
Received May 14, 2020, accepted May 30, 2020, date of publication June 8, 2020, date of current version June 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000893

Learn to Schedule (LEASCH): A Deep
Reinforcement Learning Approach
for Radio Resource Scheduling
in the 5G MAC Layer
FAROQ AL-TAM 1, NOÉLIA CORREIA 1, AND
JONATHAN RODRIGUEZ 2, (Senior Member, IEEE)
1Center for Electronics, Optoelectronics, and Telecommunications (CEOT), Faculty of Science and Technology, University of Algarve, 8005-139 Faro, Portugal
2Institute of Telecommunications, University of Aveiro, 3810-193 Aveiro, Portugal

Corresponding author: Faroq Al-Tam (ftam@ualg.pt)

This work was supported in part by the European Regional Development Fund (FEDER), through the Competitiveness and
Internationalization Operational Programme (COMPETE 2020), in part by the Fundação para a ciência e Tecnologia Regional, through the
Operational Program of the Algarve (2020), in part by i-Five: Extensão do acesso de espectro dinâmico para rádio 5G under Grant
POCI-01-0145-FEDER-030500, and in part by the Fundação para a ciência e Tecnologia, Portugal, within the Center for Electronics,
Optoelectronics, and Telecommunications (CEOT), under Grant UID/MULTI/00631/2020.

ABSTRACT Network management tools are usually inherited from one generation to another. This was
successful since these tools have been kept in check and updated regularly to fit new networking goals
and service requirements. Unfortunately, new networking services will render this approach obsolete and
handcrafting new tools or upgrading the current ones may lead to complicated systems that will be difficult
to maintain and improve. Fortunately, recent advances in AI have provided new promising tools that can help
solving many network management problems. Following this interesting trend, the current article presents
LEASCH, a deep reinforcement learning model able to solve the radio resource scheduling problem in the
MAC layer of 5G networks. LEASCH is developed and trained in a sand-box and then deployed in a 5G
network. It has been evaluated under different numerology settings. The experimental results show that it
is both numerology-agnostic and efficient when compared to conventional baseline methods in many key
performance indicators.

INDEX TERMS 5G, MAC, deep reinforcement learning, scheduling, resource management.

I. INTRODUCTION
The rapid evolution of networking applications will continue
to bring new challenges to communication technologies.
In the fourth-generation (4G), also known as long term evo-
lution (LTE), throughput and delay were the main foci. In 5G
and beyond, services have reached completely new levels.
This new era of communication is featured by new killer
applications that will benefit from emergent technologies like
Internet of things (IoT) and next generation media such as
virtual reality (VR) and augmented reality (AR), to name
a few.

Unlike LTE, 5G is a use-case driven technology. In addi-
tion, 5G is not only machine-centric but also user-centric,

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

where the user notion has evolved to cover a wider range
of entities other than a traditional human-on-handset notion.
Small devices that use 5G infrastructure are basically
clients/users [1].

The main use cases supported by 5G, for now, are
enhanced mobile broadband (eMBB), ultra-reliable and low
latency communications (URLLC) and massive machine-
type communications (mMTC). eMMB supports high capac-
ity and high mobility (up to 500 km/h) radio access with
4 ms user plane latency. URLCC provides urgent and reli-
able data exchange with sub 1 ms user plane latency. The
new radio (NR) of 5G will also support massive num-
ber of small packet transmissions for mMTC with sub
10 ms latency. Furthermore, it is foreseen that more require-
ments will appear in the future, in particular with regard to
energy [2], [3].

108088 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9718-2039
https://orcid.org/0000-0001-7051-7193
https://orcid.org/0000-0001-9829-0955
https://orcid.org/0000-0001-9032-4401

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

The main key-enablers to handle the requirements of
this new era include flexible numerology, bandwidth parts
(BWPs), service multiplexing and mini-slotting, optimized
frame structure, massive MIMO, inter-networking between
high and low bands, and ultra lean transmission [1], [6], [7].
In addition, emergent technologies like software-defined net-
working (SDN) [5], network function virtualization (NFV),
and network slicing [4] will also be key technologies in
paving the way for enhancements in 5G and beyond.

LTE and 5G both rely on the same multi-carrier mod-
ulation (OFDM) waveform. Nevertheless, the NR is more
flexible. It supports a multi-numerology structure having
different sub-carrier spacings (SCS), symbol durations and
cyclic prefixes (CPs). This flexibility, on one hand, makes
it possible to deliver data for all three main use-cases but,
on the other hand, makes it difficult to manage resources
efficiently. In addition, it is expected that more use cases
will emerge and it is foreseen more flexibility into the NR
frame in the future, making the resource management task
even more complicated. For instance, current specifications
of the physical layer supports only four BWPs for each
user with only one BWP being active at a time. How-
ever, UEs in the future will be able to use multiple BWPs
simultaneously [8].

The new service requirements [9], the significant diver-
sity of the characteristics of the traffic [10], and the user
stringent requirements, make 5G a complex system that can
not be completely managed by tools inherited from ancestor
networks [9]. Current radio resource scheduling tools, for
instance, are designed to follow a single policy all the time.
However, the 5G system will follow various policies to adapt
to network configuration and traffic dynamics. On the other
hand, artificial intelligence (AI) can providemodel-based and
model-free approaches that can learn (or select) the appro-
priate policy under current network conditions [32]. One of
the main paths is to rely on new AI advancements like deep
reinforcement learning (DRL). This path is featured by a new
concept, learn-rather-than-design (LRTD), and it branches
into two main research subpaths. One focuses on using AI
to select an algorithm (or policy), among candidate policies,
according to current network state. The other subpath focuses
on developing AI-models that learn policies and apply them
according to network conditions. These two subpaths are
discussed further in Section III.

The current article is aligned with the second subpath.
It focuses on a fundamental problem in 5G: the radio resource
management (RRM) problem. In general, RRM can be seen
as a large problem with many tasks. This article specifically
studies the radio resource scheduling (RRS) task in the media
access control (MAC) layer. The main contributions of this
work are:
• A numerology-agnostic DRL model. The proposed
model works under different numerologies with nomod-
ification to its architecture or retraining, unlike state of
the art models requiring a different architecture when-
ever numerology changes [17].

• A clear pipeline for the development/training of DRL
agents and their deployment into network simulators;

• A comparative analysis in several network settings
between the proposed model and the baseline algo-
rithms;

• A reward analysis of the model to inspect which policy
the model has learned, which is rarely performed in the
literature.

Our approach is novel compared to AI-based approaches
which are still scarce. First, this work proposes off-simulator
training scheme, which maximizes the flexibility of train-
ing the agents and minimizes the training time. In addi-
tion, deploying our model is as easy as deploying any other
conventional scheduler. Second, our model is tested on an
environment different from the one being trained in. From
a generalization point of view, we think this should be the
case for DRL agents. That is, the training and deployment
tasks should be separated to suppress any dependency. Third,
the designed model is new and includes novel state and
reward components. Finally, our work is tested on a 5G
system level simulator that uses all recent components and
configurations of a 5G network. Up to our humble knowl-
edge, all these components have not been jointly addressed
in any previous work.

This article is organized as follows: The RRS problem and
the systemmodel are described in the reminder of this section.
Section II presents a brief background about DRL theory.
The related work is presented later in Section III. Sections IV
and V present the proposed approach and the results, respec-
tively. The article is then concluded in Section VI.

A. RADIO RESOURCE SCHEDULING PROBLEM
The continuous update of physical layers to handle new
use cases in communications is the main surge behind
the development of flexible MAC layers or components
thereof. As new use cases emerge, handcrafted MAC
layers become more complicated and prone to error.
This is, in fact, one of the main problems in modern
networks and resource management [11], [12]. Human-
centered approaches lack flexibility and usually require
continuous repairs and updates, which leads to a degra-
dation in the level of service and compromise in the
performance [13].

Improving the ability of communication systems to effec-
tively share the available scarce spectrum among multiple
users, has always been one of the main research targets
of academia and big com industry. As the service stack
continues to grow, more user requirements will be added
to the system. The need to find better resource sharing
approaches becomes inevitable. Therefore, RRS is an essen-
tial task in communications. The main objective of RRS
task is to dynamically allocate spectrum resources to UEs
while achieving an optimal trade-off between some key per-
formance indicators (KPIs), like spectrum efficiency (SE),
fairness, delay, and so on [14]. Achieving such trade-off is
known to be a combinatorial problem.

VOLUME 8, 2020 108089

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

FIGURE 1. Radio resource scheduler.

TABLE 1. Numerology settings in 5G NR.

B. SYSTEM MODEL
The available bandwidth in the frequency domain is divided
into resource blocks (RBs). Each resource block is 12 subcar-
riers. A set of RBs can be aggregated to form a resource block
group (RBG); see [15] for possible RBG sizes. An RBG will
be the smallest scheduling unit.

The time domain is divided into frames, each frame is
divided further into 10 subframes. The number of slots
in each subframe, the duration of the slot, and the band-
width of RB depend on the numerology index in use; see
Table 1.

As shown in Figure 1, a set of UEs in the system com-
pete for the available resources. The gNB is able to col-
lect information from them that includes channel feedback
information, buffer, HARQs, and allocation log. Additional
information can also be obtained. The radio resource sched-
uler runs at the gNB at every (or kth) slot and uses this
information to share the available RBGs between active UEs.
Therefore, the problem boils down to filling the resource
grid by deciding which UE will win the current RBG in
the current slot. However, not all users can be considered
for scheduling at the current RBGs. Only those that are
eligible (active) will be considered and allowed to compete
for the RBGs under consideration. A UE is eligible if it has
data in the buffer and is not retransmitting in the current
slot, i.e., if it is not associated with a HARQ process in
progress.

C. WHY DRL IS SUITABLE FOR RRM PROBLEM?
In many cases, obtaining an optimal solution for the RRS
problem is computationally prohibitive due to the size of the
state-space and the partial observability of the states [16].
Moreover, surged by new requirements, the RRS task will
continue to expand, in the future, both horizontally and ver-
tically. Horizontally, regarding the number and diversity of
users, and traffic patterns it should support, and vertically
by having to consider new (and perhaps contradictory) KPIs.
Therefore, RRS can easily become intractable even for small-
scale scenarios.

Current RRS solutions are driven by conventional off-
the-shelf designated tools. This includes variants of the pro-
portional fairness (PF), round robin (RR), BestCQI, among
others. This scheme has been successful but it will become
difficult to maintain it in the future. A new RRS approach is
inevitable due to:
• the rapid increase in network size;
• the breadth of control decisions space;
• the new perception from business-makers and end-users
of the networking services and applications;

• modern networks are delayed return environments;
• lack of sufficient understanding of underlying network
by conventional tools, i.e., they are myopic.

In this context, we share the same vision with [11] that
research communities and industry have been focusing on
developing services, protocols, and applications more than
developing efficient management techniques. Fortunately,
recent technologies in AI offer promising solutions and
there is a consensus among many scholars of the need for
AI-powered network management [18].

The notion of self-driving networks [11] is gaining more
and more attention nowadays. The core vision of self-driving
network engineering is to learn rather than to design the

108090 VOLUME 8, 2020

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

network management solutions [12]. Such vision has rad-
ically changed some fields like computer vision via deep
learning [25], by learning features rather than hand-crafting
them. However, we did not witness such major progress in
network management. The reason is that supervised learning
is not suitable for some control and decision problems, since
collecting and labeling networking data is not trivial, and net-
work states are non-stationary [26], [27]. DRL, contrarily to
supervised learning, can be quite suitable for such problems
due to the following reasons:
• All information about RRM can be centralized in the
gNB thus creating a network wide view (although not
fully) of the network. In addition, new paradigms like
knowledge defined networking (KDN) can be used [28];

• DRL agents can continue learning and improving while
the network operates. They can interact with other con-
ventional components in the system, and learn from
them if necessary [29];

• Network dynamics are difficult to anticipate and exact
mathematical models are not scalable. For 5G net-
work management, it is difficult to model the network
state and traffic due to the diversity of the applications
and traffic it supports [10]. Therefore, DRL model-free
agents can be the choice.

• After the new breakthroughs, DRL became an extremely
hot research topic [30]. In networking, the popularity of
DRL is increasing and some famous network simulators
have been recently extended to support general DRL
environments like gym [31].

II. DEEP REINFORCEMENT LEARNING
RL is a learning scheme for sequential decision problems and
the goal is to maximize a cumulative future reward. An envi-
ronment of such scheme can be modeled as a Markov deci-
sion process (MDP) represented by the tuple (S,A,P, r, γ).
Where S is a compact space of states of the environment. A
is a finite set of possible actions (action space), P is a prede-
fined transition probability matrix such that each element pss′
determines the probability of transition from state s to s′. The
reward function r : S ×A× S → R tells how much reward
the agent will get when moving from state s to state s′ due to
taking action a. The γ is a discount factor used to trade-off
the importance between immediate and long-term rewards.

In RL, an agent learns a policy π by interacting with
environment. In each time step t , the agent observes a state
st , takes an action (decision) at , observes a new state st+1
and receives a reward signal r(st , at). The learning scheme
can be episodic or non-episodic and some states are terminal.

A policy π is a behavioral description of the agent and
the policy for state s, π (s), can be defined as a probability
distribution over the action space A, such that the policy for
the pair (s, a), π (a|s), defines the probability assigned to a
in state s. Therefore, a policy simply tells us which action to
take at state s.
The objective of training an agent is to find an optimal

policy that will tell the agent which action to take when in a

specific state. Therefore, the objective of an agent boils down
to maximizing the expected reward for a long run. Starting
from state st , the outcome (return) can be expressed as:

Gt = E

[
∞∑
k=0

γ kr(st+k , at+k)|s0 = st

]
(1)

For a non-episodic learning scheme, we can see that γ < 1
is important not only to obtain a trade-off between immedi-
ate and long-term rewards but also for mathematical conve-
nience.
When an agent arrives at a state it needs to know how

good it is to be at state s and following the optimal policy
afterwards. A function to measure that is called the value, aka
state-value, function V (s):

V (s) = E [Gt |st = s] (2)

Similarly, to measure how good it is to be at state s and take
action a, a quality function Q, aka action-value function, can
also be derived as:

Q(s, a) = E [Gt |st = s, at = a] (3)

Once we know Q and π we can calculate V using:

V (s) =
∑
a∈A

π (a|s)Q(s, a) (4)

Therefore, V and Q can be related by:

V (s) = Ea∼π (a|s)[Q(s, a)]. (5)

In addition, these two functions can also be related via an
advantage function A [19]:

A(s, a) = Q(s, a)− V (s), (6)

where A subtracts the value function from the quality func-
tion to obtain a relative importance of each action, and tell
the agent if choosing an action a is better than the average
performance of the policy.
In fact, we are interested in finding Q since we can easily

derive the optimal policy π∗ from the optimal Q∗. Q(s, a)
maps each (s, a) pair to a value, i.e., it measures how good
it is to take action a when in state s and then following
the optimal policy. Using the Bellman expectation function,
we can rewrite Q(s, a) as:

Q(s, a) = r(s, a)+ γ
∑
s′∈S

pss′ (a)V (s
′) (7)

Therefore, following the Bellman optimality equation for Q∗

we have:

Q∗(s, a) = r(s, a)+ γ
∑
s′∈S

pss′ (a) max
a′

Q∗(s′, a′) (8)

The optimal policy can be then derived from the optimal
values Q∗(s, a) by choosing the maximum action value in
each state. This scheme is known as value-based (compared

VOLUME 8, 2020 108091

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

to policy-based) learning since the policy is driven from the
value function:

π∗(s) = argmax
a∈A

Q∗(s, a), ∀s ∈ S (9)

However, finding π∗ is not easy since in may real world
applications, the transition probability is not known. One
algorithm to solve this Bellman optimality equation is the
Q-learning algorithm [20]. This algorithm is off-policy critic-
only (compared to on-policy and actor-critic algorithms).
In this algorithm, Q is represented as a lookup table, which
can be initialized by random guesses and gets updated in each
iteration using the Bellman Equation:

Q(st , at) = r(st , at)+ γ max
at+1

Q(st+1, at+1) (10)

For terminal state this update comes down to:

Q(st , at) = r(st , at) (11)

In order to balance between exploration and expedition,
the agent, in Q-learning, adapts an ε-greedy algorithm.
In ε-greedy, the agent selects an action a using a =
argmax

a′∈A
Q(s, a′) with probability 1 − ε, otherwise selects

a random action with probability ε. This randomness in
decision making helps the agent to avoid local minimums.
As the agent progresses in learning, it reduces ε via a decay-
ing threshold δε . With this annealing property of ε-greedy,
in practice, an agent is expected to perform almost randomly
in the beginning and matures with time.

One drawback of the original Q-learning algorithm is scal-
ability. Keeping a tabular for such iterative update is feasible
only for small problems. For larger problems, it is infeasible
to keep track of each (s, a) pairs. Therefore, in practice it is
more feasible to approximate Q.
A common way to approximate Q is to use a deep neural

network (DNN). This cross-breeding between deep learn-
ing and Q-learning has yielded deep Q networks (DQN),
more generally known as deep reinforcement learning (DRL),
which is the main breakthrough behind recent advancements
in RL that delivered a human-level performance in Atari
games [21] and even more strategic games [22] where the
agent learns directly from a sequence of image frames via
convolutional neural networks (CNN) and DRL.

In DQN, the Q function is approximated by minimizing
the squared error between the Bellman equation and the
neural network estimation, aka mean-squared Bellman error
(MSBE):

loss =
(
Q(st , at ; θ)− Qtarget)2 (12)

where Qtarget is the target Q function, known as the target
critic, and θ is the set of DNN parameters.Qtarget is calculated
as:

Qtarget
= r(st , at)+ γ max

at+1
Q(st+1, at+1; θ) (13)

where θ is the set of DNN’s weights and is updated in a
stochastic gradient descent (SGD) fashion. For a predefined

learning rate α and a mini-batch sizeM , θ t is updated using:

θ t = θ t +
α

M

(
Q(s, a; θ t)− Qtarget(θ t)

)
∇θ tQ(s, a; θ t) (14)

where
(
Q(s, a; θ t)− Qtarget(θ t)

)
is known as the temporal

difference (TD) error.
In DQN, the state and actions are represented by two sepa-

rate networks and combined via an Add layer. The output is a
single value (Q value) in a way similar to classical regression.
However, a more efficient architecture is to have the state
as input and let the network output be equal to the length
of action space. This way, each output represents the likeli-
hood of an action given the state. As in classical Q-learning,
the action with maximum likelihood will be selected.

In order to stabilize the results, and to break any depen-
dency between sequential states, DQN uses two tricks. First,
two identical neural networks are used one for on-line learn-
ing and another to calculate the target Qtarget. The target
network is updated periodically, from the on-line network,
every T steps. Therefore, the target is calculated from a more
mature network, thus increasing the learning stability:

Qtarget
= r(st , at)+ γ max

at+1
Q(st+1, at+1; θ̂) (15)

where θ̂ is a delayed version of θ

Instead of copying the weights from the on-line to the
target network at every T steps, it turns out that a smoothing
(i.e., progressive) update approach can noticeably increase
the learning stability:

θ̂ = βθ + (1− β)θ̂ (16)

where β is a small real-valued smoothing parameter.
The second trick is to use an experience replay memory

R, usually implemented as a cyclic queue. This memory
is updated in every learning step, by appending the tuple
(s, a, st+1, rt+1) to the end of the queue. Therefore, when
trainingQ, randommini-batches are sampled fromR and fed
to theQ on-line network.R reduces the dependency between
consequence input and improve the data efficiency via re-
utilizing the experience samples.

Q-learning and its variant DQN tend to be overoptimistic
due to the noise in the Q estimates, and the use of the max
operator in selecting the action and calculating the value of
the action. A solution is the Double DQN (DDQN) [23], [24]
model, which learns from two different samples. One is used
to select the action and another one is used to calculate the
action value. Therefore, in DDQN, the critic target Qtarget is
calculated as:

Qtarget
= rt+1(s, a)+ γQ(st+1, argmax

a
Q(st+1, a, θ); θ̂)

(17)

In expression (17), the selection of the action is made
from the on-line network, i.e., argmax

a
Q(st+1, a, θ), and the

evaluation and update is made from the target critic network
Q(st+1, argmax

a
Q(st+1, a, θ); θ̂).

108092 VOLUME 8, 2020

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

III. RELATED WORK
DRL solutions for RRS are scarce in the literature but
they can be divided according to the nature of the action
space into two main categories: Coarse (high-level) and fine-
grained (low-level) decisions. In the former, the DRL agent
acts as a method/algorithm selector [17], [32] or protocol
designer [12], [13]. For instance, for a given network state,
the DRL agent selects which conventional algorithm is suit-
able to perform scheduling. In the latter, DRL decisions are
hard-wired in the networking fabric. The DRL agent makes
fine-grained decisions like filling the resource grid [29], air-
time sharing between users and decide which user has rights
to access the channel [16], [33], or select which coding
scheme is suitable [34]. In addition, the fine-grained meth-
ods can be classified into distributed [16], [35] and cen-
tralized [29], [33]. In the distributed approaches, each UE
acts as a DRL agent. This way the network is composed of
multi-agents in a way similar to those in game theory. Such
approach is scalable but sharing the network state among
multiple entities makes it difficult to guarantee convergence.
On the other hand, centralized approaches can benefit from
a better computational power and better network state under-
standing.

Both coarse and fine-grained approaches have pros and
cons. The coarse level scheme is more scalable, since the
agent acts in almost a constant action space. On the other
hand, such approach falls short in obtaining deep control
of the network. Conventional algorithms are still the main
working horses. In fine-grained approaches, the DRL agent
deals with the finest decisions. Therefore, it can obtain a deep
control of the network. However, these approaches require
more sophisticated designs to be adaptive to networking
dynamics. Our work belongs to the fine-grained centralized
approaches.

A. COARSE APPROACHES
An algorithm selector approach can be found in [32]. At each
slot, an actor-critic agent chooses a scheduling algorithm,
among a set of available PF-variants algorithms, to maximize
some QoS objectives. The state is the number of active users,
the arrival rate, the CQIs, and the performance indicator with
respect to the user requirements. The reward function mea-
sures the impact of choosing a rule on the QoS satisfaction
of the users. A similar approach can be found in [17] for
5G networks but using a variant of actor-critic DRLs known
as deep deterministic policy-gradient (DDPG) algorithm and
with larger action space that controls more parameters. How-
ever, this approach is not numerology-agnostic. In [17], for
instance, a distinct DRL design is required for each network
setting.

In [13], AlphaMac is proposed which is a MAC designer
framework that selects the basic building blocks to create a
MAC protocol using a constructive design scheme. A build-
ing block is included in the protocol if its corresponding
element in the state is 1, zero otherwise. As action, the agent

chooses the next state that will increase the reward (which
is the average throughput of the channel). Each selection by
the agent is then simulated in an event-driven simulator that
mimics the MAC protocol but with flexibility to allow adding
and removing individual blocks of the protocol.

Physical layer self-driving radio is proposed in [12]. The
user specifies the control knobs, and other requirements,
and the system learns an algorithm that fits a predefined
objective (reward) function. The action space is the control
knobs and their possible settings. The system then holds a
set of DNN and applies the appropriate one to the input
scenario. In fact this work can be regarded as hybrid since
it combines both coarse and fine-grained approaches in a
hierarchal design.

B. FINE-GRAINED APPROACHES
A general resource management problem is handled in [36]
by a policy gradient DRL agent. The objective is to schedule
a set of jobs at a resource cluster at a given time step. On one
hand, this work demonstrated the suitability of DRL agents,
but on the other hand it can not be applied directly to 5G RRS
problems.

A RRS agent for LTE networks can be found in [29].
A single RBG is considered and the authors have shown that
DRL agent, trained by the DDPG algorithm, can achieve near
PF results when it uses PF algorithm as an expert (guide)
to learn from. This approach can ensure great stability since
the agent learns from a well-established algorithm, but it
diminishes the ability of agents to discover their own policies.

In [27] a high volume flexible time (HVFT) traffic driven
by IoT is scheduled on radio network via a variant of DDPG
algorithm, where the scheduler determines the fraction of IoT
traffic on top of conventional traffic. To empower the agent
with time notion, a temporal features extractor is used, and
these features are then fed to the agent. The reward function
is a linear combination of several KPIs, like IoT traffic served,
traffic loss due to the introduction of IoT traffic and the
amount of served bytes below as the system-wide desired
limit.

In [33] a policy gradient DRL is proposed to manage the
resource access between LTE-LAA small base stations (SBS)
and Wi-Fi access points. The goal is to determine the chan-
nel selection, carrier aggregation, and fractional spectrum
access for SBS while considering airtime fairness between
SBS and WI-FI APs. The state includes all network nodes
states, and the reward is the total throughput over the selected
channels. The scheduling problem is modeled as a non-
cooperative Homo Equalis game model where, in this model,
the achievement of a player is calculated by its performance
while maintaining a certain fair equilibrium regarding other
players. To solve this model and establish a mixed strat-
egy, a deep learning approach is developed, where LSTM
and MLP networks are used to encode the input data (from
IBM Watson Wi-Fi data set) and the objective function of
the model is solved via a REINFORCE-like algorithm. The
work has shown throughput improvement when compared to

VOLUME 8, 2020 108093

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

FIGURE 2. LEASCH deployment.

reactive RL, as the time horizon parameter increases. In addi-
tion, when compared to classical scheduling approaches like
PF, the work shows enhancement in served network traffic
but at the same time the average airtime allocation for Wi-Fi
APs has degraded as the time horizon parameter increases.
One disadvantage of this work is that it uses a heavy-weight
architecture.

In [16] a lightweight multi-user deep RL approach is used
to address the spectrum access problem, and a recurrent Q
network (RQN) [37] with dueling [19] is used. At each time
slot a user can only select a single channel to transmit, and
if the transmission is successful then an ACK signal (obser-
vation) is sent back to the user, otherwise a collision has
happened. When modeling this problem in an RL framework,
the length of the action space of a user is a |C| + 1 binary
vector (one-hot), and C is the set of channels, indicatingwhich
channel was selected by the user. The first element of this
vector is 1 if the user has decided to wait. The state is the
history of actions and the observations made by a user u until
time t . The reward is the achievable data rate. The training
phase of this work is centralized, while the deployment phase
is distributed, and the model weights are updated in each UE
only when required, e.g., after substantial change in the UE
behavior.

In [38], the duty cycle multiple access mechanism is used
to divide the time frame between LTE and Wi-Fi users.
A DLR approach is then used to find the splitting point based
on the feedback averaged from the channel status for several
previous frames. Information like idle slots, number of suc-
cessful transmissions, action, reward are used to represent the
state of the agent. The action is a splitting point in the time
frame (i.e., an integer), and the reward is the transmission
time given to the LTE users while not violating the Wi-Fi
users minimum data rate limit.

In [35] a DQN model is developed where the agent learns
by interacting with users that use other protocols, like TDMA
and ALOHA, and learns to send its data in the slots where the
other users are idle.

IV. THE PROPOSED DRL SCHEDULER (LEASCH)
The proposed scheduler (LEASCH) is shown in Figure 2.
It is developed through two stages: Training and testing
(deployment).

In the training phase, the scheduling task is transformed
into an episodic DRL learning problem and LEASCH is
trained until it converges. In the testing phase, a 5G system
level simulator is used to deploy LEASCH. These two phases
are described deeply in the following subsections. Each com-
ponent of LEASCH is described from a DRL perspective
first, and then the training and deployment algorithms are
presented.

A. LEASCH’S DESIGN
1) STATE
Let us recall the objective of our agent as a scheduler. At a
given RBG, it has to select an active (eligible) UE from a
set of candidate UEs and assign that RBG to the selected UE
(Figure 1). Our objective is to jointly optimize the throughput
and fairness. Therefore, we can divide our state into three
parts: eligibility, data rate, and fairness. We derive each part
separately and then combine them in a single input vector
representing the state.

a: ELIGIBILITY
At each RBG there is only a subset of eligible UEs, Û ⊆ U .
A user is eligible for scheduling at a given RBG if the UE has
data in the buffer and is not associated with a HARQ process.
However, instead of feeding the buffer and the HARQ status

108094 VOLUME 8, 2020

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

of each UE to LEASCH, and ask the agent to learn ‘‘eligibil-
ity’’, we simplify the task for the agent by calculating a binary
vector g to act as an eligibility indicator:

gu =
{
1, if u is eligible
0, Otherwise

, ∀u ∈ U (18)

As we will see, g will help us designing a tangible reward
function that allows the agent to effectively learn how to avoid
scheduling inactive UEs.

b: DATA RATE
One way to represent this piece of information in the agent
state is to use the data/bit rate directly. However, we use
the valid entries of modulation and coding schemes (MCSs)
in Table 5.1.3.1-2 in the 5G physical layer specification TS
38.214 [39] to model this information. We denote this infor-
mation vector by d .

c: FAIRNESS
We keep track each time a UE is admitted to an RBG. To that
end, a vector with all-zero elements f = 0 is created in the
beginning of each episode, and f is updated each time anRBG
is scheduled:

fu=
{
max(fu−1, 0), if u is selected
fu + 1, if u’s buffer is not empty

, ∀u ∈ U

(19)

Therefore, f represents the allocation-log of the resources.
In the best case scenario all entries of f are the same, meaning
that all UEs are admitted to the resources with the same
probability. In addition, f also represents the delay because
the value in f will be large if the UE did not access the
resources for too long.

Combining these three vectors g, d and f yields the state.
The size of the state can be further reduced by joining g and
d via the Hadamard product:

d̂ = d ◦ g

making the final state vector defined by:

s =
[
d̂ f

]>
(20)

This way our state represents all pieces of information in a
compact but descriptivemanner. For a better learning stability
we normalize d̂ and f to the range [0, 1].

2) ACTION
The action space A is U . Each action is encoded in hot-one
encoding. In this encoding, only the selected UE (i.e., action)
will be 1 while the other elements will be 0.

3) REWARD
Reward engineering is a key problem in RL. In general,
the reward is treated similarly to an objective function to be
maximized. However, we believe that it should be engineered

as a signal such that each state-action pair represents a mean-
ingful reward.

From our state design the goal is to encourage the agent
to transmit at the RBGs with the highest MCS, i.e., highest
bit-per-symbol, to increase the throughput in the system.
At the same time, we would like the agent not to compromise
the resource sharing between users. Therefore, the adopted
reward is given by:

r(s, u;K) =

−K , if u is none-eligible

d̂u ×
min
u
fu

max
u
fu
, otherwise (21)

where K is a threshold to represent the negative penalization
signal for scheduling an inactive UE, and f is updated using
(19). We can easily see that, our reward is a variant of a dis-
counted bestCQI function, where the data rate is discounted
by the resource sharing fairness.

B. TRAINING PHASE
This phase is performed off-line. LEASCH is trained for a
sequence of episodes. The training procedure of one episode
is described in Algorithm 1. In the beginning of each episode,
a random state is created. Then the agent is trained for a set
of `episode steps. In each step the agent trains its on-line Q
neural network, and transfers the learned parameters to the
target critic neural network at every T steps. After an episode
has finished, the experience replaymemoryR and the learned
weights are transfered to the next episode, and so on. The state
is reset in the beginning of each episode.

C. DEPLOYMENT PHASE
Once the training phase has finished, LEASCH is deployed in
a 5G simulator for testing. In this phase, LEASCH performs
a single forward step on its neural network and no retraining
is required, Figure 2. The deployment algorithm is shown in
Algorithm 2. In this algorithm, the agent is plugged in like
any other conventional scheduling algorithm. Each time an
RBG is ready for scheduling, it is admitted to LEASCHwhich
first calculates the set of eligible UEs, Û , and creates a state
s. Next, it decides which UE wins the RBG by performing a
forward step on its neural networkwithweights θ and chooses
the action with the highest probability. If the selected UE, u,
belongs to Û then LEASCH assigns the current RBG to u.
According to LEASCH’s decision, the simulator allocates the
resources and records statistics.

V. RESULTS
In order to evaluate the proposed scheduler, a comparison
with two baseline algorithms, proportional fairness (PF) and
round robin (RR), is performed. These are widely used algo-
rithms in literature and in practice. The main objective here is
to assess LEASCH using different settings in order to: i) show
its ability to solve the RRS problem; ii) try to understand
which policy it was able to learn; and iii) to analyze the

VOLUME 8, 2020 108095

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

Algorithm 1 Training Phase of LEASCH

1: // input: `episode, K , M, T , ε, δε , minε , θ , θ̂ ,R.
2: // output: updated {θ , θ̂ ,R}.
3: initialize s randomly according to the ranges of d̂ and f
4: for i = 1 : `episode do
5: forward s to the on-line Q neural network and get the

selected UE, u, via ε-greedy as:
u = argmax

a∈A
Q(s, a; θ)

6: anneal ε as: max{ε − δε,minε}
7: calculate the reward r(s, u;K) using (21).
8: calculate new state s′ using the equations (18) to (20)
9: add the tuple (s, u, r, s′) to the experience replayR
10: sample M mini-batches from R and train the on-line

Q neural network with θ using (14) and (17)
11: update the target critic Q neural network (with θ̂) using

θ every T steps via smoothing (16).
12: s← s′

13: end for
14: return {θ , θ̂ ,R}

Algorithm 2 Deployment Phase of LEASCH in 5G
1: // input: trained LEASCH.
2: for each time slot do
3: for each RBG do
4: calculate the set of eligible UEs Û
5: if Û 6= ∅ then
6: calculate state s
7: forward s to LEASCH
8: calculate the action u as:

u = argmax
a∈A

Q(s, a; θ)

9: if u ∈ Û then
10: schedule u for the current RBG
11: end if
12: end if
13: collect statistics from the simulator
14: end for
15: end for

quality of its design. The collected results were analyzed from
different perspectives in order to accomplish these goals.

A. EXPERIMENTAL SETUP
The parameters adopted for LEASCH and 5G simulator are
depicted in Tables 2 and 3, respectively. As for LEASCH’s
architecture, its Q neural networks are DNNs with two fully
connected hidden layers of 128 neurons each, and relu
activation functions. The number of layers and neurons are
selected empirically. The input layer size is 2× |U | while the
output layer is a layer of size |U |.

All methods and algorithms presented/discussed here are
implemented in Matlab 2019b in a PC running Linux with
i7 2.6GHz, 32GB RAM, and GPU Nvidia RTX 2080Ti
with 11 GB.

FIGURE 3. LEASCH learning curve for 2000 episodes.

TABLE 2. Adopted DRL parameters/hyper-parameters.

TABLE 3. Adopted parameters for LEASCH testing on 5G network.

In the training phase, LEASCH is trained in a pool of
parallel threads in the GPU. As shown in Figure 3, LEASCH
was able to converge in less than 300 episodes. The theoret-
ical (long term) reward, the green line in the graph, has also
shown a steady increase which indicates a stable learning of
LEASCH with each episode. In addition, the average reward
(averaged each 5 episodes) has revealed a stable experience
by the agent.

KEY PERFORMANCE INDICATORS
Throughput, goodput, and fairness are the main key perfor-
mance indicators (KPIs) used for evaluation. For through-
put, the sum of achievable data rate in the cell is reported.

108096 VOLUME 8, 2020

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

FIGURE 4. KPIs for 250 frames of 15kHz SCS under 5MHz BW for 100 runs.

FIGURE 5. KPIs for 250 frames of 30kHz SCS under 10MHz BW for 100 runs.

FIGURE 6. KPIs for 250 frames of 60kHz SCS under 20MHz BW for 100 runs.

For goodput, the delivered data rate is measured at the
receiver. For fairness, the popular Jain’s fairness index (JFI)
is used.

B. ABILITY TO SOLVE RRS
LEASCH and the baseline algorithms have been tested on dif-
ferent channel bandwidths: 5, 10 and 20 MHz; and different
numerology indexes: 15, 30 and 60 kHz SCS. See Table 3.

The results of the first group of settings, i.e., 5 MHz BW
and 15 kHz SCS, are shown in Figure 4. These results clearly
demonstrate that LEASCH is better than the baseline in all
KPIs. LEASCH has improved the throughput by ≈ 2.4%
and 18% compared to PF, and RR, respectively. In terms of
goodput, LEASCH is better by ≈ 3% and 20 % compared to
PF and RR, respectively, which indicates a better stability in
LEASCH performance when compared to the baseline. For
the JFI, LEASCH is ≈ 1% and 4.3% better than PF and RR,
respectively.

For the second set of settings, i.e., 10MHz BW and 30kHz
SCS, LEASCH has improved the throughput by ≈ 3% and
19% compared to PF and RR, respectively. In terms of good-
put, LEASCH is ≈ 3.3% and 21% better than PF and RR,
respectively. Regarding JFI, LEASCH is≈ 2% and 5% better
than PF and RR, respectively.

The third set of settings, i.e., 20MHz BW and 60Khz SCS,
has also shown similar performance where LEASCH has
improved the throughput by ≈ 3% and 18% compared to PF
and RR, respectively. For goodput, LEASCH outperformed
PF and RR by ≈ 4% and 20%, respectively. Regarding JFI,
LEASCH improved the fairness compared to PF and RR
by ≈ 2% and 5%, respectively.
These results have clearly shown that LEASCH has a com-

petitive and consistent performance compared to the base-
line. LEASCH has shown improvement in all measurements,
which is not an easy task given that LEASCH has a simple
design and has been trained off-simulator. In addition, when
choosing a setting with higher theoretical throughput (e.g.,
10MHz with 30kHz SCS instead of 5MHz with 15kHz SCS),
LEASCHwas able to scale well and improve the performance
even further. One nice property of LEASCH is that it is able
to push all the KPIs without compromising any of them.More
specifically, LEASCHwas able to improve the throughput but
at the same time without compromising the goodput. This is
why the goodput is enhanced even more than the throughput
in all tests compared to the baseline.

In addition, we have also doubled the number of UEs and
selected the second settings, i.e., 10MHz BW and 30kHz
SCS to retest all methods. The results are shown in Figure 7.

VOLUME 8, 2020 108097

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

FIGURE 7. KPIs for 8 UEs simulated for 250 frames using 30kHz SCS under 10MHz BW for 100 runs.

FIGURE 8. A random testing run for the 10MHz BW and 30kHz SCS setting. Left column: throughput; right column: goodput.

From these figure, we can see that the proposed model still
able to produce efficient results under larger set of UEs.
In terms of throughput it is 5% and 13% better than PF and
RR, respectively. Regarding goodput it is 7% and 14% better
than PF and RR. For JFI, it has shown similar results as PF
and is 2% better than RR.

C. WHICH POLICY DID LEASCH LEARN?
This section tries to analyze and figure out which policy did
LEASCH learn. This task is not trivial, not only for LEASCH
but for almost every DRL agent. Here it is more difficult
not only because of the stochastic nature of LEASCH, but
also due to the complexity of the RRS problem. Therefore,

108098 VOLUME 8, 2020

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

FIGURE 9. Learning different objectives by LEASCH.

the visual inspection approach of LEASCH behavior will be
followed.

To that end, a testing run is sampled for a set of settings
and the throughput and goodput curves are quantized into
10 time units (see Figure 8). These curves are then visually
inspected with regard to those of PF and RR. By comparing
these curves, both for each UE and for the cell, it is pos-
sible to construct an idea about which policy LEASCH has
learned. In this figure, the second set of settings with 10MHz
BW and 30kHz SCS is chosen. Since 30kHz SCS is used,
the simulation time is only 1250 ms. For 15kHz this would
be 2500 ms. This is due to the reduction in symbol duration
as the numerology index increases.

According to the simulation settings in Table 3, the chan-
nel changes (and consequentially new CQI feedbacks are
signaled) each 125 ms, i.e., each 1 time unit in Figure 8.
In this Figure, first it is interesting to see that the trends
of the cell curves are similar in all approaches. However,
at each time unit each method makes different scheduling
decisions. Second, LEASCH outperforms PF and RR since
it reaches higher throughput-goodput, especially from the
period 5 to 8 time units where major changes have occurred
in the channel. Before time unit 5 (i.e., from 1 to 4) LEASCH
performed almost identical to PF in terms of throughput-
goodput but, at the same time, the UEs’ curves are more com-
pact in LEASCH which indicates a better fairness. After the
period 5 to 8 time units, LEASCH continued to maintain high
throughput without sacrificing UEs that have bad CQIs (e.g.,
compare the curve of UE3 in all approaches). Although our
discussion here lacks analytical bases, due to the complexity
of the problem, it is clear that LEASCHhas nicely realized the
intuitions we have designed it for. LEASCH tries to improve
all KPIs without sacrificing UEs with bad CQIs, by wisely
distributing the spectrum among all UEs.

D. LEARNING PERFORMANCE
Here the learning performance of LEASCH is analyzed. The
main objective is to asses its design quality given that it has
to learn two different goals: avoid scheduling inactive UEs,
and jointly optimize throughput and fairness. Using only

theoretical foundation of DRL, it is not easy to see how
LEASCH learned these different (and perhaps contradicto-
rily) goals. The reason is that, the learned weights of the Q
networks can not easily be interpreted to assess the learning
performance and the quality of LEASCH’s design. Therefore,
a reward analysis is performed by separating both goals out-
comes.

To that end, the learning curve in Figure 3 is decomposed
into two curves as shown in Figure 9. In addition, instead
of calculating the average total reward of the episode
(as in Figure 3), the average reward of each episode is used.
This allows us to study how LEASCH learns both parts of
expression (21) separately. From this figure, the red curve
represents the probability of scheduling active-only UEs
while the blue curve is the throughput-fairness reward, i.e.,{
d̂u ×

min
u
fu

max
u

fu

}
in (21). These two curves show that LEASCH

was able to jointly learn these two objectives and, around
episode 300, LEASCH was able to converge for both objec-
tives which clearly indicates the effectiveness of LEASCH’s
design. In addition, this also shows the suitability of DRL
to handle the scheduling problem, which is usually a multi-
objective problem.

VI. CONCLUSIONS
This article presents LEASCH, a deep reinforcement learning
agent able to solve the radio resource scheduling problem
in 5G. LEASCH is a breed of DDQN critic-only agents that
learns discrete actions from a sequence of states. It does so
by adapting its neural networks, known as DQNs, weights
according to the reward signal it receives from the envi-
ronment. What makes LEASCH different from conventional
schedulers is that; it is able to learn the scheduling task from
scratch with zero knowledge about the RRS. LEASCH is
different from the extremely scarce and new AI-schedulers
in many things. First LEASCH is trained off-simulator
to break any dependency between learning and deploy-
ment phases, making LEASCH a generic tool in any net-
working AI-ecosystem. Second, LEASCH has novel design
not addressed in earlier approaches. Finally, LEASCH was
designed as numerology-agnostic which makes it suitable for
5G deployments.

Concerning LEASCH performance, it has been compared
to the well-established approaches PF and RR. Despite
LEASCH’s simple design it has shown clear improvement
and stability in throughput, goodput, and fairness KPIs. Fur-
ther analysis has also shown that LEASCH is able to learn
not only how to enhance the classical throughput-fairness
tradeoff, but also not to schedule inactive users. It was able to
learn both objectives at the same time as the learning curves
depicted. Another interesting property of LEASCH is that it
avoids to penalize users with bad CQIs and tries to keep all
KPIs high at the same time. Such property can be improved
in the future. In addition, more interesting properties, which
can not be easily obtained by conventional approaches, can
be learned by LEASCH.

VOLUME 8, 2020 108099

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

As a future work, a more advanced version of LEASCH
will be developed to serve larger set of users. It will be devel-
oped and deployed under larger 5G network with a mixture
of numerologies and more complex rewarding systems that
include different type of services.

REFERENCES
[1] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei,

‘‘5G new radio: Waveform, frame structure, multiple access, and initial
access,’’ IEEE Commun. Mag., vol. 55, no. 6, pp. 64–71, Jun. 2017.

[2] C. G. Tsinos, S. Maleki, S. Chatzinotas, and B. Ottersten, ‘‘On the energy-
efficiency of hybrid analog-digital transceivers for Single- and multi-
carrier large antenna array systems,’’ IEEE J. Sel. Areas Commun., vol. 35,
no. 9, pp. 1980–1995, Sep. 2017.

[3] K. David and H. Berndt, ‘‘6G vision and requirements: Is there any need
for beyond 5G?’’ IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 72–80,
Sep. 2018.

[4] F. Alvarez, D. Breitgand, D. Griffin, P. Andriani, S. Rizou, N. Zioulis,
F. Moscatelli, J. Serrano, M. Keltsch, P. Trakadas, T. K. Phan, A. Weit,
U. Acar, O. Prieto, F. Iadanza, G. Carrozzo, H. Koumaras, D. Zarpalas, and
D. Jimenez, ‘‘An edge-to-cloud virtualized multimedia service platform
for 5G networks,’’ IEEE Trans. Broadcast., vol. 65, no. 2, pp. 369–380,
Jun. 2019.

[5] F. Al-Tam and N. Correia, ‘‘On load balancing via switch migration in
software-defined networking,’’ IEEE Access, vol. 7, pp. 95998–96010,
2019.

[6] C. G. Tsinos, S. Chatzinotas, and B. Ottersten, ‘‘Hybrid analog-digital
transceiver designs for multi-user MIMO mmWave cognitive radio sys-
tems,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 1, pp. 310–324,
Mar. 2020.

[7] System Architecture for the 5G System, Standard 3GPP TS 23.501, Tech-
nical Report, ETSI, 2018.

[8] J. Jeon, ‘‘NR wide bandwidth operations,’’ IEEE Commun. Mag., vol. 56,
no. 3, pp. 42–46, Mar. 2018.

[9] M. Agiwal, A. Roy, and N. Saxena, ‘‘Next generation 5G wireless net-
works: A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 18,
no. 3, pp. 1617–1655, 3rd Quart., 2016.

[10] Y. Fu, S. Wang, C.-X. Wang, X. Hong, and S. McLaughlin, ‘‘Artificial
intelligence to manage network traffic of 5G wireless networks,’’ IEEE
Netw., vol. 32, no. 6, pp. 58–64, Nov. 2018.

[11] N. Feamster and J. Rexford, ‘‘Why (and How) networks should run them-
selves,’’ in Proc. Appl. Netw. Res. Workshop, Jul. 2018, p. 20.

[12] S. Joseph, R. Misra, and S. Katti, ‘‘Towards self-driving radios: Physical-
layer control using deep reinforcement learning,’’ in Proc. 20th Int. Work-
shop Mobile Comput. Syst. Appl., Feb. 2019, pp. 69–74.

[13] H. B. Pasandi and T. Nadeem, ‘‘Challenges and limitations in automating
the design of MAC protocols using machine-learning,’’ in Proc. Int. Conf.
Artif. Intell. Inf. Commun. (ICAIIC), Feb. 2019, pp. 107–112.

[14] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, ‘‘Down-
link packet scheduling in LTE cellular networks: Key design issues and
a survey,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 678–700,
2nd Quart., 2013.

[15] Physical Layer Procedures for Data, Standard 3GPP TS 38.214, Technical
Report, ETSI, 2019.

[16] O. Naparstek and K. Cohen, ‘‘Deep multi-user reinforcement learning for
distributed dynamic spectrum access,’’ IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310–323, Jan. 2019.

[17] S.-C. Tseng, Z.-W. Liu, Y.-C. Chou, and C.-W. Huang, ‘‘Radio resource
scheduling for 5G NR via deep deterministic policy gradient,’’ in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), May 2019,
pp. 1–6.

[18] C. Zhang, P. Patras, andH. Haddadi, ‘‘Deep learning inmobile andwireless
networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2224–2287, 3rd Quart., 2019.

[19] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, ‘‘Dueling network architectures for deep reinforcement
learning,’’ 2015, arXiv:1511.06581. [Online]. Available: http://arxiv.
org/abs/1511.06581

[20] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[22] O. Vinyals et al., ‘‘Grandmaster level in StarCraft II using multi-
agent reinforcement learning,’’ Nature, vol. 575, no. 7782, pp. 350–354,
Nov. 2019.

[23] V. Hado Hasselt, ‘‘Double q-learning,’’ Proc. Advances Neural Inf. Pro-
cess. Syst., J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
A. Culotta, eds., 2010, pp. 2613–2621.

[24] H. V. Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learn-
ing with double Q-learning,’’ in Proc. 30th Assoc. Advancement Artif.-
Intell. (AAAI) Conf. Artif. Intell., Phoenix, AZ, USA, Feb. 2016,
pp. 1–13.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[26] T. Benson, A. Akella, and D. A. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. 10th Annu. Conf. Internet Meas. IMC,
2010, pp. 267–280.

[27] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone,
and S. Katti, ‘‘Cellular network traffic scheduling with deep reinforcement
learning,’’ in Proc. 32nd AAAI Conf. Artif. Intell. /30th Innov. Appl. Artif.
Intell. Conf. / 8th AAAI Symp. Educ. Adv. Artif. Intell., New Orleans, LA,
USA, Feb. 2018, pp. 1–9.

[28] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcon,
M. Sole, V. Muntes-Mulero, D. Meyer, S. Barkai, J. Mike Hibbett,
G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan, H. Latapie, C. Cassar,
J. Evans, F. Maino, J. Walrand, and A. Cabellos, ‘‘Knowledge-defined
networking,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 47, no. 3,
pp. 2–10, Jul. 2017.

[29] J. Wang, C. Xu, Y. Huangfu, R. Li, Y. Ge, and J. Wang, ‘‘Deep
reinforcement learning for scheduling in cellular networks,’’ 2019,
arXiv:1905.05914. [Online]. Available: https://arxiv.org/abs/1905.
05914

[30] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
‘‘Deep reinforcement learning that matters,’’ in Proc. 32nd AAAI Conf.
Artif. Intell. /30th Innov. Appl. Artif. Intell. Conf. /8th AAAI Symp. Educ.
Adv. Artif. Intell., New Orleans, LA, USA, Feb. 2018, pp. 3207–3214.

[31] P. Gawlowicz and A. Zubow, ‘‘Ns-3 meets OpenAI gym: The playground
for machine learning in networking research,’’ in Proc. 22nd Int. ACM
Conf. Modeling, Anal. Simulation Wireless Mobile Syst. MSWIM, 2019,
pp. 113–120.

[32] I.-S. Comsa, A. De-Domenico, and D. Ktenas, ‘‘QoS-driven
scheduling in 5G radio access Networks–A reinforcement learning
approach,’’ in Proc. GLOBECOM Global Commun. Conf., Dec. 2017,
pp. 1–7.

[33] U. Challita, L. Dong, and W. Saad, ‘‘Proactive resource management for
LTE in unlicensed spectrum: A deep learning perspective,’’ IEEE Trans.
Wireless Commun., vol. 17, no. 7, pp. 4674–4689, Jul. 2018.

[34] L. Zhang, J. Tan, Y.-C. Liang, G. Feng, and D. Niyato, ‘‘Deep reinforce-
ment learning-based modulation and coding scheme selection in cognitive
heterogeneous networks,’’ IEEE Trans. Wireless Commun., vol. 18, no. 6,
pp. 3281–3294, Jun. 2019.

[35] Y. Yu, T. Wang, and S. C. Liew, ‘‘Deep-reinforcement learning multiple
access for heterogeneous wireless networks,’’ IEEE J. Sel. Areas Commun.,
vol. 37, no. 6, pp. 1277–1290, Jun. 2019.

[36] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACM SIGCOMM
Workshop Hot Topics Netw. (HotNets), Atlanta, GA, USA, Nov. 2016,
pp. 50–56.

[37] M. Hausknecht and P. Stone, ‘‘Deep recurrent Q-learning for partially
observable MDPs,’’ in Proc. 2015 AAAI Fall Symp. Ser., Sep. 2015,
pp. 1–52.

[38] J. Tan, L. Zhang, Y.-C. Liang, and D. Niyato, ‘‘Deep reinforcement learn-
ing for the coexistence of LAA-LTE andWiFi systems,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), May 2019, pp. 1–6.

[39] Physical Channels and Modulation, Standard 3GPP TS 38.211, Technical
Report, ETSI, Jul. 2018.

[40] User Equipment (UE) Radio Transmission and Reception;—Part 1: Range
1 Standalone (Release 16), Standard 3GPP TS 38.101-1-NR, Technical
Report, ETSI, Sep. 2019.

108100 VOLUME 8, 2020

F. Al-Tam et al.: LEASCH: A DRL Approach for RRS in the 5G MAC Layer

FAROQ AL-TAM received the degree in computer
science (four years) from the University of Thamar
(THU), in 2004, and the master’s and Ph.D.
degrees in computer science from the University
of Algarve (UAlg), Portugal, in 2012 and 2016,
respectively. He is currently a full-time Researcher
with the Networks and Systems Group, Center for
Electronics, Optoelectronics, and Telecommuni-
cations (CEOT), a research center supported by
the Portuguese Foundation for Science and Tech-

nology (FCT), University of Algarve. His major interests are modeling and
optimization problems in image processing and computer networks.

NOÉLIA CORREIA received the B.Sc. and M.Sc.
degrees in computer science from the University
of Algarve, Faro, Portugal, in 1995 and 1998,
respectively, and the Ph.D. degree in optical net-
works (computer science) from the University of
Algarve, in 2005, in collaboration with University
College London, U.K. She is a Lecturer with the
Faculty of Sciences and Technology, University of
Algarve. She is a Founding Member of the Center
for Electronics, Optoelectronics, and Telecommu-

nications, a research center supported by the Portuguese Foundation for
Science and Technology, University of Algarve. She is also the Networks and
Systems Group Coordinator. Her research interests include the applications
of optimization techniques to several network design problems in optical,
wireless, and sensor networks fields, and the development of algorithms.

JONATHAN RODRIGUEZ (Senior Member,
IEEE) received the master’s degree in electron-
ics and electrical engineering and the Ph.D.
degree from the University of Surrey, U.K.,
in 1998 and 2004, respectively. In 2005, he became
a Researcher of the wireless communications sci-
entific area with the Instituto de Telecomunicações
(IT), Portugal, where he was a member. In 2008,
he became a Senior Researcher, where he estab-
lished the 4TELL Research Group targeting next-

generation mobile systems. Since 2009, he has been serving as an Invited
Assistant Professor with the University of Aveiro, Portugal, and attained the
Associate Level, in 2015. He is currently the Coordinator of the H2020-
SECRET Innovative Training Network. In 2017, he was appointed as a
Professor of mobile communications with the University of South Wales,
U.K. He has served as a Project Coordinator of major international research
projects, including Eureka LOOP and FP7 C2POWER whilst serving as the
Technical Manager of FP7 COGEU and FP7 SALUS. He has authored more
than 500 scientific works, including ten editorial books. His professional
affiliations include a chartered engineer (C.Eng.) (since 2013) and a Fellow
of the IET, in 2015.

VOLUME 8, 2020 108101

	INTRODUCTION
	RADIO RESOURCE SCHEDULING PROBLEM
	SYSTEM MODEL
	WHY DRL IS SUITABLE FOR RRM PROBLEM?

	DEEP REINFORCEMENT LEARNING
	RELATED WORK
	COARSE APPROACHES
	FINE-GRAINED APPROACHES

	THE PROPOSED DRL SCHEDULER (LEASCH)
	LEASCH'S DESIGN
	STATE
	ACTION
	REWARD

	TRAINING PHASE
	DEPLOYMENT PHASE

	RESULTS
	EXPERIMENTAL SETUP
	ABILITY TO SOLVE RRS
	WHICH POLICY DID LEASCH LEARN?
	LEARNING PERFORMANCE

	CONCLUSIONS
	REFERENCES
	Biographies
	FAROQ AL-TAM
	NOÉLIA CORREIA
	JONATHAN RODRIGUEZ

