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ABSTRACT As one of the most important tasks in autonomous driving systems, ego-lane detection has been
extensively studied and has achieved impressive results inmany scenarios. However, ego-lane detection in the
missing feature scenarios is still an unsolved problem. To address this problem, previous methods have been
devoted to proposing more complicated feature extraction algorithms, but they are very time-consuming and
cannot deal with extreme scenarios. Different from others, this paper exploits prior knowledge contained in
digital maps, which has a strong capability to enhance the performance of detection algorithms. Specifically,
we employ the road shape extracted from OpenStreetMap as lane model, which is highly consistent with the
real lane shape and irrelevant to lane features. In this way, only a few lane features are needed to eliminate
the position error between the road shape and the real lane, and a search-based optimization algorithm is
proposed. Experiments show that the proposed method can be applied to various scenarios and can run in
real-time at a frequency of 20 Hz. At the same time, we evaluated the proposed method on the public KITTI
Lane dataset where it achieves state-of-the-art performance. Moreover, our code will be open source after
publication.

INDEX TERMS Ego-lane detection, missing feature, OpenStreetMap, parameter estimation.

I. INTRODUCTION
With the development of artificial intelligence, autonomous
driving systems have become research hot-spots in both
academia and industry. As one of the essential modules,
ego-lane detection allows the car to properly position itself
within the road lanes, which is crucial for subsequent control
and planning.

A typical ego-lane detection result in the KITTI Lane
dataset is shown in Figure 1, where the ego-lane is labeled
as green. It can be seen that there are three main tasks for
ego-lane detection: left boundary detection, right boundary
detection, and upper boundary detection. The upper boundary
detection is mainly to detect the preceding vehicle, which
has been studied by most scholars in recent years and has
achieved encouraging results. Therefore, this paper focuses
on the left and right boundary detection, that is, lane line
detection and road curb detection in KITTI Lane dataset (the
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FIGURE 1. A typical ego-lane detection result in the KITTI Lane dataset,
where the ego-lane is labeled as green.

road in the KITTI Lane dataset is a two-way road and the
vehicle is driving on the right lane).

For lane line detection and road curb detection, one of the
most challenging scenarios is missing feature, which may
be caused by lane marking wear, lighting changes, and even
no visible features. To tackle this challenge, previous meth-
ods [1]–[4] have been devoted to proposing more effective
feature extraction methods to obtain as many features as
possible, but they are very time-consuming and cannot deal
with extreme scenarios. In addition, model fitting plays an
important role when features are partially missing or other
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objects are interpreted as features [5]. Therefore, this paper
focuses on obtaining the compact high-level representation
of lane boundaries through model fitting, thereby solving the
missing feature problem.

In recent decades of research, various mathematical repre-
sentation models have been used for model fitting, ranging
from simple straight line models to complex spline models.
Many researchers prefer model fitting using straight line [6],
[7], which is a good approximation for the short range and
is the most common case in highway scenarios. Although
the straight line model is efficient and simple, it will fail in
curved roads, so some researchers propose to use a circular
arc as lane model [8], [9]. Furthermore, quadratic polyno-
mials [10] and cubic polynomials [11] are also widely used
for model fitting in curved situations. In recent years, more
and more researchers prefer to use splines for model fitting
such as cubic spline [12], Catmull-Rom spline [13], and
B-Spline [14]. Although mathematical representation models
have been widely used for model fitting, their performance
is profoundly affected by the quality of lane features. When
in some extreme scenarios, the overfitting issue will occur,
therefore causing a large shape error between the fitted lane
and the real lane.

Nowadays, most autonomous driving systems have access
to digital maps that contain rich geometric and semantic
information about the environment. This prior information
has been proven to have a strong capability to enhance the per-
formance of algorithms in perception [15], prediction [16],
and motion planning [17]. In this paper, we exploit Open-
StreetMap (OSM) [18], a free online community-driven map
to enhance our ego-lane detection algorithm. OSM data is
structured using three basic geometric elements: nodes, ways,
and relations [19]. Ways are geometric objects like roads,
railways, rivers, etc. It includes a collection of nodes, where
the number of nodes is determined by the complexity of the
object. Taking the road as an example, a straight road may
consist of only two or three points as shown in Figure 2(a),
and a curved road may consist of dozens of points as shown in
Figure 2(b), ensuring the consistency of the OSM road shape
and the real lane. Therefore, we use OSM road shape as lane
model, which is irrelevant to lane features and robust to a
variety of missing feature scenarios.

However, the OSM data is provided by user contributions,
so that it is coarse and rife with errors. At the same time,
the localization system employed on the vehicle might be
noisy. These two problems lead to position errors between
the OSM data and the real lane. To eliminate these errors,
we propose a search-based optimization method, which finds
the optimal position offset parameters by minimizing the
distance between the OSM data and the extracted features,
thereby improving the detection accuracy of the algorithm.

In summary, this paper presents a novel map-enhanced
ego-lane detection (MELD) approach to address the missing
feature problem (shown in Figure 3). First, we project the
3D LiDAR point cloud onto a range image and perform
ROI selection based on the horizontal slope feature and the

FIGURE 2. The results of projecting OSM data onto the bird’s eye view of
the image, where node is displayed in red and road is displayed in blue.
(a) is a straight road sample. (b) is a curved road sample.

vertical slope feature. Then, we use the ROI selection result to
generate a mask on the bird’s eye view of the image and use a
gradient operator to detect lane features. Finally, we propose
a search-based optimization method to employ the OSM
road shape as lane model, further obtain a robust ego-lane
detection result. The main contributions of this paper are as
follows:

1) Exploit the OSM road shape as lane model, which is
highly consistent with the real lane shape and irrelevant
to lane features, thereby robust to the missing feature
scenarios.

2) Propose a search-based optimization method to elimi-
nate the position errors between the OSM data and the
real lane, thereby improving the detection accuracy.

3) Propose an efficient ego-lane detection framework
being able to run in real-time at a frequency of 20 Hz
on a single CPU.

The remainder of this paper is organized as follows.
Section II presents the related work of ego-lane detection.
In Section III, the proposed MELD approach is presented
in detail. Experimental results are presented in Section IV.
Finally, we conclude the paper in Section V.

II. RELATED WORK
The ego-lane detection methods can be categorized according
to different criteria, of which the most common categories
are: model-based and learning-based [20]. Model-based
methods tend to build a shape model [6]–[14] to describe
the lane. Learning-based methods employ either traditional
classifiers [21]–[23] or deep neural networks [24]–[26] to
estimate the category of each pixel. In recent years, some
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FIGURE 3. The framework of the map-enhanced ego-lane detection (MELD) approach. The input data includes 3D LiDAR point cloud, camera image, and
OpenStreetMap. The main processing steps include ROI selection in range image, lane feature extraction in bird’s eye view of image, and ego-lane
detection.

methods based on LiDAR [27], [28] or fusion of LiDAR and
camera [29], [30] have also been used for ego-lane detec-
tion. At the same time, since different sensors have differ-
ent drawbacks, an online sensor reliability assessment and
reliability-aware fusion method was proposed for ego-lane
detection [31]. This paper focuses on solving the feature
missing problem by using the road shape prior provided by
OSM as the lane model. Therefore, the related work will
mainly be carried out in two aspects: lane modeling and map
using.

A. LANE MODELING
In recent years, lane modeling has played an important role
in ego-lane detection, which refers to obtaining a compact
high-level representation of road lane markings [32]. Differ-
ent researchers have proposed different lane models. Some
people only use simple straight lines, while others prefer to
use more complex models, such as polynomial, clothoid, and
spline.

The straight line model [6], [7] is the most commonly
used geometric model. It is a good approximation for short
distances and is the most common model in highway scenes.
To increase the robustness of model fitting, several con-
straints have been applied additionally, such as parallelism
[33] and road or lane width [34]. The straight line model
is simple, but its applicability is limited, especially at long
distances or curve road.

In [8], [9], curved roads are modeled in the bird’s eye view
using circular arc. Generally, the curvature of the road is
small and continuous, so the circular arc is a conventional
lane model on a ground plane [35]. However, the circular arc
cannot handle more general curved roads.

Since performing well on more general curved roads, poly-
nomials are also widely used for model fitting, including

quadratic polynomial [10] and cubic polynomial [11]. But the
fitting effect at the connection between a straight lane and a
circular curve is limited [5].

Several researchers [36], [37] assume that the shape of the
road as clothoid, which is defined by the initial curvature, the
constant curvature change rate, and its total length. Clothoid
can be approximated by a third-order polynomial and used
to avoid abrupt changes in steering angle when driving from
straight to circular roads.

Splines are smooth piecewise polynomial curves, which
have been popular in previous studies [38]. Spline based lane
model describes a wider range of lane structures, as it can
form arbitrary shapes by a different set of control points [39].
Various spline representations have been proposed for lane
modeling. In [12], a cubic spline with two to four control
points is used for lane modeling. Wang et al. [13] presents
lane modeling based on Catmull–Rom spline (also known
as Overhauster spline), which is a local interpolating spline
developed for computer graphics purposes. B-spline was
introduced in [14], which can provide a local approximation
of the contour with a small number of control points. Fur-
thermore, nonuniform B-spline was used to construct the left
and right lanes of the road [40]. Third-degree Bezier spline
is also used to fit the left and right boundaries of the road
surface [41]. The lane model was also improved to generate a
B-snake model [42] or parallel-snake model [43]. Moreover,
a spline-based particle filter is used to model the curvature of
the lane [44].

Several combination models have also been proposed as
lane models. In [45], the image is divided into multiple
slices, and lanes in each slice are fitted with straight lines
to form a piecewise linear model. Jung et al. [46] proposed
a linear parabolic lane model consisting of a linear function
in the near-range and a parabola in the far-range. The nearby
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FIGURE 4. OSM data of a sample in the KITTI Lane dataset. (a) shows the raw image of a sample scenario in the KITTI Lane dataset. (b) shows the
raw OSM data corresponding to the scenario, in which the red arrow indicates the position and direction of the ego vehicle. (c) shows the
transformed OSM data where roads are shown in blue, railways are shown in red, and other geometric objects are shown in yellow. (d) shows the
road that the ego vehicle is currently traveling.

straight line model provides the robustness of the model, and
the parabola provides the flexibility of the model. Similar to
[46], some researchers employ a clothoid model [47] or a
hyperbola model [48] as the far-range model.

B. MAP USING
Amap that contains rich geometric and semantic information
about the environment is essential for autonomous driving
systems. Impressive results have been achieved by introduc-
ing maps to perception [15], prediction [16], and motion
planning [17]. Various map-based methods are also proposed
for ego-lane detection.

In [49], the curvature of the road was first obtained from
the GPS position and the digital map, and then it was used
to determine whether it was driving on a straight road or a
curved road. Different road regions use different lane detec-
tion modules, of which straight roads are fitted using linear
models and curved roads are fitted using circular arc.

To enhance the performance and robustness of the lane
detection system, Möhler et al. [50] proposed to extract lane
width and curvature of upcoming road segments from a digi-
tal map to adapt certain configuration parameters. In addition,
clothoid is used for model fitting.

It is worth mentioning that Godoy et al. [51] proposes an
automatic program that extends the digital map definition
to generate a better approximation of the real road shape.
Specifically, the proposed algorithm replaces the straight line
segments between nodes with cubic Bezier curves and auto-
matically adjusts the control points for fitting road.

As described in Section I, all mathematical representation
models have the overfitting issue when features are missing.
The methods that using maps still use mathematical rep-

resentation model as lane model, and the overfitting issue
still exists. In this paper, we use the road shape in OSM
data as lane model and transform the fitting problem into a
search-based optimization problem. The advantage is that the
prior knowledge provided by the map is effectively used, and
the problem of missing feature is addressed.

III. EGO-LANE DETECTION
In this section, the proposed MELD approach will be
described in detail. First, we describe the OSM data format
and how to obtain the data needed for this paper. Next,
we show the preprocessing step, which contains Region of
Interest (ROI) selection and lane feature extraction. Finally,
we explain how OSM data is used for ego-lane detection.

A. OpenStreetMap
In 2004, the OpenStreetMap project was started with the
goal of creating a free to use and editable map of the world
[18]. So far, the OSM project has been greatly developed,
and more and more researchers prefer to employ the OSM
to enhance their algorithms. The OSM data can be accessed
via the correspondingwebsite1 by specifying a bounding box.
Figure 4(b) shows the raw OSM data of the scenario corre-
sponding to of Figure 4(a) (we add a red arrow to indicate the
position and direction of the ego vehicle).

The OSM data is in the world coordinate system, but
our ego-lane detection algorithm is performed in the road
coordinate system. Therefore, the OSM data needs to be
transformed to the road coordinate system first. Figure 4(c)
shows the results of our coordinate transformation result.

1https://www.openstreetmap.org/
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It should be noted that the data beyond the image view is
clipped.

OSM data provides rich geometric information. However,
for our purposes, the most useful information is the road that
the ego vehicle is traveling on, so other geometric information
is also clipped. Finally, the OSM data containing only the
currently traveling road after being transformed and clipped
is shown in Figure 4(d), which will be used as the lane model
later.

B. PREPROCESSING
Before using the OSM road shape for ego-lane detection, lane
line features and road curb features need to be extracted first.
To improve the speed and accuracy of the algorithm, feature
extraction is generally after ROI selection [5]. Therefore,
we consider both ROI selection and lane feature extraction
as preprocessing in this section.

1) ROI SELECTION
Among all tasks in ego-lane detection, ROI selection is usu-
ally the first step performed in most of the previous stud-
ies [38]. The main reason for focusing on ROI selection is to
increase the computation efficiency and detection accuracy.
In this paper, we consider the drivable area to be the ROI.
It contains all lane markers and road curbs for feature extrac-
tion, and trees, buildings and other objects outside the road
can be ignored. Therefore, ROI selection can be redefined as
road detection.

Camera is a light-sensitive sensor that is easily affected
by illumination and shadows. Although many deep learning
methods have greatly improved the performance of image
processing in recent years, what has to be considered is
computational efficiency, so it is not suitable for the prepro-
cessing step. Unlike the camera, 3D LiDAR is unaffected by
illumination and can provide accurate geometric information
about the environment. Therefore, we use 3D LiDAR for ROI
selection.

To meet the real-time requirements, we project the 3D
point cloud data to a 2D range image, which can achieve
data compression while retaining neighborhood information.
The number of rows of the range image is defined by the
number of laser beams of the 3D LiDAR. The KITTI dataset
uses Velodyne HDL-64E, so the number of rows is 64. The
number of columns of the range image is the horizontal
resolution of the 3D LiDAR. We only use 90◦ field of view
that coincides with the camera, so the number of columns is
500. In summary, the size of the range image is 64×500, and
an example of a range image can be seen in Figure 5(a).

Based on the assumption that the road is flat and con-
tinuous, we do road detection on the range image using
the region grow method. As the vehicle is traveling in the
forward direction, the road is always located in front of the
vehicle. Therefore, seed points are selected as points in front
of the vehicle, which are located in the bottom center of the
range image. The similarity between pixels is defined by the
horizontal slope feature and the vertical slope feature.

FIGURE 5. An illustration of the implementation process of the ROI
selection. (a) shows a range image whose pixel value represents the
distance from the point to LiDAR. (b) is an example of a horizontal
feature map. (c) is an example of a vertical feature map. (d) is the
corresponding weighted sum feature map. (e) shows the region grow
result. (f) shows the ROI selection result.

For each pixel, the horizontal slope feature is calculated
based on k neighborhood points in the same laser beam:

α =

∑k
i=1 (xi − X̄ )(yi − Ȳ )∑k

i=1 (xi − X̄ )2
(1)

where (xi, yi) is the position in the 3D LiDAR coordinate
system of the pixel, and X̄ , Ȳ are the average value of the
k neighbors. As shown in Figure 6(a), the feature value αA
on the ground is close to 0, while the feature value αB on the
road curb is close to infinity, so the horizontal slope feature
is used to detect the road curb. At the same time, the features
were normalized using the logistic function, and the results
are shown in Figure 5(b).

For each pixel, the vertical slope feature is calculated based
on the points on two adjacent laser beams in the same ray
direction:

β =
zr+1 − zr

d r+1 − d r
(2)

where (d r , zr ) is a point on the r laser beam, and (d r+1, zr+1)
is a point on the r+1 laser beam, d =

√
xr 2 + yr 2. As shown
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FIGURE 6. An illustration of the two slope features. (a) is the horizontal
slope feature, where αA represents the ground and αB represents the
road curb. (b) is the vertical slope feature, where βAB represents the
ground and βBC represents the obstacle.

in Figure 6(b), the feature value βAB on the ground is close
to 0, while the feature value βBC on the obstacle is close to
infinity, so the vertical slope feature is used to detect obsta-
cles. At the same time, the features were normalized using the
logistic function, and the results are shown in Figure 5(c).

After getting the two slope features, the weighted sum is
finally calculated:

γ = a · α + b · β (3)

where a and b are coefficients of horizontal slope feature
and vertical slope feature respectively. Figure 5(d) shows the
weighted sum feature map and it can be seen that obsta-
cles and road curbs are all detected. After obtaining the
weighted sum feature map, we use horizontal and vertical
region grow to obtain the road area, and the results are
shown in Figure 5(e). Finally, we project road points onto
the perspective image and use Delaunay Triangulation [52] to
upsampling the sparse point cloud to obtain the ROI selection
result. The ROI selection result is shown in Figure 5(f).

2) LANE FEATURE EXTRACTION
As described in Section I, lane features in the KITTI Lane
dataset are mainly composed of two parts: lane line features
and road curb features. In ROI selection, the horizontal slope
feature has a good effect on detecting road curbs, so we
directly use ROI selection results as road curb features.

Lane line feature extraction aims to extract low-level fea-
tures from images to support ego-lane detection, such as
color, texture, edges [53]. Among them, edges are the most
common feature used in ego-lane detection for structured
roads [35]. An edge is mathematically defined by the gradient
of the intensity function [54], so we define the gradient as:

G =
[
−1 − 1 − 1 2 2 2 − 1 − 1 − 1

]
∗ I (4)

where I is the image and G is the calculated gradient.
Since the lane line width becomes smaller as the distance

increases in the perspective image, we perform feature extrac-
tion on the bird’s eye view image, so that the lane line width is
constant and easy to detect. As the vehicle is traveling along
the lane, the lane lines are distributed longitudinally, so we

FIGURE 7. An illustration of the implementation process of the lane line
feature extraction. (a) shows the raw gray scale image on the bird’s eye
view. (b) projects the ROI selection result onto the image. (c) shows the
results of lane line feature extraction.

mainly extract the lateral gradient changes. At the same time,
we found that the lane line width generally takes 2 ∼ 4
pixels on the bird’s-eye view image. For these two reasons,
and in order to increase the computational efficiency, we use
a convolution with the size of 9× 1. There is a sharp contrast
between the road surface and painted lane lines, so the 3
elements in the middle of the convolution kernel are 2 and the
others are−1. In this way, when there is no lane, the intensity
values between pixels are similar, and the gradient is 0; when
there is a lane line, the intensity of the three elements in the
middle is high, the intensity of the two sides is low, and the
gradient is relatively large.

Therefore, when the gradientG(i, j) is greater thanGth, the
pixel at the (i, j) position is marked as the lane. An exam-
ple of the lane line feature extraction result can be seen in
Figure 7(c). It should be noted that lane line feature extraction
is performed on a gray-scale image (shown in Figure 7(a)),
and pixels outside the ROI region are not considered (shown
in Figure 7(b)).

C. EGO-LANE DETECTION
The main goal of this stage is to extract a compact high-level
representation of the lane that can be used for decision
making [53]. In most papers, mathematical representation
models are used as compact high-level representations such
as straight lines, polynomials, parabolas, and splines. In order
to fit lane features to these mathematical representation
models, Least Squares Method (LSM) and Random Sample
Consensus (RANSAC) are widely used. Since mathematical
representation models have the overfitting issue when fea-
tures are missing, we exploit OSM data to enhance ego-lane
detection.

As mentioned in the previous section, OSM data is pro-
vided by the volunteers, so it is very coarse and rife with
errors, which is called OSM data error. At the same time,
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when projecting the OSM data onto the image, the approx-
imate vehicle pose estimation causes errors in the relative
position of the OSM data with respect to the vehicle, which
is called vehicle positioning error.

Since we perform ego-lane detection on the 2D image
plane, the errors can be eliminated by the rotation parameter
θ and the translation parameter x, y (the x-axis points to the
vehicle’s forward direction, while the y-axis is orthogonal to
the x-axis and points the left of the vehicle). In real urban
scenes, the radius of curvature of the road is relatively large,
so the translation parameter x can be ignored. Therefore,
we only need to consider the parameters y and θ , which rep-
resent the lateral offset and the heading offset, respectively.
It should be noted that we do lane line detection and road
curb detection simultaneously, so the lateral offset y consists
of two parts: lane line lateral offset yl and road curb lateral
offset yr . In summary, the parameters we need to estimate
include heading offset θ , lane line lateral offset yl , and road
curb lateral offset yr .

To estimate these three parameters, we minimize the dis-
tance from the detected lane features to the OSM data. Since
the OSM road shape consists of a series of points and their
connections, the distance from the feature point to the OSM
data is equal to the distance from the feature point to its
nearest connection:

di =
|(yQj − y

Q
k )x

P
i − (xQj − x

Q
k )y

P
i + x

Q
j y

Q
k − y

Q
j x

Q
k |√

(yQj − y
Q
k )

2 + (xQj − x
Q
k )

2
(5)

where (xPi , y
P
i ) is the i-th feature point. (x

Q
j , y

Q
j ) and (x

Q
k , y

Q
k )

are the two adjacent OSM points closest to the feature point.
Therefore, the optimization function is:

min
yl ,yr ,θ

m∑
i=1

di

s.t. |yl | ≤ ymax ,

|yr | ≤ ymax ,

|θ | ≤ θmax . (6)

wherem is the number of feature points. ymax is the maximum
value of lateral offset, and θmax is the maximum value of
heading offset.

The above optimization problem turns out to be very dif-
ficult to solve due to looking for the OSM line closest to the
feature point. Therefore, we rely on a search-based algorithm
to find the optimal approximate solutions. The basic idea
is that we iterate through all possible values of these three
parameters θ , yl , and yr . After iterating all parameters and
obtaining all corresponding distances, we look for the optimal
parameters that achieve the smallest distance. However, the
time complexity of looping through these three parameters is
O(N 3), which is very time consuming and cannot meet the
real-time requirements. Therefore, we optimize these three
parameters separately, so that the time complexity is reduced
to O(3N ).

Algorithm 1 Search-Based Parameters Optimization

Input: feature points P ∈ Rm×2, OSM points Q ∈ Rn×2

Output: optimization parameter λ∗

1: dmin←+∞
2: λ∗← 0
3: for λ = −λmax to λmax step δλ do
4: d ← 0
5: for p in P do
6: for q in Q do F descending order
7: transform q to q′

8: if (q′x ≤ px) then
9: d += dp F dp is calculated by (5)

10: break
11: end if
12: end for
13: end for
14: if (d ≤ dmin) then
15: dmin← d
16: λ∗← λ

17: end if
18: end for

The proposed search-based optimization algorithm is pre-
sented in Algorithm 1. The inputs for the algorithm are the
m features points P and n OSM points Q. The outputs from
this algorithm are the optimization parameter λ∗, which sep-
arately represents θ∗, y∗l , and y

∗
r in each step of optimization.

In line 3, all possible values are traversed by given the max-
imum value of these three parameters. From line 4 to line
13, the distance from the feature point to the OSM data is
calculated. The optimal parameters that achieves the smallest
distance is selected in line 14 to line 17.

After obtaining the optimization results of the left and
right boundaries, we use the vertical slope feature (men-
tioned in the ROI selection subsection) to detect all obsta-
cles between two boundaries, and take the point closest to
the origin as the upper boundary. In this way, the result
of ego-lane detection is the area surrounded by these three
boundaries.

Figure 8 shows the ego-lane detection results of the sce-
narios corresponding to Figure 2. In (a), the significant lateral
error is eliminated, and the OSM road shape perfectly coin-
cides with the lane boundaries. It can be seen from (b) that the
significant heading error is eliminated, except for some slight
errors between the OSM road shape and the lane boundaries
shape.

IV. EXPERIMENTAL EVALUATION
To evaluate the accuracy and real-time performance of
MELD, we test it on the public KITTI Lane bench-
mark. All algorithms are implemented in C++, PCL (Point
Cloud Library) and OpenCV (Open Source Computer Vision
Library), running on a laptop computer with an Intel
i5−8265U 1.66 GHz CPU with 8 GB main memory.
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FIGURE 8. The result of ego-lane detection, where the left column is the
raw OSM data, the middle column is the parameters optimization result,
and the right column is the ego-lane detection result.

A. EXPERIMENTAL SETUP
1) KITTI LANE BENCHMARK
The KITTI Lane benchmark [55] is a widely used benchmark
for ego-lane detection. 95 training samples and 96 testing
samples are collected in various urban scenes with marked
lanes were included. The evaluation metrics include maxi-
mum F1-measure (MaxF), average precision (AP), precision
(PRE), recall (REC), false positive rate (FPR), and false neg-
ative rate (FNR), where MaxF is used as the primary metric
value for comparison between different methods.

2) EXPERIMENTS SETTING
For ROI selection, the neighborhood points size k for com-

puting horizontal slope feature is 7, the weighting coefficient
of the horizontal slope feature a is 0.5, and the weighting
coefficient of the vertical slope feature b is 0.5.

For lane feature extraction, the gradient threshold Gth is
200.

For ego-lane detection, the maximum lateral error ymax
is 100 pixels and the step size δy is 5 pixels; the maximum
heading error θmax is 0.1 radians and the step size δθ is 0.005
radians.

FIGURE 9. Robustness of different methods to missing feature.

FIGURE 10. Runtime of MELD for both training and testing datasets.

B. PERFORMANCE EVALUATION
We tested MELD on the KITTI Lane benchmark and
compared it with other state-of-the-art methods, including
SCRFFPFHGSP [21], SPlane + BL [22], SPRAY [23], Up-
Conv-Poly [24], RBNet [25], MANLDF, RoadNet3 [26], and
NVLaneNet. All results are evaluated on the KITTI evalua-
tion server,2 and the performance of the algorithms is shown
in Table 1.

The results show thatMELD achieved 93.56% in theMaxF
score, which is 1.70% higher than the previous state-of-the-
art method. The improvement of the MaxF score is mainly
due to the fact that the PRE of MELD can reach 95.94%,
and this is precisely because we use OSM road shape as the
lane model, which can accurately detect lane boundaries and
further achieve higher accuracy.

C. ROBUSTNESS TO MISSING FEATURE
To evaluate the robustness of MELD to the missing fea-
ture problem, we down-sample the lane features with the
sampling rate from 0 % to 100 % and perform model
comparison experiments on the training dataset. Contrast
mathematical representation models include straight line, cir-

2http://www.cvlibs.net/datasets/kitti/eval_road.php
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TABLE 1. Results of online evaluation on KITTI Lane benchmark. Best scores are highlighted in bold.

FIGURE 11. Qualitative results of MELD. Each column represents a typical missing feature scenario, where the top row is the raw image and the bottom
row is the detection result (shown as green) on the bird’s eye view of image.

cular arc, quadratic polynomial, and cubic spline. It should
be noted that we use the left and right boundary points
from the annotation results in the KTTTI Lane training
dataset as lane features, which can avoid the interference
of different detection algorithms and noise, therefore ensur-
ing the fairness of the experiment. The evaluation met-
ric uses MaxF, and the experimental results are shown in
Figure 9.

It can be seen that the fitting results of all mathematical
representation models become worse as the number of fea-
tures decreases. However, since the OSM road shape is used
as the lane model, MELD is very robust to missing features.
Even if the number of features decreases, the effect remains
unchanged. At the same time, in some extreme scenarios,
such as no visible features, we directly use OSM road shape
as the lane boundary, and the MaxF can reach 88.23 %, while
other mathematical representation models cannot handle this
scenario.

D. RUNTIME
Since MELD is to be used on autonomous driving sys-
tems, the less runtime of the algorithm allows systems to

get information about the surrounding environment earlier,
thereby ensuring the safety of the systems. As shown in
Figure 10, the runtime of MELD on both training and testing
datasets averages around 50 ms. This is twice as fast as the
rotation rate of the 3D LIDAR, so MELD can be used safely
on autonomous driving systems.

E. QUALITATIVE RESULTS
Some detection results of MELD are shown in Figure 11.
For the first two columns, the lane line is heavily worn and
blocked by shadows or other objects. For the third and fourth
columns, the vehicle is going to pass through the tunnel, and
the lane line in the far-range is covered by black or white. For
the last column, there are no visible lane features can be seen
in the picture. All these scenarios have the missing feature
problem, but MELD can stably detect the ego-lane.

V. CONCLUSION
In this study, we employ the OSM road shape as lane model
to enhance our ego-lane detection algorithm, which is robust
to the challenging scenarios of missing feature. At the same
time, to eliminate the position error between the OSM data
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and the real lane, a search-based optimization algorithm is
proposed to improve the accuracy of the algorithm. We vali-
date the proposed algorithm on the well-known KITTI Lane
benchmark, which achieved state-of-the-art performance in
terms of accuracy and real-time performance. However, the
proposed method has only been validated on the two-way
road in which the vehicle is driving on the right lane like
KITTI Lane dataset. In future work, we will expand our work
to more general roads like multi-lane, intersection, and even
no centerline. At the same time, to obtain more accurate
ego-lane detection results, the OSM road shape error will also
be eliminated.
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