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ABSTRACT Recently several proposals of blockchain-based solutions for traditional e-commerce appli-
cations have been presented, taking advantage of the fact that blockchain is a technology that offers an
immutable registry of data. Among these proposals we can find solutions for certified notifications, digital
signature of contracts, escrow protocols, fair payments and registered deliveries. In order to execute fair
exchanges, most solutions involve trusted third parties, known as TTP, supervising the exchanges in a way
or another. Until now, two solutions have been presented for Registered electronic Delivery (eDelivery)
services. This service allows a user to prove that he has sent some data to a set of receivers. These protocols
differ in the properties achieved and also in the use of trusted third parties. The first protocol is a blockchain-
based solution without TTP for the eDelivery of non-confidential data. The second protocol allows also
the eDelivery of confidential data. However, this second proposal requires the involvement of a TTP in a
non-mandatory resolution phase. In this paper we present a new protocol that achieves the best properties
of the previous solutions at the same time. The new protocol doesn’t require the involvement of a TTP at
any moment while it allows the eDelivery of confidential data, satisfying the security requirements for this

service.

INDEX TERMS Blockchain, notification, smart contract, confidentiality, fairness, cryptocurrencies.

I. INTRODUCTION

Recently several proposals of blockchain-based solutions for
traditional e-commerce applications have been presented.
They take advantage of the fact that blockchain is a tech-
nology that offers an immutable data registry. Among these
proposals we can find in the literature solutions for cer-
tified notifications, digital signature of contracts, escrow
protocols, fair payments and registered deliveries. In [20]
two blockchain-based approaches for Registered electronic
Delivery (eDelivery) services were presented. This service
provides to the users a sender’s proof of having sent a mes-
sage via an electronic mailing system against an electronic
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verification that the message was delivered or that a delivery
attempt was made (i.e. a non-repudiation of origin evidence
against a non-repudiation of reception evidence).

Registered delivery services are mainly offered by postal
services in many countries and they have different denomina-
tions depending on each service provider. For instance, most
postal services offer a Registered mail service that include the
sending of lettermail, documents and valuables. In the case of
the United State Postal Service (USPS), the service is called
Certified Mail, but it also offers a Registered Mail service that
additionally provides the Chain of custody properties. That
is, the collection of information that provides evidence about
the chronological actions in the delivery service or sequence
of custody, control, transfer, analysis, and disposition of the
delivery. Also, the Registered Mail service of the USPS can
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specify the delivery status or attempted delivery status when
the item reaches its destination.! This way, this kind of ser-
vices provide evidence that a user that acts as a receiver (or
set of receivers) has access to the data since a specific instant.
As trust services, these proposals must offer a high level of
security and protection of the privacy of the users but they also
have to consider the regulations on the subject. Therefore,
distributed ledger, data protection and immutability features
of the blockchain technologies make the blockchain an ideal
tool to offer trust and data trail for new eDelivery solutions.

It is usual that e-commerce users exchange data or items
among them. Registered eDelivery services, together with
other e-commerce services, like electronic purchases and
electronic signature of contracts, require the fair exchange
of those data or items. A fair exchange aims to provide an
equal treatment to all the involved parties. At the end of a
protocol execution, either each party has the item it desires to
obtain from the other involved party, or, if it is not the case,
the exchange has not been performed successfully for any
user, that is, any user has not received the desired element.
In the design of these protocols a method that allows to per-
form the exchanges and assure the security of the exchange
is required.

In order to execute fair exchanges, most solutions include
trusted third parties that manage the exchanges with more or
less involvement. The TTPs are responsible for the resolution
of all the conflicts that can arise among the parties as a result
of a non concluded exchange or a fraud attempt. Current
fair exchange protocols, as [11], [12], [21] involve TTPs in
several degrees, with similar functions to those of a judge
or notary. Nevertheless, the acceptance of TTPs can be an
obstacle to generalize the use of this kind of protocols. First,
it is difficult to have really reliable TTPs for any user and,
in addition to that, we have to take into account that they must
be useful in different scenarios (e.g. electronic documents
generated by TTPs must be accepted to resolve disputes in
courts of law of different countries). Then, TTPs could cause
technical problems (e.g., bottlenecks), reduce the efficiency
of the protocols (e.g., delays in the resolution of conflicts)
and they also increase the execution costs (e.g. high service
rates). Moreover, they are a very sensitive point because the
security of the exchange could be compromised if the TTP
has any vulnerability.

In the protocols presented in [20] for eDelivery services,
the elements to exchange are the data to be delivered along
with non-repudiation of reception and origin proofs. The two
protocols presented in [20] differ in the properties achieved
and also in the use of trusted third parties. The first protocol
is a blockchain-based solution without TTP for the eDelivery
of non-confidential data. The second protocol allows also the
eDelivery of confidential data. However, this second proposal
requires the involvement of a TTP in a non-mandatory reso-
lution phase. Since the publication of [20] no new protocols
for confidential eDelivery without TTP have been proposed.

1 (https://faq.usps.com/s/article/What-is-Registered-Mail#international)
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In this paper we present a new protocol that achieves the
best properties of the previous solutions at the same time,
avoiding the need to choose one property and renounce to
the other. It doesn’t require the involvement of a TTP at
any moment while it allows the eDelivery of confidential
data.

The paper is organized in the following sections. After this
introduction, we review the desired properties of Registered
eDelivery systems and also we present the state of the art on
this topic in Section § II. The contribution of this research
is described in Section § III. Then, the system overview is
depicted in § IV while § V contains the description of the pro-
tocol for blockchain-based multiparty confidential eDelivery.
Section § VI describes the implementation and the Smart
Contracts of the protocol, including the implementation of
the zero knowledge proof. Then an analysis of the protocol
is performed; Section § VII presents the analysis of the ideal
properties for this application while Section § VIII includes
an exhaustive analysis of the performance of the protocol in
terms of both cost. At the last, the conclusions are enumerated
in Section § X.

Il. PROPERTIES AND STATE OF THE ART

Sets of ideal properties related to registered eDelivery ser-
vices can be found in several documents, both from the
technical and the legal point of view. From the legal point
of view, we have evaluated the document [23], that lists the
ideal features of a registered eDelivery service, organized into
security, legal and functional features. These requirements are
related with the data integrity, the delivery of the data by an
identified user, the reception by an identified addressee and
the timestamping of sending and reception. The aforemen-
tioned features have to be taken into consideration to make
a list of properties that should fulfill an eDelivery system.
Moreover, the technical requirements for fair exchange pro-
tocols were stated in [1] and in [24]. Consequently, we have
classified and summarized such ideal properties, since regis-
tered eDelivery service is a special case of a fair exchange
of values. We presented the ideal properties of a registered
eDelivery system in [20]. The most important properties, that
will be used in this paper are:

1) Effectiveness. If the parties behave correctly, they will
receive the expected items.

2) Fairness. After completion of a protocol execution,
either each party has received the expected item or
neither party has received any useful information about
the other’s element.

3) Timeliness. At any time, during a protocol execution,
each party can unilaterally choose to terminate the
protocol without losing fairness. In addition to that,
a protocol can achieve Weak Timeliness if any honest
party can be sure that any protocol execution will be
concluded at a certain finite point in time. That is,
the state of the exchange will be final from the party’s
perspective at this completion point.
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4) Non-repudiation. If an element has been sent from
party A to party B, A cannot deny the origin of the
element and B cannot deny receipt of the element.

5) Confidentiality. Only the sender and the receiver of
the data know the contents of the registered message.

6) Efficiency. An efficient protocol uses the minimum
number of steps that allows the effective exchange or
the minimum cost.

7) Transferability of evidence. The proofs generated by
the system can be transferred to external entities to
prove the result of the exchange.

Since the protocol proposed in this paper does not require
a TTP, the properties related with the behavior of the TTP
(transparency, verifiability,...) are not included.

As it is stated in [20], eDelivery follows the pattern of
fair exchange of values. This kind of exchange does not
have a definitive and standardized solution in its electronic
version. The notification of a message can be done using
electronic mail and, until now, several proposals have been
presented for this service. However, it is not required that
the eDelivery uses electronic mail. It includes an exchange
of elements between the sender and one or several receivers
in the multiparty case; the sender has to send a message to
the receiver or set of receivers, then the receivers are able to
read it and, in exchange, the receivers have to send a proof of
reception to the sender. To overcome reluctance between the
parties and to assure fairness, almost all the existing proposals
use a TTP. This trusted third party can play and important
role, participating in each exchange, or a more relaxed role in
which the TTP is only active in case a dispute arises between
the parties (optimistic protocols) [1].

Previous studies on fairness using blockchain [6], [10]
focus on exchanges including payment, fair purchase oper-
ations between a product (or a receipt) in exchange for
cryptocurrencies (usually bitcoin). Reference [15] uses, for
the first time, a smart contract for the resolution of a fair
purchase operation. In [3] Delgado-Segura er al. propose
a protocol based on Bitcoin scripting language for a fair
exchange between payment and data.

In [9], Hasan et al. propose a non-repudiation protocol
using the blockchain technology and the Ethereum smart con-
tracts. Exposito et al. in [29] describe a possible blockchain
notification system for mobile apps. The system is applied to
event-based subscriptions supported by a blockchain infras-
tructure deployed as a cloud service, however the concision
of the proposed system is not clear and no smart contracts are
proposed to secure the messaging scheme. Also, Zupan et al.
in [30] propose a notification system based on smart con-
tracts deployed on a blockchain using Hyperledger Fabric.
Although the system provides authentication via certificates
issued by Fabric’s CA, this scheme does not provide neither
a fair exchange scheme of delivery notifications nor proof of
reception of the issued information.

We have published [16], [19], [20] several works focusing
on the incorporation of blockchain in certified notification
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protocols and a paper proposing a blockchain-based protocol
for contract signing operations [17]. As far as we know, there
are no other works that deal with blockchain-based regis-
tered eDelivery services using smart contracts. Reference
[16] presents two proposals, one of them enables a non-
confidential fair exchange of a notification message for a
non-repudiation of reception token with no involvement of
any TTP. The second one allows a confidential fair exchange
of a notification for a non-repudiation of reception token. The
other one has the optimistic involvement of a stateless TTP.
Moreover, in [19] we introduced the use of reusable smart
contracts for several notifications. A multiparty eDelivery
[18] allows a sender to send, in an efficient way, a message
to multiple receivers. [20] proposes a multiparty protocol for
non-confidential notification with no involvement of any TTP
and a multiparty protocol that has the optimistic involvement
of a stateless TTP.

Ill. CONTRIBUTION
A. BRIEF REVIEW OF PREVIOUS PROPOSALS
In [20], two protocols were presented. Each one of them
satisfied interesting requirements. While the first proposal
allowed the complete execution of the delivery or notifica-
tion operation without the implication of any trusted third
party for non-confidential eDeliveries, the second proposal
allowed confidential eDeliveries thanks to the possible use of
a trusted third party. Thus, to send a notification, users first
had to select if they would like to send a secret or a public
notification. In both cases, sender and receivers run a three-
step exchange to transmit the content of a eDelivery together
with non-repudiation evidence.

We can summarize the protocols as follows:

o First step: the sender presents a new eDelivery and
submits it in a hidden mode to all recipients. Some
parameters are incorporated in this step to guarantee the
fairness property of the exchange, related to the content
of the eDelivery and the non-repudiation evidence.

« Second step: Every recipient is able to decide whether he
wants to receive or not the eDelivery. The ones who had
accepted the message have to issue a non-repudiation of
reception evidence.

o Third step: the sender is able to finish the protocol pro-
viding a way to get the plain content of the eDelivery and
the non-repudiation of origin evidence for all recipients
who had accepted the notification.

The execution of three-step protocol in the confidential
scheme was off-chain, since sender and recipients exchanged
messages directly. Only, in case of problems, to assure
the security properties, the sender was able to cancel the
exchange using a smart contract deployed specifically for this
issue. Also, if receivers could not successfully conclude the
exchange, they were able contact with the TTP that will check
the status of the eDelivery with the assistance of the smart
contract and, depending on the result, it will issue alterna-
tive evidence to guarantee fairness. Therefore, an additional

106857



IEEE Access

M. Mut-Puigserver et al.: Removing the TTP in a Confidential Multiparty Registered eDelivery Protocol Using Blockchain

RECIPIENTS - B,

Lo,

l FINISH REQUEST

A

FINISH G/\

FIGURE 1. Interaction among the actors in the Confidential Protocol with
TTP.

SENDER - A

a
-]

BLOCKCHAIN

OFF-CHAIN 3-STEPS
OPTIMISTIC NOTIFICATION

conflict resolution protocol was specified between recipients
and TTP to solve the exception cases. The actions of the TTP
were recorded on the blockchain by means of the smart con-
tract (the interaction of the confidential protocol is depicted
in Figure 1).

Whereas, in the non-confidential eDelivery protocol, all
users execute the three-step procedure on-chain, they call the
smart contract functions to perform and provide evidence of
each action.

B. NEW PROPOSAL

This new proposal achieves the fulfillment of the best part of
each one of the previous protocols in a single protocol. This
way, the protocol allows the delivery of confidential data
without the need of trusted third parties.

In order to achieve confidentiality in an exchange that is
publicly managed by a smart contract and, as a method for the
improvement of the previous proposal, we have determined
that the protocol has the following requirements:

o The delivered data must be encrypted until the accepta-
tion by the receiver, when the non-repudiation of recep-
tion proof is provided by the receiver.

o The smart contract cannot access the key required to
decrypt the delivered data. The key cannot be included
in clear in a transaction.

o The smart contract must assure that the receivers will be
able to decrypt the data after acceptation of the delivery.

« Since the protocol is multiparty, the smart contract must
assure that all the receivers decrypt the same data.

These requirements must be achieved together with
the requirements to obtain fairness and the other desired
properties.

Next, we present the protocol, the description of the crypto-
graphic operations used in it and the implemented application
with the smart contracts. The new protocol will be analyzed
both in terms of performance and security.

IV. SYSTEM OVERVIEW

In this proposal, confidentiality is required. The solution
provides fairness to the exchange of elements: message and
non-repudiation proofs even when the smart contract does not
know the content of the delivered data and the plain message
is not registered on the blockchain. The sender, A, executes
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the first step of the protocol by means of the DApp in order to
register the encrypted data on the blockchain. The encryption
has to guarantee that only the receivers can get access to the
content of the notification. Moreover, due to the nature of the
multiparty notification service, this step has to be designed
in a way that the smart contract execute a verification to
assure that the message that each receiver can decrypt has
the same content. To execute this step, all users have to
generate a pair of keys, which will be called Notification Keys.
The receivers, members of B, have to accept the notification
by means of a transaction. The transaction is stored in the
blockchain. Finally, A will execute a new transaction finishing
the exchange in the third step of the protocol.

The cryptographic algorithms used in the design of the

protocol are:

o ElGamal Encryption. The encryption and decryption
processes are performed off-chain.

o Schnorr Zero-Knowledge proofs (ZKP). The verifica-
tion of the ZKP is performed on-chain by the smart
contract. The description of the solidity implementation
of the ZKP is included in this paper.

The ZKP proof is introduced in the protocol to check
whether all receivers are able to decrypt the same notification
content or not and, at the same time, the scheme is pre-
serving the confidentiality of the delivered data. In this way,
the sender commits to send a key to all the receivers during the
creation of a new eDelivery. This key will allow each receiver,
who has accepted the message, to open its content. Thus,
the key, instead of being published, is encrypted with every
secret shared notification key that it is only known by each
receiver and the sender. The ZKP introduced in the protocol
allows the smart contract to check that the key to open the
message is the same for all the receivers without knowing
the bit string of the key. Therefore, the protocol preserves the
confidentiality between sender and receiver and, at the same
time, it can publicly verify that each receiver has access to the
same content.

V. CONFIDENTIAL BLOCKCHAIN-BASED MULTIPARTY
REGISTERED eDelivery PROTOCOL WITHOUT TTP

A. CRYPTOGRAPHIC BACKGROUND AND NOTATION
Proper parameters should be published prior to the use of the
protocol. Also, users have to be able to check the correctness
of these domain parameters. The appropriate operational con-
ditions, before starting with the Creation phase of the protocol
as it is described in next section, are the following:

o Two large primes have to be published: p and g with
qlp — 1 (g is a primer large factor of (p — 1))

o The operations will be made in GF (p) and in Gg. Where
Ggq denotes the subgroup of the multiplicative group of
GF(p), of prime order g

o Let g be a generator for the subgroup Gg, such that 1 <
§<p

« Random numbers r and s are uniformly chosen between
Oand(p — 1)
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TABLE 1. Notation for the blockchain-based Registered eDelivery

SENDER BLOCKCHAIN RECIPIENTs - B;

protocol.
‘ Notation QT ¢ %
A Sender. ® [ smaRT
B Set of receivers. : E/ °
B; is used for a single receiver. > - @
B Set of receivers that have accepted
the delivery « ’
M Message, content of the eDelivery. R R
MTj] Fragment of the message. M @ M
X, Y Concatenation of messages X and Y. < .
Uwe.f Execution of function f of e by user U. Decrypt
termi Timeout for B; to accept the eDelivery. ’W‘ >| Notification
termso Timeout for A to finish the exchange. . 2 .
D Deposit sent to the Smart Contract (ethers). ‘ IF Decryption in Phase 3 is not available: ‘
T A A’s notification private key.
YA A’s notification public key. « @
TRB; B;’s notification secret shared key.
YBi B;’s notification public key. e
9,0.4,9 System parameters.

T

Encryption secret nonce used by A.

s Encryption nonce used by B.
Ci=g First part of EIGamal encryption
of the data to deliver.

Second part of ElIGamal encryption
of the data to deliver.

T
modp

Ca[j] = M[j] XOR key

key = Encryption key
random.seed(hash(r))

h() Hash Function

challenge Challenge sent by B to A
w Response to the challenge.

First part of the encryption of the receiver
notification secret key

Second part of the encryption of the receiver
notification secret key

Zi1=g° modp

Zi2=TBi * Y £ modp

o Private keys x; are randomly (or pseudorandomly) gen-
erated from [0, g — 1]

« Public keys are created as: y; = g“modp

o Fragments of the message M[j] to be encrypted are in
the range 0 < M|[j] <p

The notation used in the description of the protocol is
included in Table 1.

B. PHASES OF THE PROTOCOL

The exchange protocol that assures the fairness of the
exchange and fulfill the confidentiality requirements listed in
§ IIT includes three phases. These phases are called Creation,
Acceptation and Finalization. A fourth phase, Cancellation,
is optional. There is also a Verification process to check the
status of the exchange. The main flow of the protocol in
depicted in Figure 2. In this Figure, the three actors are rep-
resented at top (Sender, Blockchain and Receivers) and, as it
is illustrated in the outline, all phases are executed on-chain.
Before the deadline term;, there are depicted the phase 1
(Creation), which is executed by the sender, and the phase 2
(Accept) executed by all the receivers who agree to get the
notification. In the Figure, between the two red lines, which
represents the deadlines ferm; and fermy, there is the Finish
phase that is performed by the sender for each particular
receiver and, at the end of this phase, the receiver is able to
decrypt the notification content. If the decryption has not been
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FIGURE 2. Overview of the protocol’s phases.

successful, there is an optional phase (Cancellation) that can
be executed by any receiver to conclude the notification in a
fair way. The phases are described in this section.

1) Creation Subprotocol 1. A encrypts the message M
in cypher text C using a variant of ElGamal encryp-
tion and the Discrete Logarithm Integrated Encryption
Scheme (DLIES).2 To do this, the sender A uses a secret
encryption element r to generate the final key to encrypt
the message M using an XOR cypher operation. If it
is necessary, the message can be fragmented in M|j]
and, thus, the result of the encryption will be the C»|j]
fragments. Then, C; represents the bit commitment
with secret encryption element r that will be used by the
Smart Contract during the Finish phase to verify that all
receivers have access to the same » and, therefore they
can decrypt the same content of the eDelivery.

2Encryption method standardized in ANSI X9.63, IEEE 1363a, and
ISO/IEC 18033-2

Subprotocol 1 Step 1. Creation

1.A:
Generation of M, r, ya = g% i
key = random.seed(hash(r))
Encryption of M.
If required, fragmentation of M in blocks: Mj]
G = g;mdp
FOR j = 1TO M .length
Cs[j]1 = M[j] XOR key
key = random.seed(hash(key))
2. A » SM .creation(A, B, C1, Cy, termy, termy,

ya, &, D, 4, D)

3.5M :
State; = Created , Vi
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2)

To generate a new eDelivery, sender A has his own
pair of notification keys created specifically for this
exchange, (x4, ya). Next, A creates a new instance of a
smart contract to manage the new notification delivery
by invoking the factory constructor function provided
by the service provider, including the following param-
eters: the encrypted message {C1, C3}, the public noti-
fication key y4, the addresses of the proposed receivers
(the set B) and the deadlines ferm; and term;. The first
one (termy) is the deadline for each receiver to accept
the delivery. The second deadline (term;) specifies the
valid period for the sender to finish the exchange. Also
termy designates the moment since when the receivers
will be able to have evidence of origin and the plain
message or, if the protocol run has not finished suc-
cessfully, they can obtain evidence of the cancellation
of the process that has not been properly completed
by the sender. At this point, we want to highlight the
purpose of the parameter C: the parameter represents
the bit commitment of sender A with the encryption
secret key r, in such a way that by making public this
parameter (Cp) the smart contract can publicly verify
that the sender is sending the same key to all recipient
and, the key is the one that A is being committed to
send once C; has been made public. We will see how,
in our protocol, A sends r in an encrypted envelope
created with a shared secret key between each receiver
and the sender. These shared keys are created by each
recipient and they are confidentially sent to the sender
in the Accept phase. Then, at the Finish phase, the smart
contract will check that C; contains the right key r
using the Schnorr ZKP primitive without the need to
know r.

A payment for the service or a deposit D can be
included in this stage. Even if fairness is assured in
any case, in order to avoid dishonest behavior and fraud
attempts, the protocol includes a penalty mechanism to
avoid that this behavior can cause bother to other users,
in terms of delay or differences on the distribution
of execution costs. For this reason we have included
in this phase of the protocol a deposit with the aim
to encourage the sender to conclude the exchange in
the expected way, that is, following the phases of the
protocol. As it will be explained in the Finish phase the
deposit D will be returned to the sender if he finishes
the exchange according to the protocol.

Accept Subprotocol 2. In this multiparty scenario, each
receiver can decide individually whether to accept the
delivery or not, by executing the corresponding func-
tion of the smart contract before the deadline ferm;. If a
receiver accepts the delivery, he executes a function of
the smart contract expressing his will. If the receiver
B; does not accept before term, a rejection is assumed
(State; = Rejected), otherwise the delivery has been
accepted by the receiver B; (State; = Accepted). Since
A has to allow the access to the delivered contents to

106860

Subprotocol 2 Step 2. Accept

l.B,'Z

. XB:
generation of the parameters: yg, = g, ° dp Si
oS o i
Z’I - gmodp’ ZlZ = XB; * yAmodp

2. B; » SM .accept(Z;,, Z;,, yB;, challenge;)
3. SM:

IF(now < term1) AND (Id == B;) AND
(State; == Created)

State; = Accepted

Add B;to B

3)

those members of B that have accepted the delivery
while keeping it confidential for the rest of the world,
the plain message cannot be included in a transac-
tion nor stored in the blockchain. Thus, the sender A
must generate the necessary elements to confidentially
deliver the key to decipher the message, (that is, send-
ing the key that has been committed to send at the
Creation phase, C1). The smart contract must ensure
that all the receivers that have accepted the delivery
can access the same message. In order to achieve this
goal, each receiver B; generates its own pair of shared
notification keys xp;, ypi. This pair of keys are called
shared because they will be shared between a partic-
ular recipient and the sender. While xp; is the private
key because it is only known by the recipient and the
sender, yp; is the public key because everybody can
know it. This public shared notification key will be
used in the next phase (Finish) by the smart contract
to check whether all receivers are able to decrypt the
same message and, thus, they can read the same noti-
fication content. Accordingly, B; generates parameters
{Z;,, Z;, } that will allow sender A to get the shared key
xp; as we will see at the Finish phase. The calling to
the function accept() also includes the parameters yp;
and challenge;. The latter is a uniformly random chosen
challenge that the sender should appropriately respond
in conjunction with the secret encryption element r.
The response will be used by the smart contract to
verify that every recipient receives the same key r at
the Finish phase. Note that, in spite of being able to
verify the correctness of the secret r, the smart contract
will not be able to know the secret r thanks to the use
of the ZKP primitive.

Since each receiver is free to accept the eDelivery or
not, he can’t be punished if he does not accept the
eDelivery. For this reason no penalty mechanism has
been included in this phase of the protocol.

Finish Subprotocol 3. Finally, before the deadline
termy, A can finish the delivery process for those B;
who have accepted the notification, executing the fin-
ish() function of the smart contract.

The sender A generates for each receiver in B/, that is,
receivers that have accepted the delivery, a response to
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Subprotocol 3 Step 3. Finish

1.A:

-1
(7. % .
ABi = (Z’ ) * ZlZmodp
generation of w; = r + challenge; * XBiyyoqq

2. A » SM.finish(w;)
3. SM:

IF (Id == A) AND ((term; < now < termp) OR
((B' == B) AND (now < term?2))
FOR (VB; € B))
IF (gw" __ gr % yg;allenge,-
State; = Finished
FOR (VB; ¢ B))
State; = Rejected
Deposit D is refunded to A

modp)

4.B,’Z

r = w; — challenge;*xp; modq
key = random.seed(hash(r))
FOR;j=1TOn

M{[j] = C3[j] XOR key

key = random.seed(hash(key))

the challenge in the form of a ZKP using the secret
element r used in the encryption of the message in
the first step of the protocol, the challenge provided
in phase 2 and B;’s secret shared notification key, xp;.
Note that, although the secret shared notification key,
xpi, was created by B;, B; has sent the secret shared
key to A, encrypted with A’s public key using ElGamal
cryptosystem, resulting in {Z;,, Z;, }. This way, A can
obtain the secret shared notification key for each B;
using its private key: (Zile)_l * Zj, = Xpi.

The Smart Contract will store the parameters. With
this response, the Smart Contract can verify, by means
of the stored data, that each receiver B; in B’ will be
able to know the secret element r in order to deci-
pher the message. However, the Smart Contract will
not know this element and therefore the message will
remain confidential. Thus, the ZKP allows the Smart
Contract to verify the commitment with the secret key
r that did A in the Creation phase of the eDelivery,
in such a way that A can proof to the Smart Con-
tract that he is sending the proper secret element r
to each receiver without disclosing its value, because
his response w; to the challenge sent by any receiver
challenge; is coherent with the committed value of
the secret key, publicly expressed in C;. Therefore,
if gWi==g" *y;};allengeimo 4, holds, then the Smart
Contract can be sure that the receiver is able to get
access to the right key and the state of the eDelivery
for this receiver will be Finished.

In the last step of this phase, receivers can isolate r from
w due to knowledge of xp; and challenge and, then, they
will be able read the content of the message.
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4)

At this point, if the sender has executed Finish in the
right period of time, and if the verification performed
by the smart contract stands, since the sender A has
followed the protocol, the smart contract returns the
amount D, deposited in the creation phase, to the
sender A. With this procedure, the protocol wants to
avoid a misbehavior from A. If at term2 Finish has
not been executed satisfactorily, then the deposit D
will not be returned. As it will be explained in phase
Cancel, in this situation, a receiver that has accepted
the eDelivery can execute Cancel and the exchange
will remain in a fair situation. However, this has to
be executed after term2 and it is the receiver who has
to execute the function in the smart contract, caus-
ing delay and a different distribution of the execution
costs. It has to be said that if no receiver accepts the
eDelivery then the deposit D is also returned to the
sender.

Finally, after rerm2, each receiver in B’ (receivers that
have accepted the delivery) can access the message
through the WEB3 or similar interface or, in the event
that the issuer has not successfully completed the proto-
col, the receivers will have access to the corresponding
cancellation evidence.

Cancellation Subprotocol 4. Cancellation of accep-
tance. This step is optional and it will be executed
by any receiver B;, if the sender A does not finish
the exchange providing the decryption key when the
receiver has accepted the contract.

If a receiver tries to cheat executing Cancel when the
state is not Accepted (then it is finished), the pro-
tocol will not change the state, maintaining fairness.
However, the dishonest behavior of this receiver can
be punished including him in a blacklist of dishonest
users.

Subprotocol 4 Cancellation of Acceptance

1. B; » SM.cancel()
2. SM:

IF(now >= term2, Id == B; AND
State; == Accepted)
State; = Cancelled

5)

Verification The verification process can be carried out
by both the sender A and any receiver B;, as well as
any third party involved. In this verification process
the status of each receiver can be checked, with the
getState function, as well as any variables involved in
the exchange, as they are public in the smart contract,
except the message M, which for reasons of confiden-
tiality, is encrypted.

In addition, as the verification of the ZKP is performed
on-chain, in the Finish function, we can assure that
the state of any receiver B; is checked by the contract
itself.
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VI. SMART CONTRACT

The protocol presented in Section § V has been implemented
to prove its viability and also to check the execution costs. For
this implementation we have used the Ethereum blockchain.
This will offer us more functionalities than conventional
blockchains such as Bitcoin, using programs called Smart
Contracts, which allow us to program on a distributed Tur-
ing complete machine, developed in Solidity language, and
to store system state changes. Ethereum will use Ether, its
cryptocurrency, to meter and limit the costs of resources used
to execute the code. This section includes the development
procedure and the description of the smart contracts.

In this protocol, a Smart Contract is used to manage the
distribution of a confidential message from a sender A to
several recipients (all recipients are the members of a set
called B), and to exchange non-repudiation of origin evidence
against non-repudiation of reception evidence.

To do this, we need some data structures to keep the group
of recipients, thus an array is declared to keep their addresses.
Also, a mapping structure has been declared to keep track
of the state of each exchange for every recipient, and the
variables z1, z2, yb, ¢ and w (that correspond to the elements
Zi1, Zip, YBi, challenge; and w; according to the notation of
the protocol) of the implementation of the ZKP, for each
recipient. This mapping allows us to maintain the cast and the
time for searching the information from a receiver as constant
values. On the other hand, the array lets us to iterate though
all the addresses of the receivers.

In addition to that, two variables (terml and term2) are
also declared in the smart contract to store the correspondent
deadlines and, also, an additional variable (sender) to save the
sender’s address. We have defined the variable called start to
set the current time when a delivery is created, and the dead-
lines terml and term?2 are set from this value. A new variable
acceptedReceivers is used to count the amount of recipients
that have accepted the delivery. This way, the sender can fin-
ish the delivery of the data and he does not need to wait until
terml. Thanks to the acceptedReceivers variable, the smart
contract does not have to verify the state of the exchange from
all the receivers, thus we are avoiding an expensive operation
in terms of gas consumption thanks to this variable.

We also need to store all the general variables of the zero
knowledge proof (ZKP): cl, c2, ya, g, g and p (C1, C2, y4, &,
g and p). All data structures are written down in Listing 1.

The following variables are initialized when a new instance
of the Smart Contract is created: first an array of recipients
is initialized with the values sent by the sender, and next the
delivery’s state for each recipient is set to created. We will
also store the timeouts and all the general variables for the
ZKP and the sender makes a deposit in Ethers.

The Accept function verifies that the user who has called
the function (i.e. msg.sender) has the address in the recipients
mapping (see Listing 2), and the correspondent delivery state
is created. Then, the function also verifies that term/ deadline
has not been overtaken. The delivery state of the recipient will
be updated to accepted if all verifications are fulfilled, and
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enum State {notexists, created, cancelled,
accepted , finished , rejected }

struct ReceiverState {
bytes zl;
bytes z2;
bytes yb;
bytes c;
bytes w;
State state;

}

address public sender;

address [] public receivers;

mapping (address => ReceiverState)
public receiversState;

uint acceptedReceivers;

bytes public cl;
bytes public c2;
bytes public ya;
bytes public g;
bytes public p;
bytes public q;

uint public terml;
uint public term2;
uint public start;

Listing 1. Data structures.

function accept(bytes _zl, bytes _z2, bytes _yb,
bytes _c) public {
require (now < start+terml, "The_timeout_terml
has_been _reached");
require (
receiversState [msg.sender]. state==State .
created ,
"Only,_receivers_with_’created’ state_can_
accept");
acceptedReceivers = acceptedReceivers+1;
receiversState [msg.sender].zl = _zl;
receiversState [msg.sender].z2 = _z2;
receiversState [msg.sender].yb = _yb;
receiversState [msg.sender].c = _c;
receiversState [msg.sender ]. state=State .accepted;
}

S

Listing 2. Accept function.

all variables for the ZKP who depends on each receiver are
stored for that particular receiver.

The Finish function is depicted in Listing 3. This function
fist verifies that the current time is greater than terml or
whether all recipient have accepted the exchange or not. So as
to carry on with the function, it is also necessary to check
that the user who has invoked the function is the sender of the
eDelivery. Finally, the function also checks that the w variable
fulfills the equality g¥mod p = (cl * (yp mod p))mod p,
using the solutions explained in § VI-B. Then, if all of these
verifications are met, the delivery states of all the recipients
that have been accepted are updated to finished. Also, for
the recipients which state is created, the state is changed to
rejected, and the sender will be refunded.

Lastly, we have depicted the Cancel function in Listing 4.
This function first verifies that the current time is greater
than the deadline ferm2 and that the caller of the function
is one of the recipients whose delivery state is accepted.
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function finish (address _receiver,
public {
require ((now >= start+terml) ||
(acceptedReceivers >=receivers .length),
"The_timeout_terml_has_not_been_reached,
and_not_all_receivers_have_been_accepted _the
delivery");
require (msg.sender==sender, "Only_sender_of_the
_delivery_can_finish");

bytes _w)

bytes memory check_l=bignumber_modexp(g, _w, p);
bytes memory check_2=bignumber_modmul( cl,
bignumber_modexp(receiversState [ _receiver ].
yb,
receiversState[ _receiver].c, p), p);
require (bignumber_equals(check_1, check_2),
"(g"w_mod,_p)_,and_(((g"r_mod_p) (ybc_mod_p
))_mod_p), are_not_equals");
sender. transfer (this.balance);
for (uint i = 0; i<receivers.length; i++) {
receiversState [receivers[i]].w = _w;
if (receiversState[receivers[i]]. state ==
State .accepted) {
receiversState [receivers[i]]. state =
State . finished;
} else if (receiversState[receivers[i]]. state
State .created) {
receiversState [receivers[i]]. state =
State .rejected;
}
}

}
\S )

Listing 3. Finish function.

function cancel() public {
require (now >= start+term2 ,
"The_,timeout _term2_has_not _been_reached");
require (receiversState [msg.sender ]. state==State .

accepted ,
"Only_receivers _with _’accepted’ state _can_
cancel");
receiversState [msg.sender]. state = State.

cancelled;

Listing 4. Cancel function.

If these conditions are met, then the smart contract updates
the receiver’s delivery state to cancelled.

A. FACTORY CONTRACT

We have also used the well-known factory method program-
ming pattern in order to generate new instances of a smart
contract to manage each new registered eDelivery. We have
created the Factory Contract that generates and deploys new
contracts for this purpose, the use of this pattern will achieve
the following advantages:

o The code used to generate and manage a new registered
eDelivery will be reusable.

o The factory also works as a storage of the addresses of
the child contracts, the eDeliveries.

o We can easily access all the eDeliveries that we have
made using this service thanks to this new address stor-
age inside the factory contract.
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o The provider of the central service only has to pay for
the deployment of the factory contract.

« Each user who wants to send a new eDelivery has to pay
for the creation of a new instance. We have analyzed
the deployment costs in Section § VIII. According to
this pattern, the factory contract is in charge of the
deployment of new instances to manage a new eDelivery
and it will keep the address of this new deployed contract
in an inner data structure.

B. ZKP IN SOLIDITY

Implementing the ZKP in solidity is challenging due to the
use of big numbers. An inefficient implementation would
result in high execution costs in terms of gas.

The most important problem found to implement the zero
knowledge proof in Solidity is that we need to operate with
numbers of minimum 256 bits, and there is an operation that
checks an equality, g¥'mod p = (c1 * (y© mod p))mod p, that
needs more bits to operate.

The solution found consists of using the bytes data type,
that can hold a sequence of bytes of any size, instead of
using the uint data type, that can hold unsigned integers of
maximum 256 bits. If we use this data type in the parameters
of the functions and to store values, we can use this Smart
Contracts with numbers of any size, like 256, 512, 1024 or
2048 bits.

Then, we have also used the Big Number Library for
Solidity 3 to operate with this numbers. First of all we convert
the bytes values to BigNumber values, and then we perform
the equals(), modmul() and modexp() functions using this
type (see Listing 5).

VII. EVALUATION OF PROPERTIES

Now, this section presents a survey and a security discussion
of the desired properties for registered eDelivery schemes that
were enumerated in Section II.

Regarding the security properties defined in Section II,
we have removed the efficiency property because it will be
evaluated separately, in Section VIII, where the results and a
set of experiments to evaluate the performance of the protocol
are presented. We also have grouped together the properties of
fairness and evidence transferability for discussion purposes.

1) Effectiveness. The system for registered eDelivery pre-
sented in this paper is effective. So, all parties will
receive the expected items in case of behaving accord-
ing to protocol.

To create a new eDelivery, the sender generates a new
instance of the smart contract to execute the functions
following the specifications of the protocol. If all the
parties execute all the functions correctly (Accept() and
Finish() functions), they will have the items that they
expected to receive. This can easily be deduced from
the solidity code depicted in Section § VI. At the end
of the exchange, the receivers that have followed the

3 (https://github.com/zcoinoftficial/solidity-BigNumber/)
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}

}

function bignumber_equals(bytes _a, bytes _b)

function bignumber_modmul(bytes _a, bytes _b,

function bignumber_modexp(bytes _b, bytes _e,

internal view returns (bool) {
BigNumber. instance memory a;
BigNumber. instance memory b;

a.val = _a;

a.bitlen = BigNumber. get_bit_length(_a);
a.neg = false;

b.val = _b;

b.bitlen = BigNumber. get_bit_length(_b);
b.neg = false;

// BigNumber.cmp() returns —I on a<b, 0 on a==b,
// 1 on a>b
return BigNumber.cmp(a, b, false)==0;

bytes _m) internal view returns (bytes) {
BigNumber. instance memory a;
BigNumber. instance memory b;
BigNumber. instance memory m;

a.val = _a;

a.bitlen = BigNumber. get_bit_length(_a);

a.neg = false;

b.val = _b;

b.bitlen = BigNumber. get_bit_length(_b);

b.neg = false;

m.val = _m;

m. bitlen = BigNumber. get_bit_length (_m);

m.neg = false;

BigNumber. instance memory res = a.modmul(b, m);

return (res.val);

bytes _m) internal view returns(bytes) {
BigNumber. instance memory b;
BigNumber. instance memory e;
BigNumber. instance memory m;

b.val = _b;

b.bitlen = BigNumber. get_bit_length(_b);
b.neg = false;

e.val = _e;

e.bitlen = BigNumber. get_bit_length(_e);
e.neg = false;

m.val = _m;

m. bitlen = BigNumber. get_bit_length (_m);
m.neg = false;

BigNumber. instance memory res =
b.prepare_modexp(e, m);
return (res.val);

Listing 5. BigNumber functions.

protocol will have the key to decrypt the delivered data
and the non-repudiation of origin proof whereas the

sender will have the non-repudiation of rejection proof

and the state of this delivery will be Finished for every
recipient.

2) Fairness and Transferability of evidence. The pro-

posed protocol for registered eDelivery is fair. At the
end of a protocol execution, either each party has
received the proper element or neither party has
received any useful data about the other’s element,
providing strong fairness [1]. Moreover, the evidence
generated by the protocol can be transferred to an
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Figure 3. State’s life cycle in the Confidential eDelivery Scheme.

external party in order to prove the outcome and the
effects of the exchange without no further verifications.
On the one hand, according to the protocol, the sender
is not going to receive the non-repudiation evidence of
reception generated by the smart contract except if he
executes a transaction in order to allow the receivers
to decrypt the message and, at the same time, allows
the smart contract to check the validity of the provided
key (when state = Finished). On the other hand, any
receiver B; is able to get access to the delivered data
only if he runs a transaction in order to agree to receive
the eDelivery (case state = accepted).

If the parties do not follow the specifications of the
protocol, that is, if they do not execute the functions
Accept() and/or Finish(), the smart contract guaranties
a result that is fair for every user without the need of
any intervention of a TTP.

We have analyzed all the cases where the protocol

can lead the exchange to prove the strong fairness of
the protocol.We have used a state transition diagram.
For each receiver, this diagram is formed by three
final states: Finished, Cancelled and Rejected and
two intermediate states: Created and Accepted. These
states cannot be final states because the protocol will
eventually change the state in any case. The states and
the transactions are represented in Figure 3.
Finished implies that the exchange has been completed
following all the stages of the protocol, while Canceled
and Rejected represent exchanges that have not been
completed, for different reasons. Now, we will show
how the protocol leads the exchange to a fair situation
in all cases:

e creation() not executed. If the first step of the
protocol is not executed satisfactorily, the the
eDelivery is not created, any element of the fair
exchange has been provided and the parties are in
a fair situation.

e accept() not executed satisfactorily. If, after the
creation of the eDelivery in the first step of the
protocol, a receiver does not execute accept, before
the deadline termi, then the smart contract will set
the state for this receiver to Rejected. This way,
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after the first timeout, those receivers that have not
called the accept() function are not included in the
set B’ and the sender will not finish the exchange
with this receivers, so the delivery will not be
completed for them and they will not receive the
decryption key. These receivers do not have access
to the delivered data and to the non repudiation
of origin element. In the other hand, the sender
do not have a non repudiation of reception proof
generated by these receivers. So, the situation is
fair for all the parties. The final state for these
exchange will be Rejected.

e finish() executed successfully. The sender can exe-
cute finish() only for those receivers that have
executed accept(), taht is, the receivers in B’, with
state==accepted. The sender can, consequently
have the non-repudiation of reception proof. When
the sender executes finish() then the smart contract
checks the provided elements and verifies that the
receiver will have access to the delivered data
and also that he obtains the non-repudiation of
origin proof (state==finished). This way, after a
successful execution of finish(), the protocol leads
the exchange to a fair state, where the parties have
received all the desired elements.

o finish() not executed successfully. Execution of
cancel(). If after the execution of accept(),
a receiver does not receive the decryption key
(that is, the sender has not executed finish() or
the smart contract does not verify the provided
elements), then, after the expiration of the dead-
line, the receiver can call the cancel() function
to conclude the exchange with fairness. This way
the smart contract will set the state to Cancelled,
meaning that the exchange has not been performed
successfully, that is, the receiver hasn’t had access
to the delivered data and the protocol has not
generated non-repudiation proofs.

According to the previous evaluation, the fairness pro-
vided by the protocol is strong fairness. Although the
smart contract can create finalization and alternative
cancellation proofs, the protocol does not allow any
circumstance where a user could get contradictory evi-
dence since the state for each receiver is only updated
by the smart contract. Therefore, it is not possible to
do an action that could lead to an unfair situation (the
contrary would be considered weak fairness [1]).

The proofs generated during the execution of a pro-
tocol run can be submitted as proofs or evidence to an
external arbiter. We have to take into account that users
cannot get contradictory proofs and valid evidence are
only created by the execution sequence of the smart
contract. The evidence can be evaluated by an external
arbiter who can determine whether the exchange has
concluded successfully or not. In addition to that, its
transferability is easy, because the proofs generated
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4)

5)

during the exchange are all stored on the blockchain.
Therefore, since the blockchain is immutable, it is not
possible to change the content of any message and,
thus, the scheme provides message integrity. It is also
possible to deduce the exact point in time when the
delivery took place from the timestamp of the block
where the transaction was included.

Temporal parameters: Timeliness and Timestamp-
ing. A successful delivery will always be completed
before deadline term?2.

If the delivery is not successful we have different
deadlines in function of how the exchange has been
performed. If a receiver does not accept the delivery,
then the delivery will be classified as Rejected at term1.
If after the acceptance of the delivery by a receiver the
sender does not finish the exchange, then the exchange
can be canceled at term?2.

Moreover, the system prompts the sender to end
an eDelivery exchange before deadline ferm2. This
motivation is performed by means of a deposit that
is blocked in the smart contract. The deposit will be
given back to the sender in case of conclusion before
term2. We have to take into account that the blockchain
timestamps all transactions performed on it.
Non-repudiation. The e-Delivery protocol must pro-
vide a Non-Repudiation of reception evidence and a
Non-repudiation of origin evidence too.

o Regarding the origin, a sender A of the eDeliv-
ery cannot deny having executed the function to
create the eDelivery since there is a transaction
on the blockchain from her address containing
the addresses of the receivers and the encrypted
message (see Subprotocol 1). In addition, the trans-
action related with the execution of the finish(()
function (see Subprotocol 3) proves that the sender
has provided the key to decrypt the message to
the receivers that accepted the eDelivery, and is
considered the Non-repudiation of origin element
since this transaction leads the exchange to the
Finished state.

o Concerning the reception, each recipient B; is
not able to refuse having accepted the eDeliv-
ery, because an accepting transaction from his
address is stored on the blockchain. This trans-
action accepts the reception of the eDelivery and,
according to that, the smart contract changed the
state of the eDelivery to Finished after the execu-
tion of finish() function. The protocol assures that
each receiver has obtained the right decryption key
since the smart contract validates it by using the
ZKP (see Subprotocol 2 and Subprotocol 3).

Trusted Third parties. The proposed scheme does not
need the intervention of an external Trusted Third Party.
In this protocol, the parties run the functions of
the smart contract by generating the appropriate
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transactions and, thanks to the use of the smart contract,
no further dispute resolution phase is needed. The
exchange of information in the proposed system is all
on-chain, as a consequence, all communications related
to an eDelivery are stored on the blockchain. We have
to take into account that the blockchain technology
has been conceived to be immutable and publicly
verifiable, thus the actions that have been carried out in
a protocol run are publicly verifiable and anyone can
know which address is accountable for that.

6) Confidentiality. A delivery will be confidential if

only the receivers that accept the delivery can access
the delivered data. For this reason the data cannot be
included in clear in any transaction and must not be
registered in the blockchain. The data cannot be a
parameter in the smart contract functions and the smart
contract cannot gain access to the decryption key. Even
tough, the protocol must check that the data received
by all the receivers is the same.
In Subprotocol 1 the sender runs the creation function
of the smart contract including C; and C,, that rep-
resent the encrypted message. In Subprotocol 2 each
receiver provides a way for the sender to send privately
the key to decrypt the message, through the elements
Z1 and Z,. The smart contract verifies in Subprotocol
3 that the right decryption key is provided and that can
be derived from w;, isolating 7.

There is no more entities involved in the eDe-
livery exchange, and the transactions only include
encrypted messages and hidden decryption keys that
are only recoverable for receivers who have accepted
the exchange. Thus, the delivered data will remain
confidential.

VIil. PERFORMANCE ANALYSIS

Once we have finished the implementation of the proposal
and we have tested the results, we have performed some
experiments to determine the efficiency of the system in terms
of cost, since the economical execution costs could be a
concern in the development of the eDelivery service.

The performance analysis includes several tests, performed
using the Smart Contracts explained in § VI. We have
deployed it to the Ganache network, a personal blockchain
used for Ethereum development, to isolate the performance
conditions and possible problems of a real network like the
main Ethereum or the Rinkeby test networks.

From the results of the tests, we have detailed the gas cost
of the functions, executing the protocol with different values
for the number of receivers, selecting the values of one, two
and ten receivers. With this tests we want to obtain absolute
values of the economical costs to evaluate the viability of the
protocol and also evaluate the performance of multiparty pro-
tocols compared to Two-party protocols and for this reason
the cost per receiver has been taken into account.
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Figure 4. createDelivery() function gas cost of the confidential multiparty
protocol.

We have also tested the performance in terms of delay,
to have an illustrative reference of the delays introduced by
the functions, although we have not included the complete
list of results in this paper. In the Ganache network all the
functions have been executed with a delay between 55 and
837 milliseconds, closely related to the gas cost of each
function. But in a normal production Ethereum blockchain
network, all the transactions need a few seconds to be vali-
dated through the mining process, which have a delay of 15-
30 seconds, being the greatest component of the delay value.

In Figure 4, Figure 5 and Figure 6 we can see the gas
cost of the main functions of the protocol. The cost of this
analysis is computed in gas, but to know the exact price of
this transactions we also need the gas price, set in Ethers, and
the Ethers to US-Dollars exchange rate, but neither one nor
the other are fixed. For this reason, we have added in Table 2,
Table 3 and Table 4 the price in US-Dollars of each of the
functionalities as a guideline, considering the exchange rate
at January 1, 2020,* and taking into account a gas price of 1
Gwei and 20 Gwei. We haven’t included the cost in gas of
the deploy() function of the factory, because is independent
of the number of receivers and the number of bits: 3.864.642
(between 0.49$ and 9.78%). The main difference, in addition
to the total cost of the transaction, is the time it will take
to the transaction to be accepted by a mining node. Thus,

4Ether Price = 130,27$
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Figure 5. Accept() function gas cost of the confidential multiparty
protocol.

TABLE 2. createDelivery() function cost in gas, equivalent US-Dollars
price in the interval (1 Gwei - 20 Gwei) gas price, and cost per receiver in
the same interval.

Cost in Gas 256 bits 512 bits 1024 bits
1 receiver 2,743,000 2,826,871 3,077,925
(0.35$-7.09%) | (0.35$-7.21$) | (0.38$-7.78%)

2 receivers 2,826,871 2,938,640 3,161,732

(0.35$-7.14$)
(0.17$-3.57$)

(0.36$-7.43$)
(0.18$-3.71%)

(0.40$-8.00$)

Cost per Receiver (0.20%-4.01%)

10 receivers 3,498,345 3,610,115 3,833,208
(0.43$-8.858) | (0.45$-9.13$) | (0.48$-9.708)
Cost per Receiver | (0.043-0.878) | (0.04$-0.91%) (0.04$-0.96%)

TABLE 3. Accept() function cost in gas and equivalent US-Dollars price
with 1 Gwei - 20 Gwei gas price.

Cost in Gas 256 bits 512 bits 1024 bits
1 receiver 244,207 355,403 577,988
(0.03$-0.61$) | (0.04$-0.90%) | (0.07$-1.46%)

2 receiver 244,207 355,403 577,988
(0.03$-0.61$) | (0.04$-0.90%) | (0.07$-1.46%)

10 receiver 244,207 355,403 577,988
(0.03$-0.61$) | (0.04$-0.90%) | (0.07$-1.46%)

a transaction made on the main Ethereum network with a
value of 1 Gwei can take almost 100 minutes (depending on
the current network traffic), while in the case of 20 Gwei can
be reduced to 30 seconds.’

3 https://ethgasstation.info/
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Figure 6. Finish() function gas cost of the confidential multiparty
protocol.

TABLE 4. Finish() function cost in gas and equivalent US-Dollars price in
the interval (1 Gwei - 20 Gwei) gas price, and cost per receiver in the
same interval.

Cost in Gas 256 bits 512 bits 1024 bits

1 receiver 192.681 516.563 2.343.311
(0.028-0.499) | (0.06$-1.30$) | (0.29$-5.92$)

2 receivers 261.149 625.171 2.532.199
(0.038-0.65%) | (0.07$-1.57$) | (0.32$-6.40%)

Cost per Receiver (0.01$-0.328) | (0.03$-0.70%) (0.15$-3.208)
10 receivers 808.893 1.494.035 4.043.303
(0.10$-2.04%) (0.19$-3.78%) (0.50$-10.22%)

Cost per Receiver | (0.008$-0.208) | (0.01$-0.37$) (0.04%-1.018$)

From the analysis of the results included in Figure 4,
Figure 5, Figure 6, Table 2, Table 3 and Table 4 we can
conclude that:

o Cost of the functions:

— The factory deploy() and the createDelivery() func-
tions are considerably more expensive than the
accept() and finish() functions. An exception to this
statement occurs when we use long keys and the
number of receivers is big.

— The factory deploy() is executed only once and its
cost is amortized by the number of deliveries cre-
ated using the factory. We have to take into account
that the cost of the two more expensive operations
(factory deploy and createDelivery functions) is
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distributed between the owner of the service (the
Factory deployer) and the sender of the delivery.

— The only function executed by the receiver, accept()

is very cheap in terms of gas.
o Number of receivers.

— The factory deploy() and the accept() functions are
independent of the number of receivers.

— The createDelivery() and the finish() functions
depend of the number of receivers and the total
cost grows as the number of receivers is increased.
However, although the total cost grows, the cost per
receiver decreases, making the multiparty protocol
more efficient with a bigger number of receivers.

o Length of the security elements.

— The most costly operation, factory deploy() func-
tion, is independent of the length of the parameters,
allowing us to use longer parameters.

— The cost of execution of the createDelivery() and
the accept() functions rises slightly with the length
of the parameters.

— finish() is the function that includes the verification
of the ZKP and is the function more affected by the
change in the length of the parameters. However,
as the number of receivers increases, the cost intro-
duced by the use of longer parameters is reduced.

« Execution delay

— The execution delay is not greater than 900 ms in
any case. This means that the execution time is
small compared with the block validation time in
the Ethereum network through the mining process,
so this will be the greatest component of the total
delay value.

— The validation delays are closely related with the
gas cost used in each function. This way a user
can choose the gas cost values, analyzed above, that
best adjust to its cost and delay requirements That
is, the delay and the cost of the eDelivery can be
controlled adjusting the gas price.

— As it could be expected, the greatest execution time
correspond to the finish() function, where the ZKP
is checked while accept() is the quickest function.
In addition, longer parameters require bigger exe-
cution times.

IX. COMPARISON WITH PREVIOUS STUDIES
It has been proved that blockchain-based technologies can be
very useful in the design of a qualified registered eDelivery
service, solving the problems related with the use of TTPs.
The results of the analysis of properties included in VII
prove that the protocol achieves the ideal properties of the ser-
vice: effectiveness, fairness, timeliness, non-repudiation and
confidentiality, as it is summarized in a table that compares
the new protocol with previous studies Table 5.
In [20] we proposed two protocols to send multiparty
eDelivery notifications also based on blockchain technology.
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TABLE 5. Comparison of Properties.

Property Non-Confidential Confidential Confidential

Protocol [20] Protocol Protocol
With TTP [20] | Without TTP

Effectiveness YES YES YES

Fairness STRONG WEAK STRONG

Timeliness YES YES YES

Non-repudiation YES YES YES

Confidentiality NO YES YES

Evidence Transferibility | YES NO YES

Use of TTP NO OPTIMISTIC NO

However, with respect to the scheme we propose here,
the first protocol in [20] does not have the property of
confidentiality, since the content of the notification is public.
Although the second eDelivery proposal in [20] achieves
confidentiality, in order to assure the fairness of the exchange,
it needs the intervention of an independent trusted third
party (TTP) that takes actions as an intermediary to resolve
disputes between sender and receivers. Thus, the proposed
scheme in this paper improves the previous systems because it
achieves confidentiality with respect to the former proposal in
[20], and it removes the intervention of the TTP with respect
to the latter proposal in [20].

In addition to that, our new scheme not only provides fair-
ness and confidentiality without needing the intervention of a
TTP thanks to the implementation of a ZKP primitive inside
the protocol, but also the fairness that guarantees is strong.
In [20] the protocol that has confidentiality has some cases
where users (sender and receivers) can have contradictory
evidence. That is, for example, a malicious sender can obtain,
at the same time, a non-repudiation evidence from a receiver
and a cancellation evidence from the smart contract. Thus,
the sender can get evidence that a certain notification has been
cancelled or has been finished successfully. That is the reason
why the fairness of the previous proposal is weak, in contrast
to the strong fairness of the new proposal of this paper.

Summarizing the comparison of features included
in Table 5 we can say that the presented protocol not only
allows the protocol to be executed without the involvement
of a TTP but also improves the behavior of the previous con-
fidential protocol offering strong fairness and transferability
of evidence. These properties were only achieved by a non-
confidential protocol.

Regarding the performance of the proposals, we can say
that the confidential protocol without TTP executes more on-
chain operations that the confidential protocol with TTP. For
this reason the gas cost could be bigger. However, we have
to take into account that this proposal does not require the
payment for the services of the TTP, so the gas cost has
to be added to the cost of the TTP for the previous proto-
col. Moreover, the new protocol obtains greater benefits of
the multiparty operation, since the previous protocol executes
independent resolutions of the exchange for each receiver.

Table 6 shows the differences on the cost per receiver
between the confidential protocol with TTP and the new
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TABLE 6. Finish() function cost per recevier in US-Dollars in the interval
(1 Gwei - 20 Gwei) gas price.

Cost per receiver | Without TTP With TTP
256 bits

1 receiver (0.02$-0.49%) | (0.019$-0.39$)+TTP cost

2 receivers (0.01$-0.32%) | (0.019$-0.39%)+TTP cost

10 receivers (0.008$-0.2%) (0.019%-0.39$)+TTP cost

confidential protocol without TTP, for the function that dif-
fers the most between the two protocols, finish() function.
In this comparison we have to take into account two important
facts. The first one in that in the protocol with TTP the finish()
function is not mandatory. The second one is that while in the
protocol without TTP the finish() function is executed once,
independently of the number of receivers, in the protocol with
TTP the function is executed once for each receiver. Thus,
the cost for the protocol without TTP decreases with the
number of receivers.

To conclude this comparison we have evaluated the delay
in the execution of the functions in both protocols. For the
confidential protocol without TTP, after the execution of
the functions, the block including the transaction has to be
confirmed in the blockchain. The execution time for all the
functions is lower than 900 ms while the block confirmation
delay depends on the gas price but can be included in the
interval of 15-30 seconds, being the main component of the
delay of the protocol. This delay can be considered much
lower than the delay introduced by the resolution of an
exchange executed by a TTP. When a user asks the TTP for
a resolution, the TTP has to queue the request, check the
received data and make a decision about the final result of
the exchange, so the user could have to wait a considerable
amount of time to obtain a response, compared with the block
confirmation time.

X. CONCLUSIONS AND FUTURE WORK

The paper proposes a new protocol that achieves the ful-
fillment of all the desired properties of a registered eDeliv-
eries service using blockchain. Since now, these properties
were partially achieved by the existing protocols. So the new
scheme includes the best part of each one of the previous
protocols in a single protocol. This way, the new proto-
col allows the eDelivery of confidential data without the
need of a trusted third party. The new protocol has been
detailed, implemented and analyzed, obtaining the following
conclusions:

o The presented protocol uses blockchain to allow a
fair exchange for registered deliveries. This way, data,
proof of origin and proof of reception are exchanged
without the involvement of any trusted third party
while achieving the desired properties for fair exchange
protocols: efficiency, strong fairness, transferability,
non-repudiation and confidentiality. For this reason,
the protocol is an obvious improvement of previous
proposals.
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o The protocol allows multiparty deliveries, useful to
reduce costs in those scenarios in where the same
delivery involve several receivers, like notifications for
enterprise staff, shareholders meetings,. ..

o The delivered data is confidential, only sender and
receiver can access the data. This means that the smart
contract must manage the exchange and assure fairness
without being able to access the delivered data. In pro-
tocol terms this means that the delivered data must be
encrypted until acceptance, when the non-repudiation
of reception is provided, and the smart contract, without
having access to the decryption key, must assure that all
the receivers will be able to decrypt the same message.

o To achieve all the desired properties, including con-
fidentiality, the protocol uses more complex cryptog-
raphy than previous protocols. The protocol has been
implemented and tested on Ethereum to analyze the
performance of these operations. The results show that
although the execution costs are slightly greater than
those of non-confidential protocols, the protocol is
viable. The smart contracts are described in the paper.

o With the introduction of this new protocol, users can
choose between protocols that register the contents of
the delivered data or the confidential protocol. Due to
execution costs, users must use the non-confidential pro-
tocol not only when the data registry in the blockchain
is required, but also in all the deliveries where confiden-
tiality is not required.

o The performance analysis shows that the execution costs
depend on the number of receivers, the gas price and the
length of the cryptographic parameters. The efficiency
of the protocol rises with the number of receivers. The
gas price will affect the execution delay, but since the
deliveries are asynchronous the execution delay is not
a critical parameter. We have also evaluated the exe-
cution delay but the resulting values are small enough
compared to the block verification time, so the total
delay depends strongly of the block verification time.
The length of the cryptographic parameters are related
with the strength of the confidentiality but they don’t
have any effect on the strength of the fairness offered by
the protocol.

The performance analysis has allowed the detection of the
most costly operations. The use of longer parameters leads to
higher levels of protection but are expensive in terms of cost.
As a future work we intend to implement the protocol using
elliptic curve cryptography. According to our initial tests,
we will expect to have similar results to those obtained with
lengths of 256 bits while offering higher security standards.
Thus, the Table 6 could have the appropriate parameters to
establish a comparison point for future works.
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