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ABSTRACT This Paper describes the design procedure of a compact narrowband ceramic loaded filters with
wide out of band response. The idea of loading the waveguide filter resonators with ceramic TEM blocks and
ceramic ridge blocks are presented. Resonator loading with silver plated transverse electromagnetic (TEM)
hole and silver plated ridge ceramic blocks offers wide spurious free bandwidth 2.45 times of center
frequency. Simulated and measured results of six pole chebyshev Ceramic ridge loaded filter and simulated
results of Ceramic TEM loaded filter are presented in this paper showing excellent out-of-band performance.

INDEX TERMS Chebysheyv, ceramic loaded, spurious, out-of-band, and TEM.

I. INTRODUCTION

The increasing flood of data traffic due to wireless devices
initiate the intensive effort to develop more robust and com-
pact cellular infrastructure. Microwave filters are important
and widely used component of cellular base stations. They
are used to isolate the required electromagnetic signals from
undesired and unwanted signals. Coaxial filters are exten-
sively used by mobile base stations due to their high spurious
free stop band, high Q factor and low cost [1]. The dielectric
resonator filters with low loss filters and good in-band and
out-of-band performance also becomes the good candidate
for cellular base stations [2], [3]. Cohn [4] in 1968 introduced
a first ceramic resonator filter having a permittivity of 100 and
loss tangent of 0.0001. The prime disadvantages of these
ceramic filters are their crowded mode chart near the pass-
band that creates a significant challenge for the commercial
base stations filters stop band specifications [5].

Several filter design techniques have been suggested
to increase the stop band rejection of waveguide filters.
Riblet [6] in 1964 gives the idea of higher spurious sup-
pression by using the varying width resonators. In [7],
non-uniform width resonators were used to improve the
stop band rejection of rectangular waveguide filters. The
center frequency of resonator is kept same by only changing
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the length of the resonators. The same idea of different
width resonators in ceramic loaded waveguide filters is also
implemented in [8]. The introduction of capacitive post at
the center of resonator is used to improve the stop band
rejection of air-filled waveguide filter and ceramic loaded
waveguide filters [9], [10]. The same stop band perfor-
mance appeared to be improved by employing the stepped
impedance resonators approach in waveguide and ceramic
loaded waveguide filters [10], [11]. The mixed approach
by employing different techniques together is also used to
enhance the stop band rejection in different waveguide filters.
However, these approaches are used to spread the higher order
resonances to not allow them to contribute significantly near
filter passband [12]-[14].

In this paper, two new design techniques to improve the
stop band rejection of ceramic loaded waveguide filter are
presented. These ceramic loaded filters offer high Q factor but
suffer from the bad spurious performance. The cross-coupled
approach of these ceramic loaded filter is presented in [15].
The use of low pass filter with bandpass filter has been a
traditional way to suppress the unwanted spurious modes.
But, the stringent requirement of size and cost allow us to
integrate the bandpass and low pass filtering function in one
device, which can lead us to a significant size reduction.
We realized that the same idea in these two filter designs
and improved spurious performance is achieved by the use
of ceramic loaded TEM resonator with a blind hole at the
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FIGURE 1. Ceramic loaded TEM and ridge resonator (a) Top view (b) Side
view.

center of a ceramic block and ceramic ridge resonator. These
ceramic blocks with metal coated ridge and blind hole will
enhance the spurious performance by pushing the higher
order resonances upward but at the expense of lower Q factor.
One of the ceramic loaded filter with ridge ceramic block is
fabricated, measured and compared with simulation, showing
very good agreement of filter design.

Il. CERAMIC LOADED RESONATORS

The ceramic loaded resonators are composed of rectangular
ceramic blocks with the metal coated blind hole and ridge at
the center of ceramic block. The top and bottom surfaces of
these ceramic blocks touch the metallic walls of the outer cav-
ity. These ceramic blocks consisted of permittivity of 43 and
their surfaces are metallized using the silver paint having the
conductivity of 2e7. In the TEM ceramic loaded resonator,
most of the current concentration is in the center conductor
where the most of the energy loss is occurred. Therefore, the
high Q factor and miniaturized size can be achieved with the
minimum size ceramic at the center of the resonator [16]. The
resonant mode is slightly distorted version of TE101 in this
ceramic loaded resonator. The Q factor of these resonators
can be improved by increasing the height but at the expense
of higher volume. The ceramic blocks having similar height
ridge and blind hole are used to design two different six order
chebyshev ceramic waveguide filters. The ceramic loaded
ridge resonator and ceramic TEM resonator are shown in the
Figure 1. The electric and magnetic field distributions of the
ceramic loaded ridge resonator and ceramic TEM resonator
are illustrated in the figures 2 and 3.

Ill. CERAMIC LOADED RIDGE RESONATOR FILTER

The six order ceramic loaded ridge resonator filter is designed
with rectangular ceramic block having a ridge at the center
of the each ceramic block. The six order chebysheyv filter is
designed with the following specification.

o Center frequency: 1842 MHz

o Bandwidth: 75 MHz

o Ceramic permittivity: 43

All ceramic blocks in the filter resonators, having a
same height ridge, touch the outer metal cavity from top

109310

(b)

FIGURE 2. Top view and side view of field distributions in ceramic loaded
ridge resonator (a) H-field (b) E-field.
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(b)

FIGURE 3. Top view and side view of field distributions in ceramic TEM
resonator (a) H-field (b) E-field.
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FIGURE 4. Ridge ceramic loaded resonator filter (a) top view (b) side view.
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and bottom. The physical layout of the filter is shown in
the Figure 4. In ceramic loaded resonators, most of the elec-
tric field is concentrated in the ceramic placed at the center of
the resonator while the H field is available around the ceramic
in the resonant cavity. Therefore, the input/output coupling
should be realized via magnetically coupled probes [16].
Metal inductive irises is used to realize the inter-resonator
coupling among the resonators while coaxial cable is used
to perturb the magnetic field around the ceramic block of
external resonators for input/output coupling [15].

The passband response and insertion loss of the ceramic
ridge filter is shown in the figures 5 and 6. The excellent
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FIGURE 5. Passband response of ridge ceramic loaded resonator filter.
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FIGURE 6. Insertion loss of ridge ceramic loaded resonator filter.

stop band performance of the filter is achieved by using
the ridge type ceramic blocks which pushed the higher
frequency upwards. Hence, offered excellent stop band
rejection. The electromagnetic (EM) simulated broadband
response of the filter is shown in the Figure 7. This filter
shown 75 dB rejection upto 4.5 GHz of frequency which is
around 2.45*fo. Tunning screws are also been included for
mitigating the effect of mechanical discrepancies of hard-
ware design. The ceramic ridge resonator filter is fabricated,
measured and compared with the simulated result in next
part.

A. FABRICATION AND MIEASUREMENT

The ridge ceramic loaded resonator filter is fabricated with
ridge ceramic blocks present at the center of each resonator
as shown in the Figure 8. The ceramic ridge blocks were
metallized from top and bottom that touch the outer cavity
from the both ends. It is very difficult to remove the air gaps
between the ceramic blocks and external metal cavity due to
the surface roughness. Therefore, to generate the effective
contact between the top and bottom surfaces of ceramic
blocks with external cavity walls, the ceramic blocks were
silver plated and then soldered to the external cavity lids as
explained in the study [15]. The “LPKF Reflow oven” is
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FIGURE 7. Broadband response of ridge ceramic loaded resonator filter.
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FIGURE 8. Ridge ceramic blocks placed at the center of the each
resonator.

FIGURE 9. Ridge ceramic blocks soldered with bottom lid first using LPKF
reflow oven.

used to solder the ceramic blocks with external cavity walls as
shown in the Figure 9. Tuning screws were added to alleviate
the effect of manufacturing discrepancies. Top and bottom
surfaces of cavity were fabricated in copper to support the
soldering of ceramic blocks while the sidewalls are fabricated
in aluminium. Some unavoidable air gaps remains between
the ceramic blocks and top lid that increases the insertion
loss upto 1.45 dB. It also increases the desired bandwidth
with the return loss of 12.5 dB at the center frequency. The
unloaded Q factor of each resonator is same but the overall
Q factor of the filter is calculated around 19.87. The Top
and side views of the filter are presented in the Figure 10.
The comparison of simulated and measured in-band and out-
of-band responses are given in the figures 11 and 12. The
excellent stop band rejection of 80 dB is achieved through
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132.28 mm

FIGURE 10. Top view and side view of six order ridge ceramic loaded
resonator filter.
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FIGURE 11. Comparison of simulated and measured passband response
of ridge ceramic loaded filter.
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FIGURE 12. Simulated and measured broadband response of ridge
ceramic loaded filter.

the use of metallized ridge ceramic blocks upto 4.5 GHz.
In the future design fabrication, we would try to reduce the
problem of air gaps between outer cavity and ceramic blocks
by screwing them from top and bottom.

IV. CERAMIC LOADED TEM RESONATOR FILTER

The six order ceramic loaded TEM resonator filter is designed
with rectangular ceramic block having a TEM metallized
blind hole at the center of each ceramic block. The six order
chebyshev filter is also designed with the same filter specifi-
cation given above. Each ceramic blocks in the filter touches
the outer metal cavity from top and bottom. The physical
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FIGURE 13. TEM ceramic loaded resonator filter (a) top view (b) side view.
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FIGURE 14. Broadband response of ceramic loaded TEM resonator filter.

TABLE 1. Summarises the details of both the resonators showing
in figure 1. The outer cavity of both the resonators having
the dimension of 20 x 20 x 9 mm3.

Parameter Ceramic Ridge Ceramic = TEM
Resonator Resonator
Q factor 2263 1879
FO (MHz) 1842 1842
F1 (MHz) 4280 4311

layout of the filter is shown in the Figure 13 and ceramic
TEM block is already shown in the Figure 1. As most of the
H field is presented around the ceramic TEM block, there-
fore, the same input/output coupling and metal irises have
been used in this filter [15]. The excellent stop band per-
formance of a filter is achieved by using the TEM type
ceramic blocks in each resonator. The EM simulated broad-
band response of the filter is shown in the Figure 14. The
filter is observed with 75 dB rejection upto 4.5GHz of
frequency. Tunning screws are included for mitigating the
effect of mechanical discrepancies of hardware design as
already presented in the Figure 13. The details of Q factor,
resonant frequency and first spurious frequency of ridge
ceramic resonator and TEM ceramic resonator are given in
the Table 1.

V. CONCLUSION
In this paper, two new design techniques for ceramic loaded
resonator filters are presented with improved stop band
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rejection. Ceramic blocks with metallized hole and metallized
ridge at the center are used to spread the higher order res-
onances of ceramic loaded resonator filters. Ridge ceramic
resonator filter is fabricated and measured that shows the
better agreement with the simulated results. TEM ceramic
resonator filter also exhibits the great out-of-band rejection.
This work will be extended by employing new technique for
reducing air gaps between ceramic blocks and outer cavity in
fabrication of this filter.
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