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ABSTRACT Interactive translation in echocardiography training system refers to the pixel-wise translation
between ultrasound cardiac and theoretical sketch images in the course of hand-on operation. It is capable of
efficiently gaining more insights into clinical ultrasound anatomy. However, major studies on the synthesis
of ultrasound cardiac image primarily discuss the physical model simulation, while studies on cardiac image
segmentation place an emphasis on image processing. Thus, they cannot be easily integrated into one pipeline
for interactive translation. This paper presents an enhanced Cycle-GAN for interactive translation. Perceptual
loss is introduced to enhance the quality of synthetic ultrasound texture, while Cycle-GAN translates between
twomodalities. The proposed method is trained on 300 pair images and tested on 68 pair images. As revealed
from the experiment results, the proposed method is feasible in interactive translation, and it is superior over
Cycle-GAN for ultrasound image synthesis.

INDEX TERMS Echocardiography, generative adversarial network (GAN), interactive translation, computer
vision, medical image analysis.

I. INTRODUCTION
The echocardiography training system refers to a computer-
based novel training machine demonstrating ultrasound car-
diac features interactively. In the past two decades, it has
extensively acted as an efficient method to enhance pro-
fessional skills in clinical assessment [1]. Echocardiog-
raphy training system can help the trainee master left
ventricular structure and function, right ventricular struc-
ture and function, valve function, etc. [2]. For this rea-
son, numerous corresponding training courses have also
been formulated to delve into the significant enhancement
of trainee’s clinical capability in different hands-on opera-
tions [2], [3]. A simple introduction of the training system
here and corresponding courses is presented through the link:
http://www.iechoonline.com/product/tee/.

The interactive translation acts as the underlying function
of the echocardiography training system, illustrating different
images during hand-on operation. Theoretically, it covers
two types of translation, namely, ultrasound image to sketch
image(U2S) and sketch image to ultrasound image(S2U).

The associate editor coordinating the review of this manuscript and

approving it for publication was Kin Fong Lei .

FIGURE 1. Example of interactive translation: U2S translates ultrasound
images into sketch images. This procedure helps the trainee to
comprehend cardiac structure. S2U translates sketch images into
ultrasound images. It helps to reinforce the understanding of ultrasound
characteristics.

However, existing studies on U2S and S2U are different
in principle. Previous S2U is determined by either built-in
data or built-in simulation model [4]. Existing U2S relies
on image segmentation (e.g., level-set [5] and active con-
tour [6]). Such fundamental difference prevents those two
modalities from interactive translation, and even makes it
difficult for real-time interaction.
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Previous S2U consists of three important methods, namely,
interpolative method, generative image-based method, and
generative model-based methods, each of which has its
advantage and drawback.

Interpolative method aims to simulate 2-dimensional
(2D) ultrasound images by interpolation from build-in
3-dimensional (3D) data [7], [8]. Since it is an interpolation
from real data, the ultrasound texture can be highly real-
istic, and the sketch image can be build-in for pixel-wise
correspondence as well. Note that if the user changes
views, no view-dependent effect will be simulated. More-
over, preparing the build-in corresponding sketch data is also
time-consuming.

The generative image-based method is the simulation from
other images (e.g., CT and MR). It simulates wave prop-
agation on 3D volumes of CT or MR [9]. Bürger et al.
manually assigned ultrasound tissue texture to segmented CT
and MR images [10]. Besides, Zhu et al. manually assigned
labels to segmented CT voxels and then textured the 2D
slice exhibiting real ultrasound texture [11]. The mentioned
methods solve the view-dependent simulation, whereas they
are time-consuming for data preparation and propagation
calculation.

The generative model-based method aims to simulate the
ultrasound images according to a physical anatomy model.
Sun and McKenzie built a heart model, sliced a 2D image
from the heart model, and then assigned the 2D image exhibit-
ing ultrasound texture [12]. Köhn et al. developed a math-
ematical heart model based on an MR image to calculate
the ultrasound cardiac images [13]. The mentioned methods
provide more details of cardiac motion. However, their model
requires more verification experiments, and they cannot build
a connection to U2S as well.

Previous U2S primarily focuses on segmentation of spe-
cific region of interest (ROI): endocardial segmentation,
myocardium segmentation, and valve segmentation [14].

The endocardial border exhibits the property that contrasts
around the left ventricle (LV) chamber changes under the
relative orientation between the border and the transducer
direction. Thus, intensity gradient-based methods exhibit
limited performance on endocardial segmentation. Accord-
ingly, alternative methods of active shape model (ASM),
active contours model (ACM), and level set are adopted for
such segmentation. Nikos Paragios et al. employed ASM for
LV segmentation [15]. They considered the time-consistent
ASM to achieve precise segmentation on fifty patients.
G Hamarneh and T Gustavsson built an active shape
model (ASM) and ACM based method to achieve LV endo-
cardial segmentation [16]. Their method exploits ACM to
achieve smooth and connected boundaries while employing
ASM to achieve shapes similar to the given training set. Ning
Lin et al. developed a multi-scale level-set framework for
endocardial segmentation [17]. They assumed that Gaussian
is capable of approximately modeling the intensity distribu-
tion of an ultrasound image at a certain coarse scale. Subse-
quently, they adopted region homogeneity and edge features

in a level set approach to extract boundaries at this coarse
scale. The mentioned methods highly apply to endocardial
segmentation, whereas they may not able to directly transfer
to other ROI segmentations.

In myocardium segmentation, the epicardial features are
represented by low-intensity differences rather than endo-
cardial features for the acoustic density difference between
tissue to tissue and blood to tissue [18]. Boukerroui et al.
employed image enhancement to down-regulate the effect of
attenuation and enhance features before segmentation [19].
Vivek Walimbe et al. introduced a deformable model for
myocardium segmentation [18]. Sarah Leclerc et al. estab-
lished an open access large-scale 2D dataset to delve into this
segmentation with deep learning-based methods [20].

It is challenging to segment the valve since it is rel-
atively small with rapid deformation. Ivana Mikic et al.
presented a segmentation with additional information on
optical flow [21]. ML Siqueira et al. attempted to segment
all the three ROIs together by k-means based algorithm.
However, they achieved limited performance for either of the
regions [22].

This paper proposes an enhanced Cycle-GAN for inter-
active translation in the echocardiography training system.
For U2S, myocardium and valve segmentations are simul-
taneously achieved, and the sector boundary is derived.
For S2U, the sketch image undergoes pixel-wise translation
into an ultrasound image, and additional constraint is given to
ensure the ultrasound texture fidelity. Themajor contributions
of this research include,

• Cycle-GAN is adopted to fuse ultrasound to sketch
(U2S) and sketch to ultrasound (S2U) together for inter-
active translation in one pipeline.

• The Cycle-GAN method is enhanced for S2U by intro-
ducing perceptual loss besides Cycle-GAN loss.

• U2S is adopted to achieve myocardium segmentation,
valve segmentation, and derive the sector boundary
simultaneously. No existing studies have delved into this
task.

The rest sections here are organized as follows. Section II
gives a brief overview of related works. Section III presents
our proposed method. Section IV presents the results of the
proposed method and some discussion toward the results.
Section V discusses how to apply the proposed method to
interactive translation. Section VI draws the conclusion of the
proposed method and further work in the further.

II. RELATED WORK
As suggested in the introduction, the GAN framework is
adopted as a guideline to achieve echocardiography inter-
active translation. Though rare works have been published
on echocardiography interactive translation, there are some
related works on GAN based echocardiography enhance-
ment, as well as the translation of GAN based cardiac cross-
modalities. Thoseworks are related to ours as part of theGAN
based echocardiography studies.
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A. GAN BASED ECHOCARDIOGRAPHY ENHANCEMENT
The quality of acquired ultrasound images varies noticeably
depending on the ultrasound equipment and the operator,
while ultrasound image quality significantly affects the diag-
nosis. In this regard, Zhibin Liao et al. proposed a qual-
ity transfer StarGAN [23]. They prepared four groups of
echocardiography data. A different group of data exhibits
different image quality, ranging from poor to excellent. Sub-
sequently, the StarGAN framework is adopted to transfer the
quality level between different data groups. After training,
a given ultrasound image can be transferred to an arbitrary
image quality level. However, the collection of different qual-
ity level data is delicate and affects the final result profoundly.

Likewise, Deepak Mishra et al. proposed an ultrasound
image enhancement GAN [24]. It can input low-resolution
ultrasound images and output high-resolution ultrasound
images. Besides, adversarial loss and structural loss are com-
bined to train the proposed network and achieve state-of-
the-art performance over existing methods. However, their
image translation is irreversible. The high-resolution images
cannot be translated into low-resolution images, as well as
other modalities.

Mohammad H. Jafari et al. proposed a GAN framework
to translate low quality ultrasound images into high quality
by introducing structure regularization to CycleGAN [25].
Subsequently, the translated high-quality ultrasound image
is adopted for segmentation. Their experiment suggests the
enhancement of segmentation accuracy using ultrasound
image quality.

AHAbdi et al. presented a GAN based generationmodel to
generate high-quality ultrasound images [26]. Their network
inputs an ultrasound image, and a segmentation mask outputs
a novel ultrasound image complying with the structure of the
given segmentation mask. In the training course, the input
ultrasound image acts as a fixed frame. Thus, all of their
generated images are similar to each other. In other word,
the ultrasound texture is generated from a fixed ultrasound
image.

B. GAN BASED CARDIAC CROSS-MODALITIES TRANSLATE
Cardiac radiological images are acquired by different imag-
ing modalities, covering ultrasound imaging, computed
tomography (CT), as well as magnetic resonance imag-
ing (MRI). Those modalities exhibit significantly differ-
ent data distribution. In such case, the sketch image can
also be considered a particular modality acquired manually.
Recently, some cardiac cross-modality researches have been
explored.

Qi Dou et al. proposed an unsupervised cross-modalities
translation between CT images andMRI images [27]. Via the
translation from MRI images to CT images, the segmenta-
tion label of MRI is also translated into that of CT images.
Thus, given MRI segmentation label can be exploited for CT
images. Their work presents a novel cross-modality image
segmentation method.

Ziqi Zhou et al. employed the cross-modality correlated
information to enhance segmentation [28]. First, GAN is
adopted to translate MRI images into CT images and CT
images into MRI images. Subsequently, an attention-based
auto-encoder is applied for segmenting both modalities. The
final segmentation result of each modality outperforms that
of baseline segmentation methods.

Libao Guo et al. developed a dual network GAN for pedi-
atric echocardiography segmentation [29]. A fully connected
network and a U-Net [30] are combined in the generator
for chamber segmentation. The experiment is performed on
four-chamber view echocardiography. Their segmentation
reduces the sonographer’s work intensity in manual segmen-
tation and enhances the reliability of segmentation. All of the
mentioned works solve a specific issue of echocardiography
translation, whereas they remain far from a useful interactive
translation for echocardiography training.

Meanwhile, the related cross-modality image generation
and reconstruction methods also provides ways to solve
the image translation issue. Zhen Zhu et al. proposed a
new generative adversarial network for pose image trans-
fer on condition of target pose key points [31]. Hongfeng
You et al. proposed a feature extraction method that to
reflect the contextual relationships between the pixels [32].
Weiwei Cai et al. proposed a GAN base network to recover
the realistic image content [33]. They are consistent with
the starting point of this article, all to find comprehensive
pixel-level correspondence between modalities.

III. METHODS
In the present section, the enhanced Cycle-GAN is introduced
for echocardiography interactive translation. First, the per-
ceptual loss is explained for S2U. Subsequently, the adver-
sarial and overall loss function is given for training. Lastly,
we illustrate the network structure detail for U2S and S2U in
this paper.

A. PERCEPTUAL LOSS
Theoretically, the ultrasound texture is acquired by con-
volving point-like scatterers in the tissue with the ultra-
sonic impulse response, which is termed as the point-spread
function (PSF) [34]. Subsequently, the PSF is determined
by factors (e.g., probe aperture and ultrasound frequency).
It is therefore suggested that the statistical intensity of ultra-
sound texture can be only approximated, rather than an accu-
rate reconstruction. Given this, either the L1 or L2 loss of
Cycle-GAN is not sufficient for S2U. We need to seek for a
visually realistic constraint for S2U.

Existing super-resolution researches have delved into the
semantic feature-based loss function for maintaining image
details [35]. In the S2U scenario here, the VGG16 based
semantic feature is explored for ultrasound texture synthe-
sis. As shown in figure 2, the overall network adopts a
VGG16 structure [36]. The pre-trained VGG16 is loaded,
and the middle channels of the 8th, 15th, 22th, 28th and
31st layers are presented. The low-level feature contains
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FIGURE 2. Perceptual loss: VGG16 as a guideline to explore the visually
realistic constraint for S2U. As is shown, low-level feature trends to
represent structural information, while high-level feature trends to
extract semantic information.

structural information. Thus, the echocardiography contour
in the 8th, 15th, 22nd layer’s feature map can be recognized.
As the network goes deeper, the feature map tends to repre-
sent semantic information. The 28th and 31st layers’ feature
maps contain more semantic information, so the echocardio-
graphy contour cannot be recognized in those high-level fea-
turemaps. Hence, this paper uses the 28th, 31st layer’s feature
map as the perceptual loss term. The formula is expressed as
follows,

Lperceptual = ‖φ(Iu)− φ(Gu(Is))+‖φ(Iu)− φ(Gu(Gs(Iu)))
(1)

In Eq. 1, φ represents the 28th and 31st layer’s output of
pre-trained VGG16. Iu denotes the ground truth ultrasound
image. Is is the input sketch image. Gu, Gs are the S2U
and U2S networks, as introduced in the subsections below.
The perceptual loss function Lperceptual is to minimize the
semantic difference between translated ultrasound image and
ground truth image and then make the translated ultrasound
image more realistic.

B. FULL OBJECTIVE
The enhanced Cycle-GAN here reinforces the S2U transla-
tion with perceptual loss, suggesting that the U2S and S2U

translations are trained under the Cycle-GAN framework.
Each translation is constraint with GAN loss,

Lu2sGAN = EIs∼pdata(Is)[logDs(Is)]
+EIu∼pdata(Iu)[log(1− Ds(Gs(Iu)))] (2)

Ls2uGAN = EIu∼pdata(Iu)[logDu(Iu)]
+EIs∼pdata(Is)[log(1− Du(Gu(Is)))] (3)

where the Ds and Du are the discriminators of U2S and S2U
networks. The Eq. 5 forces the translated sketch image to
satisfy the real sketch image’s distribution. Moreover, Eq. 3
forces the translated ultrasound image to comply with a real
ultrasound image’s distribution. The complementary cycle
consistency loss is as follows,

Lcyc = EIu∼pdata(Iu){‖Gu(Gs(Iu))− Iu‖1}
+EIs∼pdata(Is){‖Gs(Gu(Is))− Is‖1} (4)

Eq. 4 is the constraint that the reconstructed ultrasound and
sketch images are pixel-wise the same as ground truth. For
U2S, this refers to the segmentation accurate between recon-
structed sketch and input sketch. For S2U, this presents a
supplement of similarity between reconstructed ultrasound
image and an input ultrasound image. Hence, the overall
objective loss of enhanced Cycle-GAN is expressed as:

L = Lu2sGAN + Ls2uGAN + λcycLcyc + λperLperceptual (5)

C. NETWORK ARCHITECTURES
Figure 3 illustrates the framework of our enhance Cycle-
GAN. It covers two parts. Part 1 indicates the overall frame-
work and loss function. Part 2 is the network details in part 1.

The U2S and S2U translation exploit the UNet archi-
tecture, as shown at the top part of part 2. It inputs a
three-channel image and outputs a three-channel image. The
input image size reaches 256 × 256. The first 8 gray blocks
are convolution blocks. Each block covers a convolution
layer, batch normalization layer, as well as a relu layer. The
convolution layer’s kernel size reaches 4, and the stride is 2.
Thus, the bottleneck feature is 1/256 times of the input size.

FIGURE 3. Overview of our proposed Networks: Part 1 is the overall framework, Part 2 is the detail of individual network
blocks. The blue dash line, dash orange line, and dash green line respectively represents the loss function of GAN,
Cycle-consistence, and perceptual constraint. The U2S and S2U blocks in part 1 use 6 kinds of network architecture,
which shows in part 2. The discriminator block, which is marked as D, is also shown with detail layers in part 2.
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The channel size of each layer’s output is illustrated on the
block as well.

The last eight layers of UNet architecture are the de-
convolution layer blocks. Each block covers a de-convolution
layer, a batch normalization layer, as well as a relu layer.
The de-convolution layer’s kernel size is 4, and the stride
is 2. In each of the blocks, the input data is first concate-
nated with a corresponding output from the first eight layers.
Subsequently, a convolution layer is applied to down-sample
its channel into half size. Lastly, a de-convolution block
up-sampling the image size while down-sampling its channel
size. The up-sampling and down-sampling factors are all 2.

The discriminator network shows a cascade structure of
convolution blocks. The 2nd to the fourth block consists of
a convolution layer, a batch normalization layer, as well as a
relu layer. Kernel size is 4× 4 in each convolution layer. The
detailed architecture of discriminator is listed in table 1.

TABLE 1. The detail architecture of discriminator.

IV. EXPERIMENTS
This section presents the experiment result of the proposed
method. We first draw the comparison between ground
truth, the result here, and Cycle-GAN’ result in S2U trans-
lation. Subsequently, we analyze the U2S performance of
the proposed method. The proposed method is achieved
with Pytorch platform. All experiments are performed with
GTX1080 GPU.

A. DATASET
1) OUR DATASET
Our dataset is collected in the hospital as guided by doctors.
The annotations are made by the teamwork of doctors and
art teachers. The dataset consists of exams from 100 patients.
It contains 736 (368 pairs) B-mode transesophageal echocar-
diography (TEE). 600 images (300 pairs) are employed for
training, while the left 136 images (68 pairs) are adopted for
testing. The raw image height and width are 600×800 pixels.
During the training and testing processes, they are random
cropped and resized into 256× 256 pixels.

2) CAMUS DATASET
The CAMUS dataset is an open access echocardiog-
raphy dataset which consists of clinical exams from
500 patients [20]. The training data contains 450 patients,

1800 images. The testing data contains 50 patients,
200 images. The dataset involves a wide variability of acqui-
sition settings. During the training and testing processes,
they are random cropped and resized into 256 × 256 pixels.
To verify our proposed interactive translation, the annota-
tion of myocardium is revised into sketch image with sector
boundaries.

3) DATA AUGMENTATION
The data augmentation is employed before training. The
data augmentation covers random crops, resize and random
flip operation in the horizon and vertical directions, thereby
making our model robust for image scales and local details.
The data is first resized into 280 × 280, and then is random
cropped into 256×256 pixels. Taking into account the factor
of random flip. It provides 24 × 24 × 4 = 2304 times data
scale than the original dataset.

FIGURE 4. Amplified S2U: The second row illustrates the S2U result of
Cycle-GAN, S2U result of ours(the baseline network is UNet), and the
ground truth. The blue block represents the valve part of the ultrasound
image. The red block marks a region of the myocardium. The blue block
marked region is amplified in the first row, while the red block marked
region is amplified in the third row. Our reconstructed texture is more
realistically approximate to the ground truth.

B. SKETCH TO ULTRASOUND TRANSLATION
The experiment here is performed on the introduced dataset.
For S2U translation, the S2U network inputs the sketch image
and outputs the translated ultrasound images. Figure 4 illus-
trates the qualitative comparison between our result and the
advanced method. Representatively, two ROIs are amplified
in the cardiac valve and myocardium.

In the region of the cardiac valve, more texture information
is reconstructed with the proposed method. The benefit of
the texture information results in the translation of differ-
ent tiny structures. The Cycle-GAN based translation ignores
the cardiac valve, while the proposed method maintains the
valve.

In the region of the myocardium, the speckle from
Cycle-GAN trends to blur, while the result here maintains
more realistic textures. Figure 5 presents two groups of S2U
translation. The first column is the input sketch, and the
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FIGURE 5. Qualitative results of S2U(the baseline network is UNet): The first column is the input sketch image.
The second to fourth columns represent translated ultrasound images from Cycle-GAN, our method, and the ground truth.
Our result visually more close to the ground truth.

rest columns represent the results and ground truth. Since
our perceptual loss enriches the texture information of S2U,
the translated myocardium is visually more realistic.

For quantitative analysis of translated ultrasound image
quality, the peak signal to noise ratio (PSNR) and structural
similarity index (SSIM) index are adopted for translated
images. The PSNR acts as a quality measurement between
the translated and ground truth images. The higher the PSNR,
the better the quality of the translated image will be. The
SSIM can measure how similar the translated image and
ground truth are. A higher SSIM indicates the translated
image is more similar to the ground truth.

Table 2 draws a quantitative comparison between our
result and the baseline method’s result. In the testing dataset,
the result here exhibits better performance on both PSNR and
SSIM, and these qualitative and quantitative results indicate
consistent performance. It is therefore verified that the pro-
posed perceptual loss enhances the performance of S2U.

TABLE 2. S2U translation evaluation with index of PSNR and SSIM.

The U2S is vital for the trainee to master cardiac structure.
The experiment here is performed on the testing data. One of
the results is illustrated in figure 6. The first image is an input

FIGURE 6. U2S translation: The middle image is our result. The red
background represents the ground truth of the third image.

ultrasound image, and the second image is our result based
on the comparison of ground truth (the red color overlay
represents the ground truth), and the third image is the ground
truth.

C. ULTRASOUND TO SKETCH TRANSLATION
The contour of the result here approximates to the ground
truth. For the sector boundary, the raw data is blurry with a
low contrast ratio, since there exists no myocardium close to
the boundary. Compared with the ground truth, our inference
is contracted to an inner place. Nevertheless, it remains an
identifiable shape.

For the cardiac regions, the chamber achieves similar seg-
mentation to the ground truth. However, the myocardium
and cardiac valve region remain not as accurate as truth
ground truth. Since the high cost and time-consuming prop-
erty of ground truth labels, this remains a future research
topic.

The segmentation index of the Dice coefficient and Inter-
section over Union (IOU) is adopted to delve into the over-
all translation accuracy. Table 3 lists the statistical results
of U2S. Dice is a statistic adopted to gauge the similarity of
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FIGURE 7. Interactive translation in echocardiography training system: The first two columns illustrate interactive U2S operation, and the last two
columns represent the interactive S2U translation.

TABLE 3. U2S translation evaluation with index of DICE and IOU.

two samples, while IOU gives the ratio between the intersec-
tion and union of two sets. The proposed method presents
acceptable performance results on both Dice and IOU index.

D. ABLATION STUDIES OF BASELINE NETWORKS
To investigate the advantage and limitation of proposed
method on echocardiography translation application, we com-
pare the S2U translation results with different baseline
networks.

As is shown in figure 8 and figure 9. We choose 5 differ-
ent baseline networks, FCN8s [37], Resnet(9 blocks) [38],
PSPNet [39], UNet [30], and DeepV3 [40]. The S2U trans-
lation performance varies with different baseline networks.
Statistically, the FCN8s baseline network achieves the best
result, the DeepV3 baseline network has the worst perfor-
mance. The ultrasound texture is also statistically getting
more realistic with an appropriate baseline network and
perceptual loss function.

In figure 8 and figure 9, the synthetic ultrasound texture
is not exactly the same as the real texture. It is because the

synthetic ultrasound texture is statistically getting from the
training dataset. This means, if we want to synthetic ultra-
sound texture with cardiac disease, the training data should
contain corresponding samples.

V. DISCUSSION
In this paper, the enhanced Cycle-GAN method is discussed
for interactive translation between ultrasound image and
sketch image, whereas no application in the echocardiog-
raphy training system is mentioned above. In the present
section, how we apply the proposed method to interactive
translation is briefly discussed in the following.

Currently, we have developed two functions based on
the proposed method. The figure 7 illustrates the interac-
tive U2S and S2U translations. The first two columns rep-
resent the U2S translation during hands-on operation, and
the last two columns denote the S2U translation for offline
training.

During hands-on operation, automatic U2S can help
trainees accelerate their comprehension. Moreover, one can
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FIGURE 8. Result of different baseline model on our dataset: The first row is the S2U result without perceptual loss. The second row is the S2U result
with perceptual loss.

FIGURE 9. Result of different baseline model on CAMUS dataset: The first row is the S2U result without perceptual loss. The second row is the S2U result
with perceptual loss.

look at the amplified sketch of arbitrary select ROI. During
offline training, the trainee can draw a sketch to present its
corresponding echocardiography.

Our proposed method could only statistically approx-
imate the ground truth in S2U translation. It could not
be able to generate the same ultrasound image as ground
truth. The training dataset determines its synthetic texture.
Despite such restrictions, it enables a useful interactive tool
in echocardiography training applications with considerable
performance.

VI. CONCLUSION
In this paper, an enhanced Cycle-GAN is proposed for inter-
active translation in the echocardiography training system.
The S2U directly reconstructs the ultrasound texture without

estimating the parameters of physical models. The U2S trans-
lates the ultrasound image into a sketch image with additional
inferring of the sector boundary. The PSNR, SSIM, DICE,
IOU are quantitatively analyzed, while visualized interactive
translation is qualitatively analyzed for U2S and S2U. The
presented networks achieve excellent performance as well as
higher PSNR and SSIM than Cycle-GAN.

Moreover, we present additional experiments of U2S on
arbitrary selected ROI and S2U on flexible hand draw-
ing. The results reveal that the proposed interactive transla-
tion method is promising in the echocardiography training
system.

Our subsequent work will be divided into two parts,
namely, how to obtain more accurate segmentation with the
existing dataset, as well as how to enhance the interactive
experience.
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