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ABSTRACT Overhead contact systems (OCSs) are the power supply facility of high-speed trains and plays
a vital role in the operation of high-speed trains. The dropper is an important guarantee for the suspension
system of the OCS. Faults of the dropper, such as slack and breakage, can cause a certain threat to the power
supply system. How to use artificial intelligence technologies to detect faults is an urgent technical problem
to be solved. Because droppers are very small in whole images, a feasible solution to the problem is to identify
and locate the droppers first, then segment them, and then identify the fault type of the segmented droppers.
This paper proposes an improved Faster R-CNN algorithm that can accurately identify and locate droppers.
The innovations of the method consist of two parts. First, a balanced attention feature pyramid network
(BA-FPN) is used to predict the detection anchor. Based on the attention mechanism, BA-FPN performs
feature fusion on feature maps of different levels of the feature pyramid network to balance the original
features of each layer. After that, a center-point rectangle loss (CR Loss) is designed as the bounding box
regression loss function of Faster R-CNN. Through a center-point rectangle penalty term, the anchor box
quickly moves closer to the ground-truth box during the training process. We validate the improved Faster
R-CNN through extensive experiments on the VOC 2012 andMSCOCO 2014 datasets. Experimental results
prove the effectiveness of the proposed network combined with attention feature fusion and center-point
rectangle loss. On the OCS dataset, the accuracy using the combination of the improved Faster R-CNN and
ResNet-101 reached 86.8% mAP@0.5 and 83.9% mAP@0.7, which was the best performance among all
results.

INDEX TERMS Dropper detection, feature fusion, improved Faster R-CNN, attention mechanism.

I. INTRODUCTION
In recent years, high-speed railway transport has developed
rapidly worldwide. The overhead contact system (OCS) is
the key equipment for powering electric locomotives. The
continuous operation of the OCS ensures the high-speed
running of the train. The dropper is one of the important
components in the chain suspension of the OCS, and the
carrier cable is suspended on the OCS through the dropper.
Due to the open-air work all year round, the dropper is
prone to breakdown. Once the dropper is loose or dropped,
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it will have a great impact on the power supply system of
the high-speed railway, threatening the normal operation of
trains and the safety of passengers. At present, the railway
system still relies onmanually viewing video images acquired
through the 2C system to find dropper faults. Because of the
influence of various human factors, omissions or misjudg-
ments can easily occur. Image processing is a method for
replacing manpower for fault diagnosis of droppers, the first
step of which is to use an efficient detector to detect and
locate the dropper in the high-definition image. With the
development of artificial intelligence, it is an urgent prob-
lem to realize the dropper detection method based on deep
learning.
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Convolutional neural networks can learn the robustness
and deep feature representation of an image and have
good performance in computer vision. From LeNet [1],
AlexNet [2] won the ImageNet [3] competition in 2012, and
then to VGGNet [4] and ResNet [5], CNN has become deeper
for better performance.With the development of CNNs, more
powerful object detection algorithms have appeared one after
another, such as the YOLO series [6]–[8] networks and Faster
R-CNN [9], which are widely used in the engineering field.
It is of great significance to use object detection networks to
accurately locate and identify droppers for further research on
dropper fault diagnosis. Therefore, the main purpose of this
paper is to find a high-performance object detector.

However, the structure of the OCS components is complex
and diverse, and the background is extremely complicated,
which leads to poor feature representation of the dropper.
There are many non-target parts that greatly affect the feature
extraction of the dropper, such as wrist arms and wire rods.
Therefore, using a deep learning network to achieve accu-
rate dropper identification requires a more efficient object
detection framework. With the introduction of Faster R-CNN
[9], the accuracy of detection has been greatly improved.
Faster R-CNN is widely used in some computer vision tasks
in the engineering field and can solve the detection problem
of small objects with different sizes. Due to the abundance
of semantic information, the deep layer in feature extrac-
tion networks plays an important role in the classification
stage, while the lower layer with more detailed information
and content description is easy to ignore. Thus, the feature
fusion of FPN [10] is of great significance to the perfor-
mance improvement of object detection tasks. For example,
the proposal of PANet [11] enables the feature pyramid to be
enhanced through a bottom-up path, which can obtain more
accurate positioning information from low-level features. In
addition, the attentionmechanism focuses information on key
parts of the image and shows good performance in image
classification and object detection tasks.

In this paper, to address the problem of dropper detection,
we propose an improved Faster R-CNN with two innovative
views. The first innovation is that a balanced attention feature
pyramid network (BA-FPN) is proposed to obtain the fusion
feature of multilevel feature maps. Specifically, by relying on
an integrated semantic feature map to balance the original
features of each layer of the pyramid, each resolution in
the feature pyramid can obtain equal information from the
other layers. The image information imbalance problem of
FPN [10] can be solved by better fusion of shallow detailed
information and deep semantic information. In addition,
based on the attention mechanism, a new network module
named the ‘‘mixed attention block’’ is designed to act on the
integrated semantic feature map. By acquiring the channel
and spatialwise attention, the mixed attention block reduces
the information redundancy and extracts more useful image
features. The second innovation is the proposal of a center-
point rectangle loss (CR loss) to accelerate convergence and
improve the accuracy of the model. In CR loss, we add a

center-point rectangle penalty term to the coordinate regres-
sion loss function. The vertices of the center-point rectangle
consist of the center points of the ground-truth box and the
anchor box. By optimizing the area of the rectangle, the center
distance between the anchor box and the ground-truth box is
directly minimized, which provides a moving direction for
the bounding box and accelerates convergence. In summary,
the contributions of this paper are as follows:

1) We propose BA-FPN, a feature pyramid model based
on an attention mechanism, which can better extract useful
features.

2)We propose a center-point rectangle loss function, which
uses a center-point rectangle penalty term to accelerate con-
vergence.

3) We use the improved Faster R-CNN as the basic object
detection network and validate the proposed method on VOC
2012 [12], MSCOCO 2014 [13] and our OCS datasets. Our
method achieves state-of-the-art performance.

The remainder of this paper is organized as follows.
Section II shows the recent research on engineering appli-
cations of OCSs and the development of detection tasks in
the computer vision field. The dropper detection method
proposed in this paper is described in Section III. Section IV
presents the experimental datasets and parameter settings,
and the experimental results are analyzed in detail. The rele-
vant conclusions are given in Section V.

II. RELATED WORKS
A. THE OCS ANALYSIS AND DROPPER DETECTION
The OCS is an important part of the electrified railway sys-
tem that is responsible for transferring the electric energy
in the traction network to the electric locomotive. The spe-
cific structure of the OCS is shown in Figure 1. There
are complex mechanical and electrical interactions between
the pantograph and the catenary device. The vibration and
impact generated by the long-term operation of the train will
inevitably cause the failure of the catenary support device,
such as the disappearance of the fasteners and breakage
of the load-bearing cable, which can seriously affect train
operation. In recent years, researchers have attempted to use
image processing methods to detect the key components of
the OCS. Karakose et al. [14] proposed a new approach
using image processing-based tracking to diagnose faults in
the pantograph-catenary system. Liu et al. [15] proposed a
unified deep learning architecture for the detection of all cate-
nary support components. Qu et al. [16] used a genetic opti-
mization method based on an adadelta deep neural network
to predict pantograph and catenary comprehensive monitor
status. Zhong et al. [17] introduced a CNN-based defect
inspection method to detect catenary split pins in high-speed
railways.

This paper focuses on the dropper detection of the OCS.
The dropper is one of the important components in the
catenary suspension, which is of great significance to the
normal operation of trains. Similar to the detection of other
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FIGURE 1. The high-definition image of the OCS.

parts, dropper detection will also be interfered by the noise
in the background of the complex OCS images. In addition,
the main body of the dropper is filamentous and very small in
the image, which creates some difficulties in feature extrac-
tion. Several years ago, Petitjean et al. [18], [19] introduced
an original system for the automatic detection of droppers
in the catenary, which used prior knowledge to obtain the
location of the dropper. With the advancement of computer
vision technology, Xu [20] used a Faster R-CNN to locate
dropper images and then used the Hough transform to recog-
nize dropper faults. Liu et al. [21] proposed a deep learning
method based on depthwise separable convolution for drop-
per detection. In order to address the impact of image com-
plexity, we propose an attention-based feature fusion method
combined with a high-precision Faster R-CNN network to
form an effective object detector and realize dropper detection
in complex backgrounds.

B. OBJECT DETECTION NETWORK
With the development of CNN, image processing and object
detection technology have achieved an improvement from
traditional machine learning methods to deep learning.
Girshick et al. [22] proposed R-CNN based on region pro-
posal, which makes two-stage object detection a mainstream
detection method. He et al. [23] used SPPNet to effectively
solve the problem of computational redundancy of candidate
regions. On the basis of R-CNN [22] and SPPNet [23], Fast
R-CNN [24] realized a multitask learning method by simul-
taneously training object classification and bounding box
regression. Immediately afterward, Ren et al. [9] proposed a
region proposal network in Faster R-CNN to fuse the region
proposal with CNN classification and realized a complete
end-to-end CNN object detection model. After that, Cascade
R-CNN [25] expanded Faster R-CNN [9] into a multistage
detector through a powerful cascade structure. Lin et al. [10]
proposed a feature pyramid network (FPN), which caused
multiple detection ports from different levels in the network to
detect objects of different scales. FPN [10] has now become
a basic component in many detectors. In the path aggrega-
tion network proposed by Liu et al. [11], a bottom-up path

augmentation structure was introduced to fuse FPN features
and make full use of the features of the shallow layer.

A one-stage detection model can obtain the final detec-
tion result directly after a single detection and has a fast
detection speed. YOLO [6] was the first proposed one-stage
detection algorithm, which directly obtained the position
of the bounding box and the classes of the object through
only one convolutional neural network. Liu et al. [26] pro-
posed the SSD algorithm, which absorbed the advantages of
YOLO’s fast speed and the precise positioning of RPN [9].
SSD [26] adopted multiwindow technology in RPN and
detected multiple feature maps with different resolutions.
To improve the detection accuracy of the one-stage method,
Lin et al. [27] proposed ‘‘focal loss’’ to modify the tradi-
tional cross-entropy loss function and greatly improved the
detection precision. The high-precision detectors of many
algorithms rely on dense anchor strategies, resulting in a large
number of redundant anchor boxes and a serious imbalance
between positive and negative samples. To solve this prob-
lem, Wang et al. [28] proposed GA-RPN, which predicted
the position and shape of the anchor to generate sparse and
arbitrarily shaped anchors.

At present, object detection technology based on
deep learning is also gradually used in various fields.
Chen et al. [29] applied an attention mechanism to ship
detection in satellite images. Cao et al. [30] designed an
improved Faster R-CNN for small object detection. In the
field of railway engineering, Wei et al. [31] used Faster-
R-CNN to detect railway track fasteners. Juan et al. [32]
proposed FB-NET detection based on a deep learningmethod
for detecting the shape of railways and dangerous obstacles.
In addition, He et al. [33] combined SSD and Faster-R-CNN
to detect foreign matter in high-speed trains.

C. ATTENTION MECHANISM
The attention mechanism essentially imitates the way that
humans observe objects. In recent years, most of the research
work on the combination of deep learning and visual attention
mechanisms has focused on the use of masks. By giving
weight to the network layer to identify the key features of the
image, an attention mechanism is formed. Wang et al. [34]
introduced a residual attention network using a trunk-and-
mask attentionmechanismmodel. The trunk branch is similar
to the traditional convolutional network, and features are
extracted through multiple convolution operations. The mask
branch is an encoder-decoder model with the output atten-
tion weight. Fu et al. [35] proposed RA-CNN, which com-
bines area determination with fine-grained feature extraction.
The region with a dense distribution of important features
can be used as a key recognition region for further accu-
rate judgment to promote feature extraction. Hu et al. [36]
designed a squeeze-and-excitation block to explore the rela-
tionship between channels, which calculates the attention
weight of each channel through a global pooling operation.
Woo et al. [37] proposed the convolutional block attention
module. In addition to considering the attention weight of
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FIGURE 2. The overall algorithm framework of this paper.

the channels, a spatial attention branch was also added in the
module.

In different visual tasks, the attention mechanism has
also been applied accordingly. Ling et al. [38] proposed a
self-residual attention network for deep face recognition. In
the image translation task, a channel attention network was
designed by Sun et al. [39], with which the original function
in the encoder and the conversion function in the decoder can
be better integrated. In addition, Liu et al. [40] proposed a
spatiotemporal attention module for video action recognition.
Gao et al. [41] introduced a residual attention mechanism to
one convolutional layer object tracking network to avoid data
imbalance.

III. OUR PROPOSED METHODS
To improve the performance of dropper detection, we develop
an improved Faster R-CNN network. The architecture of the
improved Faster R-CNN is shown in Figure 2. The proposed
method contains two aspects: a balanced attention feature
pyramid network (BA-FPN) and a center-point rectangle loss
(CR loss).

The BA-FPN model balances the original feature of each
layer by relying on an integrated semantic feature map. First,
the feature maps of different levels of the feature pyramid
are fused into an integrated semantic feature map. Then,
we use the mixed attention block to extract the channel and
spatial attention of the integrated feature map, which in turn
acts on the integrated semantic feature map to generate an
attention map. We combine the attention map with feature
maps of the pyramid to balance the original feature. CR
loss is an optimized bounding box regression loss function.
Based on the regression of the prediction box vertex, we add
a rectangular area penalty term to the function. The two
diagonal vertices of the rectangle are composed of the cen-
ter points of the predicted anchor box and the ground-truth

box. By optimizing the rectangle penalty term, the conver-
gence of loss is accelerated, and the accuracy is improved.
In Section A, we introduce the feature extractor used in the
proposed method. In Section B, we review the structure of the
FPN and introduce the BA-FPNmodel in detail. In Section C,
the proposed CR loss function is stated. Section D describes
the generation process of the predicted bounding box.

A. FEATURE EXTRACTOR
It is important to select a high-performance convolutional
neural network for the performance of the detection model.
The depth and parameter settings of the feature extraction
network directly affect the performance of the proposed
method. A deep network can generate a feature map with rich
semantic information, which is useful for achieving better
feature pyramid fusion.

In this paper, we choose ResNet as the basic feature extrac-
tor of the proposed method. Instead of attempting to learn the
mapping between the input and output directly as in VGGNet,
ResNet can learn the representation of the input residual and
output by using multiple residual blocks. The residual block
is shown in Figure 3. It is much easier to learn residuals than
to directly learn the mapping between the input and output,
which is proven by a large number of experiments.

In the experiment, we used the models trained on
ImageNet [3] as the basic pretrained parameter models of
ResNet.

B. BALANCED ATTENTION FPN
There are objects of different sizes in the image, and different
objects have different characteristics. Simple objects can be
distinguished by shallow features, while complex objects can
be distinguished by deep features. The emergence of the
FPN can solve the above problem to some extent. FPN is
a kind of enhancement of the image information expression
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FIGURE 3. The residual block of ResNet.

FIGURE 4. The FPN framework.

output of traditional CNN networks, which can be flexibly
applied to different tasks. Figure 4 demonstrates the overall
architecture of the FPN. First, FPN can efficiently calculate
strong features through the hierarchical structure of the CNN
network. By combining bottom-up and top-down methods,
FPN obtains strong semantic features to improve the per-
formance of object detection and semantic segmentation on
multiple datasets. For small objects, FPN can utilize the high-
level semantic information after the top-down model, which
increases the resolution of the feature map and operates on a
larger feature map to obtain more useful information of small
objects.

However, in FPN, the semantic information contained in
nonadjacent layers will be diluted in the information fusion
process, resulting in information fusion imbalances of differ-
ent scales. On the basis of FPN, BA-FPN fuses the feature
maps of each level into an integrated semantic feature map,
which in turn acts on the maps of the corresponding scales
to balance the differences between the levels and enhance
useful feature expression. The general framework of BA-FPN
is shown in Figure 5.

Assuming the number of layers in the feature pyramid
is L, the outputs of Conv2, Conv3, Conv4 and Conv5 are
adopted here, denoted as {C2,C3,C4,C5}. To integrate fea-
tures of different levels and retain their semantic informa-
tion, the features of different levels {C2,C3,C4,C5} were
first reconstructed to the size of C4 through interpolation or

max-pooling, and then {F2,F3,F4,F5} was obtained. After
that, by calculating the mean value of {F2,F3,F4,F5}, the
integrated semantic feature map Fb was obtained. The for-
mula is defined as

Fb =
1
L

lmax∑
l=lmin

Fl (1)

To reduce the information redundancy of balanced seman-
tic features and further enhance useful feature expression,
we design a mixed attention block (MA block) based on an
attention mechanism, including a channel attention branch
and a spatial attention branch. The structure of the MA
block is shown in Figure 6. The feature representation of
the balanced semantic feature can be enhanced effectively
by extracting the channel and spatialwise attention. Thus,
the output of the MA block focuses on the most significant
components of the information.

We took the integrated semantic feature map Fb as the
input of the MA block, where Fb ∈ RC×H×W . By cal-
culating the channel attention branch and the spatial atten-
tion branch simultaneously, the corresponding attention maps
were generated. In the channel attention branch, we aggre-
gated the spatial information of Fb through an average-
pooling operation to generate the spatial context descriptor:
Fcavg ∈ RC×1×1, which generates a channel attention map
Mc ∈ RC×1×1 through a multilayer perceptron (MLP). The
hidden layer size of the MLP was set to RC/r×1×1, and r
is the reduction ratio. Additionally, in the spatial attention
branch, channel information is aggregated by averaging-
pooling operation on the channel axis to generate a fea-
ture descriptor: F savg ∈ R1×H×W . Then, a convolutional
layer was applied to F savg to produce a spatial attention
map Ms ∈ R1×H×W . The overall attention process can be
summarized as

Mc = σ (MLP (AvgPool1 (Fb)))

= σ
(
W1

(
W0

(
Fcavg

)))
(2)

Ms = σ ( f 7×7(AvgPool2(Fb)))

= σ
(
f 7×7

(
F savg

))
(3)

where σ denotes the sigmoid function. W0 ∈ RC/r×C , and
W1 ∈ RC×C/r are the weight parameters of MLP in the
channel attention branch. f 7×7 represents that the convolution
kernel size of the convolution operation is 7∗7 in the spatial
attention branch. AvgPool1 and AvgPool2 are the channel and
spatialwise global averaging-pooling, respectively.

After the above operation, we obtain the attention mapsMc
and Ms acting on Fb. At the end of the MA block, the final
refined attention feature map A is obtained.

A = (1+M c ⊗Ms)⊗ Fb (4)

where ⊗ denotes elementwise multiplication. Considering
that Mc ⊗ Ms belongs to [0, 1], if multiplied directly by Fb,
it will lead to a weakened output response of the feature map.
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FIGURE 5. The framework of the balanced attention feature pyramid network.

FIGURE 6. The structure of the mixed attention block.

Therefore, using 1+M c ⊗ Ms can avoid the emergence of
this problem.

To feed back the balanced semantic feature information to
each level, the output A of the MA block is reconstructed to
the same size corresponding to each level of {C2,C3,C4,C5},
and {A2,A3,A4,A5}was obtained, which are then added with
{C2,C3,C4,C5} to obtain {P2,P3,P4,P5}. The process is
expressed as follows:

Pi = Ai + Ci, i = 2, 3, 4, 5 (5)

Compared with {C2,C3,C4,C5}, {P2,P3,P4,P5} bal-
ances the differences among the layers and enhances the orig-
inal feature of each layer. For subsequent object detection,
the following process of the model is the same as FPN.

C. CENTER-POINT RECTANGLE LOSS
From L1 loss and L2 loss to the proposal of smoothL1 loss,
the optimization of regression loss makes the training pro-
cess increasingly efficient. When the predicted value dif-
fers greatly from the target value, the gradient of L2 loss
is (x-t), which is prone to gradient explosion, and the gradient
of L1 loss is constant. At present, in the Faster R-CNN object
detection network, smoothL1 loss is generally used as the loss
function for bounding box regression. When the predicted
value differs greatly from the target value, the gradient explo-
sion can be prevented by changing from L2 Loss to L1 loss.
The loss function of the original Faster R-CNN is expressed

as follows:

L =
1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+λ

1
Nreg

∑
i

p∗i Lreg
(
ti, t∗i

)
(6)

where i is the index of the predicted anchor box, and pi
represents the predicted probability of the i-th anchor box.
p∗i is the value of the i-th ground-truth box. If the anchor is
a positive sample, the value of p∗i is 1; otherwise, it is 0. ti
and t∗i are the coordinate vectors of the predicted anchor box
and ground-truth box, respectively. λ is the coefficient used to
balance regression loss and classification loss, which was set
to 1 in the experiment. Ncls and Nreg are the normalized and
weighted parameters by λ. Lreg denotes the basis regression
loss function (smooth L1 loss).

Lreg
(
ti, t∗i

)
= SL1

(
ti − t∗i

)
(7)

where

SL1 =

{
0.5x2 |x| < 1
|x| − 0.5 |x| ≥ 1

(8)

SmoothL1 has excellent performance in the Faster R-CNN
network. This paper attempts to optimize the loss function by
shortening the spatial distance between the predicted anchor
box and the ground-truth box. In the DIoU loss function,
Zheng et al. [42] rapidly reduced the distance between the
predicted anchor box and the ground-truth box by adding a
penalty term of center distance to the IOU loss. In this paper,
center-point rectangle loss (CR loss) is designed based on
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FIGURE 7. The CR loss for bounding box regression, where bi and bgt
i are

the central points of the anchor box and the ground-truth box.

the smoothL1 loss function. We add a center-point rectangle
term to L. The vertices of the center-point rectangle consist
of the central points of the ground-truth box and the predicted
anchor box. By optimizing the rectangular area, the distance
between the two center points is directly minimized so that
the anchor box quickly moves closer to the ground-truth box.
As shown in Figure 7, our goal is to reduce the area of the
rectangular box enclosed by the red dotted line. The formula
of the CR loss function is defined as follows.

LCR
(
ti, t∗i

)
= SL1

(
ti − t∗i

)
+
R(bi, b

gt
i )

R′i
(9)

where bi and bgti are the center points of the anchor box
and the ground-truth box. R(bi, b

gt
i ) is the center-point rect-

angle. R′i represents the smallest rectangular box that can
only contain both the anchor box and the ground-truth box.
We replace SL1

(
ti − t∗i

)
with LCR

(
ti, t∗i

)
in the total loss

function. In the experiment, the proposed loss function is
proven to be effective.

D. DETECTION BOUNDING BOX GENERATION
Multilevel feature maps output by BA-FPN are used as
the inputs of RPN, and the structure of RPN is shown
in Figure 8. An n∗n sliding window is generated on the shared
convolutional feature layer with the maximum number of k
anchor boxes. After a 3 ∗ 3 convolution operation, the feature
map enters the regression layer and classification layer. Then,
the regression layer and classification layer produce 4k and 2k
outputs, which represent coordinate values of corresponding
candidate regions and the probability of whether the area is
the foreground.

The loss functions of the regression layer and classification
layer are CR loss and cross-entropy loss, respectively. The
total loss function is defined as follows:

L ′ =
1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+ λ

1
Nreg

∑
i

p∗i LCR
(
ti, t∗i

)
(10)

Then, anchor boxes selected by NMS are output to train
the Fast R-CNN. The position information output by RPN is
mapped to the original feature map to obtain corresponding
region proposals. These region proposals generate feature
maps of size 7×7 through RoI pooling, which are then sent to
the fully connected layer and softmax layer for the next clas-
sification operation. Additionally, the regression operation is

used again to modify the region proposal to obtain a more
accurate object anchor box.

IV. EXPERIMENTS
To validate the effectiveness of the proposed method, we first
test the improved Faster R-CNN on VOC 2012 [12] and
MSCOCO 2014 [13]. The results show that the proposed
method has a significant performance improvement. Then,
we apply the method to our OCS dataset and compare the
performance with the experimental results of SSD [26] and
RetinaNet [27]. In this section, we introduce the datasets
used in the experiment and experimental implementation
details. After that, the method is thoroughly tested on differ-
ent datasets, and the results are presented. Finally, we conduct
a detailed analysis of the experimental results.

A. DATASET
In the experiment, VOC 2012 and MSCOCO 2014 are used
as validation datasets for the performance of the method.
Specifically, VOC 2012 has 20 object categories, which con-
tain 5,717 pictures for training and 5,823 images for valida-
tion. MSCOCO 2014 is another well-known object detection
dataset with 80 object categories, which contains 5,717 pic-
tures for training and 5,823 images for validation.

In this paper, 1,465 high-resolution OCS images are
selected from the high-speed rail 2C system for engineering
tests. Each OCS image contains several or dozens of dropper
objects. We make them into the VOC dataset to perform
dropper recognition experiments. The training set contains
1,172 images, and the test set contains 293 images.

B. IMPLEMENTATION DETAILS
1) TRAINING DETAILS
In the validation phase, we used Faster R-CNN as the basic
detector and ResNet [5] as the feature extraction network
to carry out experiments on the proposed method. On the
VOC 2012 dataset, we trained the detector for 20 epochs
with an initial learning rate of 0.01 and used stochastic gra-
dient descent (SGD) with momentum 0.9 and a weight decay
0.0001. On the MSCOCO 2014 dataset, except that the epoch
was set to 12, the other settings were the same as the VOC
2012 dataset.

In the test phase of dropper detection, we tested sev-
eral detectors on the OCS dataset, including our improved
Faster R-CNN, SSD512 and RetinaNet. Faster R-CNN and
RetinaNet choose ResNet as the feature extraction network.
We set the input size of training and testing to 1333 × 800
and 960×800 for Faster R-CNN. The other settings of Faster
R-CNN were the same as the VOC 2012 dataset. We trained
RetinaNet for 20 epochs with an input size of 960 × 800,
an initial learning rate of 0.01 and a weight decay of 0.0005.
SSD512was trained for 24 epochs with an initial learning rate
of 0.001 and a weight decay of 0.0005.

The entire experimental environment is described as fol-
lows: Deep learning framework Pytorch 1.1.0, centos7, and
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FIGURE 8. The structure of RPN.

the embedded artificial intelligence platform NVIDIA Tesla
P100 GPU.

2) METRICS
The classification and location of the models in the object
detection task need to be evaluated, and each image may have
different objects in different categories. We use mAP (mean
average precision) to evaluate the accuracy of the method.
The formula is as follows:

R =
TP

TP+ FN
(11)

P =
TP

TP+ FP
(12)

mAP =
∫ 1

0
P (R) dR (13)

where R is the recall rate and P is the accuracy rate. TP is
the number of positive samples correctly divided into positive
samples, FN is the number of positive samples incorrectly
divided into negative samples, and FP is the number of
negative samples incorrectly divided into positive samples.
TP + FN is the number of all actual positive samples, and
TP + FP is the total number of the samples divided into
positive samples.

TP and FP were judged based on the IOU (intersection-
over-union) threshold. The IOU calculation formula is as
follows:

IOU (A,B) =

∣∣∣∣A ∩ BA ∪ B

∣∣∣∣ (14)

where A represents the ground-truth box and B represents
the anchor predicted by the detection model. The initial IOU
threshold was set to 0.5. If IOU >0.5, the sample was TP;
otherwise, FP.

C. EXPERIMENTAL RESULTS AND ANALYSIS
In the performance experiment of the VOC 2012 dataset,
we used Faster R-CNN as the basic detector and ResNet
as the feature extraction network to evaluate the proposed
model. A total of 5,717 pictures were used to train the model,
and 5,823 pictures were used for testing. First, to verify

TABLE 1. The experimental results of BA-FPN on VOC 2012.

TABLE 2. The detection results of the small target on the VOC 2012
dataset.

TABLE 3. The experimental results of the combination of BA-FPN and CR
loss on the VOC 2012 dataset.

the effectiveness of BA-FPN, we conducted a comparative
test on BA-FPN and FPN and set the IOU threshold to 0.5.
Table 1 shows the experimental results of each combination.
Compared to FPN, mAP@0.5 improved correspondingly on
ResNet at all three depths, with ResNet50, ResNet101 and
ResNet152 increasing by 1.3%, 0.9% and 0.7%, respectively.
To learn more about mAP promotion details, we selected
5 small targets from 20 categories. The AP results of the
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TABLE 4. The detection results on the MSCOCO 2014 dataset.

TABLE 5. The detection results on the OCS dataset based on different detection algorithms.

targets selected are shown in Table 2. The detection results
of small targets improved considerably. Compared with FPN,
the experimental results of BA-FPN showed a good per-
formance improvement, indicating the effectiveness of the
attention mechanism in FPN feature fusion.

Table 3 shows the performance of CR loss on the VOC
2012 dataset. First, in the absence of BA-FPN, we compared
the detection results of the original smoothL1 loss and CR
loss. ThemAP@0.5 of themodel using CR loss was 0.3% and
0.4% higher than that of the model using smoothL1 loss on
ResNet50 and ResNet101, respectively. Combining CR loss
with BA-FPN, the performance of the detector was further
improved. ResNet50 with BA-FPN and CR loss increased
to 72.9% mAP@0.5 by 1.5% compared with ResNet50, and
ResNet101 with BA-FPN and CR loss increased to 74.4%
mAP@0.5 by 1.2% compared with ResNet101.

To further verify the performance of the proposed method,
we tested the model on the MSCOCO 2014 dataset. The
MSCOCO 2014 dataset contains 80 object categories and
more than 80,000 pictures for training, which could test the
performance of the detector better. In this paper, we used
the training set for training and the val set for testing. The
average mAP over different IOU thresholds from 0.5 to
0.95 was used for evaluation. The experiment used the Faster
R-CNN detector and tested it on ResNet. The purpose of this
experiment was to examine the effect of the combination of
BA-FPN and CR loss on the whole detection network, so any
performance improvement can prove its contribution to

better performance. Table 4 describes the performance of
the detector using ResNet50 and ResNet101 on the val
set. ResNet50 with BA-FPN and CR loss achieved 48.5%
mAP@0.5, 28.8% mAP@0.7 and 27.9% mAP@0.5:0.95 on
the MSCOCO 2014 dataset, with 1.5 points higher
mAP@0.5, 1.4 points higher mAP@0.7 and 1.1 points higher
mAP@ [0.5, 0.95] compared to the original ResNet50.
BA-FPN and CR loss also improved the performance of
the model with the ResNet101 network. Compared with the
basic ResNet101, the proposed model increased by 1.3%
mAP@0.5 and 1.3% mAP@0.7. In general, the experiment
on the MSCOCO 2014 dataset describes the promoting effect
of the proposedmethod on the Faster R-CNN object detection
network, showing significant performance improvement.

After testing on VOC 2012 andMSCOCO 2014, this paper
carried out model testing on an engineering dataset of dropper
detection. In this part, we chose three different detectors to
conduct comparative experiments, including Faster R-CNN,
RetinaNet and SSD. Considering that the pixel of the OCS
dataset was high and the detection target was small, we used
SSD512 instead of SSD300, which was faster. The experi-
mental performance of different detectors is shown in Table 5.
From Table 5, we learn that Faster R-CNN shows obvious
advantages in test accuracy among the whole experiment,
where resnet101 with BA-FPN and CR loss achieved 86.8%
mAP@0.5 and 83.9% mAP@0.7, respectively, reaching the
optimal performance. ResNet50 combined with BA-FPN and
CR loss also improved compared to ResNet50. RetinaNet
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FIGURE 9. The detection effect of different detectors. Figs (a) are the effect diagrams of SSD512. Figs (b) are the effect diagrams of
RetinaNet. Figs (c) are the effect diagrams of our method.
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performed best on resnet101, reaching 78.8% mAP@0.5 and
72.7% mAP@0.7. Compared with Faster R-CNN and Reti-
naNet, the input size of SSD is 512 × 512. SSD was faster
than other detectors but performed poorly in accuracy, which
only achieved 67.6% mAP@0.5.

To further describe the good performance of the proposed
method in the dropper detection task, we trained differ-
ent detection models on the OCS dataset and tested two
input images from the dataset for performance verification.
Figure 9 shows the detection effect of different detectors.
The visualization results show that the Faster R-CNN with
BA-FPN and CR loss had the best detection effect, signifi-
cantly better than SSD512 and RetinaNet, and slightly better
than that of the unimproved Faster R-CNN. The results also
show the feasibility of the proposed method in the engineer-
ing testing task of droppers.

According to the comprehensive analysis, the OCS dataset
used in this experiment for engineering detection of high-
speed railways belongs to ultra HD images, and the detection
object was too small, which required a more efficient and
detailed object detection network. On the basis of the experi-
mental results in Table 5 and Figure 9, Faster R-CNN shows
great advantages in dropper recognition. On the premise that
real-time detection is not required, Faster R-CNN becomes
the preferred method in this project. BA-FPN and CR loss
also further improved the performance of Faster R-CNN in
dropper detection.

V. CONCLUSION
This paper proposes an improved Faster R-CNN for OCS
dropper detection, including the balanced attention feature
pyramid network (BA-FPN) and center-point rectangle loss
(CR loss). First, we used an integrated semantic feature map
to balance the original features of FPN and designed a mixed
attention module to enhance the effective features by using
an attention mechanism, making feature fusion of different
scales more efficient. Second, CR loss accelerates the conver-
gence of the regression function by optimizing the area of the
rectangle, which is formed by the center points of the ground-
truth box and the predicted anchor box. We carried out exper-
iments on the VOC 2012 and MSCOCO 2014 datasets to
verify the effectiveness of the proposed method and achieved
great performance. In addition, compared with RetinaNet and
SSD, the application experiment on the OCS dataset shows
the effectiveness and feasibility of the proposed method in
dropper detection, which lays a solid foundation for further
dropper fault diagnosis.
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