∑
vi

e−H ({vi}))− log(
∑
ha

e−HRG({ha})). (68)

The minimum possible value for this quantity is zero. Notice
that when ∑

ha

eTλ({vi,ha}) = 1, (69)

(68) attains itsminimumvalue of 0 and the RG transformation
is called exact.

B. BLOCK SPIN AVERAGING
Block spin averaging is a pedagogical version of RG. To illus-
trate the method, consider a rectangular lattice of interacting
spins. Divide the lattice into blocks of 2 × 2 squares. Block
spin averaging describes the system in terms of block vari-
ables, which are variables describing the average behavior of
each block. The ‘‘block spin’’ is literally the average of the
four spins in the block. The plots shown in Figures 7a use
block spin averaging. The block spins ha are each an average
of four visible spins vi.
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