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ABSTRACT In metabolomics, pathway analysis normally refers to analysis of a pre-defined sets of
metabolites (metabolite set) associated to the metabolic pathways. The metabolite set analysis is useful to
facilitate biological interpretation of metabolomics data. The currently available methods may be divided
into three generations: over-representation analysis, functional class scoring, and network topology analysis.
Among the three generations of tools, the network topology methods have been shown to have lower false
discovery rates and better biological interpretability than the other two earlier generations of tools. However,
most of the current network topology methods focus the analysis only at the metabolite-level network. The
interaction between pathways are not taken into consideration. To address this issue, we propose a new
metabolite sets association network (MSAN) modelling scheme. In the developed method, the metabolite
sets are defined based on the KEGG databases. By using the metabolite sets as vertexes, the MSAN
network evaluated the relationships between pairs of metabolite sets based on their mutual information.
The impact of a single metabolite set on the overall network was evaluated by the MSAN network, which
may help to uncover differential metabolite sets relevant to the underlying biology mechanism of the study.
A metabolomic dataset from a published colorectal cancer (CRC) study is used to evaluate the performance
of MSAN network to identify perturbed metabolite sets in colorectal cancer patients. The current results
are compared to that of two commonly used methods, NetGSA and MetaboAnalyst, which are based on the
metabolite-level network approach. The current method highlights a number of metabolites sets consistent
with recent published CRC reports. Taken together, the proposed method may provide an alternative tool for
the identification of dysregulated pathways and facilitate biological interpretation of metabolomics data.

INDEX TERMS Metabolite sets association network (MSAN), colorectal cancer (CRC) metabolomics,
mutual information, pathway analysis.

I. INTRODUCTION
Pathway analysis has become an useful tool in the field
of metabolomics, as it provides functional insights into the
roles of differential metabolites in the development and treat-
ment of numerous diseases. Over the past two decades,
more than a dozen of pathway analysis methods have been
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developed [1]–[10]. Ma and colleagues [9] divide these
methods into three generations: over-representation analysis
(ORA) [11]–[13], functional class scoring (FCS) [14], [15],
and network topology analysis [16], [17]. Generally, each
pathway can be regarded to have a predefined metabolite
subset and reaction subset. The methods based on ORA and
FCS mainly focus on the analysis of the metabolite subset,
while the third-generation network topologymethods take the
two subsets into consideration in pathway analysis.
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Pathways are interconnected and not independent, and dys-
regulated pathways can alter the properties of many other
pathways within an organism through interactions between
pathways [18]–[20]. On the basis of ORA and FCS, network
topology analysis describes the relationship of metabolites in
the form of a network, and takes into account the topological
structure information between metabolites to evaluate the
importance of a certain pathway [9], [10]. Since the topo-
logical information is useful to explore the interrelationships
between pathways, network-based analysis methods provide
some advantages in uncovering the biological functions of the
perturbed pathway.

Network construction and topology analysis are two key
steps in network-based methods. There are two types of net-
works based on the method of network construction. The first
type uses chemical reaction relationships between metabo-
lites to build a network: If two metabolites are the substrate
and product of a chemical reaction, then an edge is linked
between them. As the connection relationship of the network
has practical biochemical significance, the results based on
this network will be more biologically meaningful and more
interpretable.

Due to the limitations in the analytical instrument plat-
forms, the number of detected metabolites is usually far
less than the total number of known metabolites in the
pathways. Based on the low number of metabolites, it is
difficult to establish a connected network and to perform
topology analysis. Therefore, another set of network-based
methods is used that take advantage of the relationships
among detected metabolite abundances, correlations, partial
correlations, mutual information, etc. to build a metabolite
level association network [1]–[3]. Then, the topology analysis
is carried out on the association network.

The current network-based pathway analysis method is
mainly based on the metabolite-level network (MLAN).
Since a metabolic pathway (a predefined metabolite set) is a
sub-network of MLAN network, it is difficult to quantify the
impact of a subnetwork to the overall network. In addition,
metabolic pathways are known to overlap with each other
as most of the pathways share some common metabolites.
Thus, it is not straightforward to evaluate the impact of each
pathway on the overall network and the interaction among the
pathways.

In information theory, mutual information (MI) is com-
monly used to measure the association between two random
variables. MI does not assume any property of the depen-
dence between two variables; thus, it is more general than
linear measures such as the correlation coefficient, and is
able to detect more interactions [21]. The concept of MI is
widely used to infer interaction networks in different fields
including chemical, biological, and social area. In the cur-
rent paper, we propose a novel network modeling scheme
for the construction of a metabolite set association network
(MSAN). In the MSAN method, metabolite sets are con-
structed based on the metabolic pathways in the KEGG or
HumanCyc databases. In the method, MI is used to estimate

the association between two pathways. In addition, the data
process inequality (DPI) principle is used to create sparsity
from theMI matrix data, and collect it into an adjacent matrix
of strong connected networks. Furthermore, linear dimension
reduction method is applied to transform the data submatrix
of pathways into a one-dimensional vector, which make it
possible to calculate the MI value between two multivariate
matrices of small sample size. In the proposed method, net-
work robustness and pathway sensitivity are evaluated using
the random walk with restart (RWR) process by comparing
with that of the simulated random networks. The key differ-
ential metabolite sets are evaluated on the differential MSAN
network of two different biological states. The developed
method is applied to a published colorectal cancer (CRC)
metabolomic dataset, and the results highlight a number of
perturbed pathways consistent with the published reports.

II. METHODS
A. MUTUAL INFORMATION AND DATA
PROCESSING INEQUALITY
Let X and Y be two random variables. Mutual information
(MI) between X and Y is defined as follows:

I (X ,Y )= H (X)+ H (Y )−H (X ,Y ) (1)

where H (X) is the entropy of X . If the possible value of X is
discreet, i.e. X ∈ {x1, . . . ,xn}, with corresponding probability
as p(xi), H (X) can be calculated by

H (X) = −
∑

i
p(xi) log p(xi) (2)

Let p
(
xi,yj

)
= Prob(X = xi,Y= yi) be the joint probabil-

ity, and p(xi) and p(yj) as marginal probability of X and Y ,
then the MI between X and Y can be calculated as reported
in [22],

I (X ,Y ) =
∑

i,j
p
(
xi,yj

)
log

(
p
(
xi,yj

)
p (xi) p

(
yj
)) (3)

Estimation of three probability density functions (PDFs), i.e.,
p (xi), p

(
yj
)
and p

(
xi,yj

)
are required for the calculation of

MI using (3). In general, the analytical formulae of the three
PDFs are unknown, but kernel density estimation can be used
to provide an efficient and robust estimation of PDFs for
datasets with small sample size.

For any random variable X , the formula of kernel density
estimation (KDE) is given by [23]

p̂h (X) =
1
n

∑n

i=1
K (

X−xi
h

) (4)

where x1,x2, · · · ,xn are random samples of random variable
X , n is the sample size, K (·) is the kernel smoothing function,
and h is the bandwidth [24]. In the current work, we use
the ksdensity function in Statistics and Machine Learning
Toolbox of Matlab to estimate the PDF functions, and the
bandwidth parameter h used is the default value which is
proportional to n−

1
5 . The estimation error of the KDE may

be determined using methods reported by Silverman [24].
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Boundary correction [25] is important for estimation of the
PDF functions. Biomedical signals often have a heavy right
tail distribution (e.g., power law distribution [26]) instead of
normal distribution. In this case, log transformation is applied
for data correction [27]. Data correction can also be modelled
using logit transformation of X as follows,

xi←
1

1+e−xi
(5)

The values of the logit-transformed variable will be limited to
the range [0,1], and distribution of the transformed variable
will be closer to a normal distribution than the original vari-
able [28]. The logit transformation step is recommended for
the dataset with a small sample size or with outliers.

Data processing inequality (DPI) is an information theo-
retic concept which states that the information content of a
signal cannot be increased via a local physical operation. It is
an important property to describe the information flow on a
network. DPI has been widely used in gene co-expression and
cellular network analysis studies [29], [30]. DPI states that if
the two sets s1 and s3 interact only through a third set s2 (i.e.
s1 ↔ s2 ↔ s3), and if there is no alternative path between s1
and s3, then the mutual information I (s1, s3) , I (s2,s3) and
I (s1,s2) should satisfy the following inequality,

I (s1,s3) ≤ min [I (s1,s2) ; I (s2,s3)] (6)

The set pair with the smallest MI in the triplet is likely to be
indirectly connected in the network model. The connection
between pair with lowest MI is eliminated among the triplet
in DPI procedure, which is often used to enforce sparsity to a
network model.

A standard way of enforcing sparsity to the association
network is by using threshold pruning method. The method
assumes that the associations of the edges around a node sat-
isfy a similar distribution for all nodes on the whole network.
In the current work, DPI is used instead of the threshold prun-
ing method because the distribution of MI is heterogeneous
on the network.

B. DATA REDUCTION FOR METABOLITE SET ANALYSIS
Let X = (xij)n×m be a concentration matrix with n sam-
ples and m metabolites from a metabolomics study. X is a
metabolite level dataset that contains the concentrations of
the detected metabolites. Assume that the detected metabo-
lites are involved in B predefined metabolite sets. Typically,
the metabolite sets are constructed based on metabolism or
metabolic pathways in the KEGG or HumanCyc databases.
For the rest of the article, we will use ‘‘pathway’’ and
‘‘metabolite set’’ interchangeably.

The metabolite level matrixX can be converted into a path-
way level matrix P as follows. Assume that there are Lb(0 <
Lb ≤ m) detected metabolites in the bth(b = 1, 2, · · · ,B)
pathway. The submatrix P(b)

= (xij)n×Lb can be obtained
by concatenating the Lb metabolites data (i.e., Lb columns
in X) belonging to the bth pathway. Then the concatenated

matrix P = (P(1),P(2), · · · ,P(B)) is called the pathway-
level matrix. Note that the pathway level matrix P has the
same number of rows (samples) asX , but may have a different
number of columns (variables) from X as metabolites may be
involved in several pathways.

The estimation of the PDF of multidimensional data
requires a large number of samples. For an Lb-dimensional
pathway dataset, a large number of samples are required to
calculate the pathway-related entropy or mutual information.
However, the number of samples in a metabolomics study
is usually only a few hundred or often even less. For a
dataset with small sample size, dimension reduction is an
efficient and natural way to estimate the mutual informa-
tion of two pathways. Principal components analysis (PCA)
[31] is the most commonly used linear dimension reduc-
tion method in metabolomics. It maps high-dimensional data
into a low-dimensional space through linear projection, and
it is expected to retain as much data variation as possible
in the projected dimension. In this work, we use PCA to
project the multidimensional data from a pathway into a one-
dimensional variable for subsequent calculations.

Let P(b) be the submatrix (metabolite-based) of pathway
b with n samples and Lb variables (metabolites), then its first
principal component t(b) is given as follows,

P(b)
= t(b)

¯
lT(b) + R, b = 1, 2, · · · ,B (7)

where t(b) and l(b) are the score vector and loading vector
of the first principal component, respectively. R is the resid-
uals of the PCA model of P(b). After dimension reduction
using PCA, the multi-dimensional pathway-level matrix is
converted into a one-dimensional pathway-level dataset as
follows,

T = (t(1),t(2), · · · ,t(B)) (8)

Then, MI of two pathways can be estimated by the dimension
reduced pathway level dataset T .

C. METABOLITE SET ASSOCIATION NETWORK
MODELLING
Let P = (P(1),P(2), · · · ,P(B)) be a pathway level matrix
with B metabolite sets (pathways) and n samples. The path-
way level association network of the system can be repre-
sented by a graph G (V ,E) where node vi ∈ V represents
pathway P(i), and edge eij ∈ E represents the association
from pathway P(i) to pathway P(j). Here, we present a mutual
information-based network modelling scheme to calculate
edge eij ∈ E as follows
Step 1: Dimension Reduction. Perform dimension reduc-

tion on pathway-level data P to obtain a one-dimensional
dataset T = (t(1),t(2), · · · ,t(B)).

Step 2: MI Calculation. For each pathways pair (i, j), cal-
culate the probability density p(t(i)) and p

(
t(i),t(j)

)
,(i =

1, 2, · · · ,B; j = 1, 2, · · · ,B) using the Gaussian kernel
density estimator based on (4). Then, calculate the mutual
information I ij using (3) to obtain an MI matrix I = (Iij)B×B.
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Step 3: Link Pruning. Prune MI matrix I according to the
DPI principle using (6) to obtain a sparse and symmetric
matrix E as follows,

E = DPI(I) (9)

The prunedMImatrixE is the adjacent matrix of the network.
In the current study, the network modelling steps constitute

the metabolite set association network (MSAN). In a MSAN
network, nodes represent metabolite sets while edges repre-
sent the associations between two corresponding metabolite
sets.

D. DIFFERENTIAL NETWORK MODELLING
A differential pathway between an experimental group and a
control group may be associated with the perturbation due
to disease or treatment. Identification of the key differen-
tial pathways may provide new insight into the biological
mechanisms related to disease or treatment. In this case,
we have constructed a differential MSAN network (difM-
SAN) to model the difference between two biological states
as follows.

Let G1 and G2 be two groups of samples, one is treated
group with n1 samples, another is control group with n2 sam-
ples, and X = (xij)(n1+n2)×m be the metabolite-level dataset
of G1 and G2. After defining the metabolite sets as pathways
predefined in a given database like KEGG, we can convert X
into a pathway level matrix P = (P(1),P(2), · · · ,P(B)), B is
the number of the involved pathways (metabolite sets). Let
y = (yi)n×1, n = n1 + n2, be the response variable of the
system, which is the class identity for the samples,

yi =

{
1 if sample i ∈G1

0 if sample i ∈G2

Then the association between two metabolite sets (pathways)
can also be quantified by the mutual information between
these two pathways, which can be constructed by replacing
the PCA-based dimension-reduced dataset T in the Step 1 of
MSANmodelling procedure with partial least squares (PLS)-
based dimension-reduced dataset as follows,

U = (u(1), · · · ,u(b), · · · ,u(B)) (10)

where u(b) is the first latent variable of PLSmodel of pathway
b in G1 and G2, which is calculated as follows [32],

P(b)
= t(b)lT(b) + R

y = u(b)qT(b) + F

where l(b) and q(b) are the loading vectors, t(b) and u(b) are
the score vectors, and R and F are the residual matrix of P(b)

and y, respectively. More details refer to the literature [32].
In addition, we can calculate the mutual information

between a given pathway b and the response variable y as,

I(b) =
∑

p
(
u(b), y

)
log

(
p
(
u(b), y

)
p
(
u(b)

)
p (y)

)
(11)

The differential pathways between G1 and G2 can be iden-
tified taking both pathway and the edges it connects to into
consideration in the difMSAN network.

III. COLORECTAL CANCER METABOLOMICS DATASET
In this study, a published colorectal cancer (CRC) dataset
[33] is used to evaluate the proposed method. MSAN net-
works are constructed and applied to reveal the key pathways
which can be associated with colorectal cancer or the pres-
ence of polyps. The CRC dataset [33] has been deposited
into the public repository of Metabolomics WorkBench
(https://www.metabolomicsworkbench.org/) with Project ID:
PR000226.

In brief, 234 volunteers underwent either colonoscopy
or CRC surgery, and blood samples from the patients are
obtained after overnight fasting and identical bowel prepara-
tion prior to the procedure. The volunteer samples are divided
into three groups including healthy controls, CRC patients,
and patients with colorectal polyps based on colonoscopy
examination results. The serum samples collected included
66 CRC samples (Cancer), 76 polyp samples (Polyp), and
92 healthy control samples (Healthy). The experimental work
is conducted in accordance with the protocols approved by
the Indiana University School of Medicine and Purdue Uni-
versity Institutional Review Boards. A targeted LC−MS/MS
approach is used for comprehensive CRC serum metabolic
profiling under a standard operating procedure. In total,
113 metabolites out of 158 targeted MRM transitions are
reliably detected, with a median QC coefficient of variance
(CV) of 8% (see more details in [33]).

We define the metabolite sets as the metabolic path-
ways predefined in the public database of Kyoto Encyclo-
pedia of Genes and Genomes (KEGG, http://www.kegg.jp/).
In KEGG metabolic pathways database, human (Homo sapi-
ens) metabolic pathways contain 1498 identified endogenous
metabolites (excluding most lipids) and 85 pathways, each
of which involves multiple metabolites. Detected metabo-
lites that could not be matched with their corresponding
metabolite ID in the KEGG dataset are removed from further
analysis. The remaining 89 metabolites are associated with
metabolic pathways based on the KEGG database. A total
of 30 pathways with at least three detected metabolites are
included for the analysis (TABLE 1). These 30 pathways
consist of six categories, i.e., carbohydrate metabolism, lipid
metabolism, amino acid metabolism, nucleotide metabolism,
metabolism of other amino acids andmetabolism of cofactors
and vitamins.

Based on the KEGG databases, it should be noted that
some of the pathways listed in TABLE 1 consists of a col-
lection of metabolic pathways and not pathways themselves.
This is not unusual in the current metabolic pathway anal-
ysis. It is mainly due to the common technological limita-
tion in metabolomics studies with relatively low number of
detected metabolites compared to total metabolome. Metabo-
lite sets may also be defined based on metabolic pathways
in the HumanCyc database (http://humancyc.org), however
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TABLE 1. List of 30 Pathways/metabolite set used in the colorectal
cancer dataset.

the number of detected metabolites in pathways may be too
low to warrant further investigation. If the metabolite set in
the CRC study is defined based on the HumanCys database,
only 63 pathway candidates and 71 detected metabolites
(compared to 89 if the KEGG database is used) are left for
the further analysis when we excluded the pathways with less
than three metabolites (Supplementary information).

IV. RESULTS AND DISCUSSION
A. MSAN NETWORK CONSTRUCTION
FOR THE CRC DATASET
Three MSAN networks of healthy, polyp and cancer groups
are constructed as shown in Fig.1. The topology of the healthy
MSAN network is found to be markedly different from the
other two networks.

The five most important pathways which have the
largest topological centrality (betweenness) in the healthy
MSAN network are: purine metabolism (pathway index,
PI-8), valine, leucine and isoleucine degradation (PI-13),

FIGURE 1. MSAN networks of healthy (a), polyp (b) and cancer (c) groups.
The pathway index is labeled in or near each circle. The linewidth of the
edge represents the size of mutual information. The larger the mutual
information, the larger the linewidth. The size of the circle correlates the
betweenness centrality of the pathway in MSAN network. Color of the
circle represents the z-score of the pathway with respect to random
networks, which will be described in Section IV-B.

valine, leucine and isoleucine biosynthesis (PI-14), tyrosine
metabolism (PI-18), and pantothenate and CoA biosynthe-
sis (PI-29). In the polyp MSAN network, glycerophos-
pholipid metabolism (PI-25), histidine metabolism (PI-17),
pyruvate metabolism (PI-26), and Glyoxylate and dicarboxy-
late metabolism (PI-27) are of larger betweenness centralities
than the other pathways. The cancer MSAN network features
in higher topological centralities of pyruvate metabolism
(PI-26), tryptophan metabolism (PI-19), alanine, aspartate
and glutamate metabolism (PI-10), and inositol phosphate
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metabolism (PI-24). These pathways have been previously
identified as targets or reported to be perturbed by colon
cancer [34], [35].

As the betweenness of these pathways is relatively large,
they may play an important role in information flow in the
network, which implies they may have a greater impact on
the entire network when they are perturbed. For example,
pyruvate metabolism (PI-26) is found in the polyp and cancer
groups, which suggests that pyruvate metabolism acts as
the core central pathway for MSAN network in abnormal
states (polyps and cancer states) [34]. Interestingly, tyrosine
metabolism (PI-18) is found to be a pivotal pathway in the
healthy and cancer groups, but its betweenness in the polyp
group prior to cancer development is much smaller. This sug-
gested that when the body reaches an equilibrium state (non-
transitional state), tyrosine metabolism may appear to act as
a core pathway. Therefore, investigations focused on tyrosine
metabolism may help to better understand the pathological
process of certain cancers [36].

In addition, the structural stability of the MSAN network
is evaluated using a bootstrapping method. The mutual infor-
mation of each pathway pair is calculated using 80% of the
samples bootstrapped from a given group. The coefficient
of variance (CV) of each edge (pathway pair) is calculated
with 200 bootstrapping procedures. The experimental result
is presented in Figure S1 in the Supplemental Information.
We found that the healthy MSAN network is of higher tolera-
bility to the external interference than the other two networks,
since most of the edges in the healthy MSAN networks are
of large CV values. Similar results are reported in recent
articles [35], in which smaller correlation coefficients are
found between metabolites in healthy groups.

B. TOPOLOGY ANALYSIS ON MSAN NETWORK
Then, the influence of each node on the structural topology
of a MSAN network is analyzed and quantified using random
walk with restart (RWR) process. RWR explores the global
structure of the network by propagating the information along
the network [37]. In the RWR process, the information dif-
fuses away in the network from the initial distribution and
the influence of each node can be quantified by the final or
steady state of the network. The RWR algorithm is defined as
reported in [37],

vt = αv0 + (1− α)Wvt−1 (12)

where W = AD−1, A is the adjacency matrix, D is the
diagonal degree matrix, and vt is the state vector at step t .
v0 is the initial state which is usually set to all ones if there
is no prior information on the nodes, and α is the restart
probability which is previously found to have only a slight
effect on the results of the RWR [38], and α = 0.2 is
common setting in various studies. The iteration would reach
a stationary state after a certain number of steps, and the
final state vt captures the global influence of nodes from
the network, so vt is the influence profile of the network.

FIGURE 2. Influence of each pathway after random walks on the MSAN
network. (a) State distribution of pathways after RWR; (b) Correlation
between the influence profiles of the networks before and after edge
rewiring; (c) Z score of the influence profile of the pathways with respect
to random networks.

To simplify the notation, we will use ‘‘vt’’ and ‘‘v’’ inter-
changeably in the rest of the article.

In our study, RWR process is carried out in the healthy,
polyp and cancer MSAN networks, the influence profiles
are obtained and shown in Fig.2a. The influence profiles
are found consistent with the results topological centralities
shown in Fig.1. Higher influence pathways are likely to be
more topological importance in the network. For example,
purine metabolism (PI-8) outperforms the other pathways in
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both the influence profile and the betweenness in the healthy
MSAN network.

Structural stability, also called the anti-interference capa-
bility, is commonly used to evaluate the robustness or the
sensitivity of the network when some connections (edges) are
differential under certain circumstances, which is an impor-
tant feature in topological analysis of a network. Here we
evaluated both the structural stability of the overall network
and the sensitivity of each pathway on the network.

Next, structural sensitivity of the overall network is evalu-
ated by comparing the influence profile of the real network
with that of the random networks (null models). Firstly,
we generate a number of random networks by rewiring each
edge on the MSAN network with different probabilities p,
then performed RWR on the random networks to obtain the
steady-states of the random networks. The initial distribution
of the network is also set to v0 = 1 for all nodes. The
correlation coefficients between the two steady-state distri-
butions are calculated before and after edge rewiring. The
experimental results are presented in Fig.2b, where the x-axis
represents the probability of edge rewiring and y-axis rep-
resents the average correlation coefficients of 1000 random
repeats. Fig.2b shows that the correlation coefficient between
the steady-states (influence profile) of the MSAN network
and that of the random network decreases with an increasing
of edge rewiring probability.

As expected, the healthy network showed the strongest
structural stability, while the polyp network is characterized
by the weakest structural stability. When 100% edges are
reconnected, a Pearson correlation coefficient of up to 0.8 is
observed for the healthyMSAN network, but it is only 0.5 for
the polyp MSAN network. Two possible reasons may explain
these different structural stability results. First, the healthy
MSAN network has the highest number of edges, while the
polyp MSAN network has the least (124, 72 and 56 edges
for healthy, cancer and polypMSAN networks, respectively).
It is plausible that a larger number of edges led to a stronger
structural stability. Second, from a systems dynamic point of
view, the healthy condition can be regarded as an equilibrium
state with a large steady-state space, while cancer might rep-
resent another equilibrium state. On the other hand, the polyp
group may represent a less stable transition state between
healthy and cancer states. Therefore, the metabolic network
of healthy people may have better anti-interference capability
than that for patients.

The sensitivity of a pathway in a MSAN network is eval-
uated by comparing its topological influence with that of in
the random networks. A total of 1000 random networks are
generated by rewiring each edge on the MSAN network with
a rewiring probability p = 0.5, then RWR is performed on
the edge rewired networks to obtain the steady-state from an
initial state v0 = 1 for all nodes. Z-score of the steady-state
of each node of the given MSAN network is calculated with
respect to that of the edge rewired networks as follows,

Zb = (vrealb −v̄
rand
b )/σ

(
vrandb

)
(13)

where vrealb is steady-state of pathway b on the real MSAN
network, v̄randb and σ

(
vrandb

)
are the mean and standard devi-

ation of the steady-state of pathway b on the simulated ran-
dom networks, respectively. Pathways with positive z-score
values are considered over-represented in the network, while
pathways with negative Z-scores are under-represented in the
network. Pathway with |Z-score| > 2 is considered signifi-
cantly sensitive to the interference. (Z-score of the nodes are
shown using a color scale in Fig.1).

As shown in Fig.2c, the pathways with higher topologi-
cal centralities in the real MSAN network are found more
likely to be over-represented. For example, the cancer MSAN
network over-represented four pathways including tryp-
tophan metabolism (PI-19), pyruvate metabolism (PI-26),
inositol phosphate metabolism (PI-24), and alanine, aspar-
tate & glutamate metabolism (PI-10). On the other hand,
the polyp MSAN network only over-represented three path-
ways including glycerophospholipid metabolism (PI-25), his-
tidine metabolism (PI-17), and pyruvate metabolism (PI-26).
While in the healthy MSAN network, the five pathways with
high topological centralities are all found over-represented.
There is no pathway found to be under-represented in the
three MSAN networks.

C. COMPARISON OF DIFFERENT METHODS ON
IDENTIFICATION OF KEY PATHWAYS
1) KEY PATHWAYS IDENTIFIED BY DIFFERENTIAL MSAN
NETWORK
Three difMSAN networks of polyp vs. healthy, cancer vs.
polyp, and cancer vs. healthy are constructed and visualized
in Fig.3. Permutation test is used to quantify the significance
of the node and edge in a given difMSAN network as follows:

Step 1. Randomly permute the response variable y
Step 2. Calculatemutual information of each node and each

edge using the permuted y, then build a random network using
the MI matrix of the edges;

Step 3. Run RWR on the random network by setting the
initial state vector v0 = (Ib)B×1 and the restart probability
α = 0.5, where Ib is the mutual information of node b;
Step 4. Repeat Step 1 ∼ 3 for 200 times to generate

200 random difMSAN networks and their steady-state vt ;
Step 5. Calculate Z-score for each edge by,

Zi = (I reali −Ī
rand
i )/σ

(
I randi

)
(14)

where I reali is the MI value of edge i in the real difMSAN
network, and Ī randi and σ

(
I randi

)
are the mean and standard

deviation of theMI values in the random difMSAN networks,
respectively; Then, calculate Z-score of vt for each node
according to (13);

Step 6. Calculate the computational p-value for each node
and each edge in the difMSAN network using their Z-score
values by assuming that the distribution of MI of the edge
or vt of the node be normal in the random networks (null
models).

VOLUME 8, 2020 106431



Y. Liu et al.: Novel Network Modelling for Metabolite Set Analysis: A Case Study on CRC Metabolomics

FIGURE 3. MSAN networks of (a) Polyp versus healthy; (b) Cancer versus
polyp; (c) Cancer versus healthy. The pathway index is labeled in or near
each circle. The size of the circle correlates the mutual information
between the pathway and the response variable y . Color of the circle and
the edge represents the significance of difference.

The significance of each node and each edge is high-
lighted on the differential MSAN network, as shown in Fig.3.
There are only a few significant difference (edges or nodes)
between polyp and healthy groups (Fig.3a). the results sug-
gested limited perturbation in polyp state. The first two
highest z-score pathways are found to be purine metabolism
(PI-8, p-value = 0.03) and primary bile acid biosynthesis
(PI-6, p-value= 0.09). Six edges are of significant difference
(p-value < 0.05), and the most significant edge (p-value =
0.007) is the edge between pyruvate metabolism (PI-26) and

primary bile acid biosynthesis (PI-6). The finding suggests
interaction between the two pathways may be altered in polyp
patients.

Most of the edges and nodes are found to be significantly
different in both the differential networks of cancer vs.
polyp (Fig.3b) and cancer vs. healthy (Fig.3c). The results
indicate metabolism of cancer state deviated greatly from
the polyp or healthy states. Fig.3c shows that five pathways
including porphyrin and chlorophyll metabolism (PI-30),
purine metabolism (PI-8), glutathione metabolism (PI-21),
glutamine & glutamate metabolism (PI-20), and arginine
biosynthesis (PI-7) exhibited greater influence in the dif-
ferential MSAN network comparing cancer versus healthy.
It implied that these pathways are differential for cancer
group with respect to the healthy group. These results are
further supported by a number of recent studies [39]–[47].
For example, Sheng and coworkers [39] found the pathway
of porphyrin and chlorophyll metabolism to be significantly
altered in CRC patients, the perturbation is also validated in
literature [40] by the genes from the pathway. Purines are
basic components of nucleotides in cell proliferation, thus
impaired purine metabolism has been associated with the
progression of cancer [41], [42]. Glutathione (GSH) is the
most abundant antioxidant found in living organisms and has
multiple functions, most of which maintain cellular redox
homeostasis [43]. Bansal and Simon [44] reviewed the recent
studies on deciphering the role of GSH in tumor initiation
and progression as well as mechanisms underlying how GSH
imparts treatment resistance to growing cancers. Glutamine
and glutamate metabolism plays key roles in tumor growth
and invasion, and this is also reported in numerous CRC
studies [45], [46]. Arginine is critical for the growth of human
cancers; it is involved in diverse aspects of tumormetabolism.
Delage and coworkers [47] showed arginine deprivation and
argininosuccinate synthetase expression in the treatment of
colorectal cancer.

2) KEY PATHWAYS IDENTIFIED BY MetaboAnalyst
MetaboAnalyst 4.0 (http://www.metaboanalyst.ca) is a pub-
licly accessible software platform commonly used in
metabolomics studies. MetaboAnalyst 4.0 provides a path-
way analysis module [48], in which the underlying network
is the real-world reaction network from the KEGG dataset,
i.e., a metabolite level network. MetaboAnalyst 4.0 evaluates
the impact of a pathway using its topological centrality on the
network, such as betweenness, closeness and degree. A larger
pathway impact signifies a more important pathway is. It also
provides some metrics based on ORA, e.g., fold-enrichment
and Fisher’s exact test. Here we identify the key pathways for
the three groups using MetaboAnalyst 4.0, as shown in Fig.4.

As shown in Fig.4a, the top five relevant pathways between
the healthy and cancer groups are: arginine biosynthesis; ala-
nine, aspartate and glutamate metabolism; D-glutamine and
D-glutamate metabolism; arginine and proline metabolism;
and histidine metabolism. The findings are different from the
results of the differential MSAN network analysis. There are
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FIGURE 4. Analysis comparing two study groups. (a) Cancer versus
healthy; (b) Cancer versus polyp; (c) Polyp versus healthy. The pathway
impact along the abscissa is calculated by topological analysis with the
relative betweenness centrality; p-values are the result of Fisher’s Exact
test.

two main possible reasons for these differences. On the one
hand, ORA screens significantly changed metabolites before
calculating pathway impact and Fisher’s exact test, and the
screening criteria affect the subsequent results. For example,
the results of ORA varied with different values of the VIP
parameter, VIP > 1.0 or VIP > 1.5. As the selection of
these thresholds is mostly empirical and there is no uniform
standard, it might impact the reliability of the ORA results.

On the other hand, the number of metabolites detected is
also a major determinant of the ORA results. This is because
the calculation of pathway impact and Fisher’s Exact test
is based on the hit number of significant metabolites in a
pathway. Thus, ORA is more likely to select pathways with
high hit ratios while underestimate pathways with low hit
ratio but high significance ratio. For example, tryptophan
metabolism varies greatly in healthy and cancer groups in
the results of differential MSAN network, but ORA did not
highlight the pathway as there are only three out of 41 possi-
ble metabolites detected in this pathway. Inositol phosphate
metabolism, which has 30 metabolites in total but only 3
detected metabolites in the current dataset, is found to be a
significant pathway based on MSAN network analysis but
also appeared to be not significant in the ORA results.Most of
the highly significant pathways in ORA contain a high rate of
detectedmetabolites. For example, in the first three pathways,
the metabolite detection rate is 50% (7 of 14) for arginine
biosynthesis, 42.86% (12 of 28) for alanine, aspartate and
glutamate metabolism, and 50% (3 of 6) for Glutamine and
Glutamate metabolism. However, the number of detected
metabolites depends mainly on the sensitivity of the analyt-
ical instrument and the experimental parameter settings, and
is independent of the disease state. The ORA algorithm relies
on the number of detected metabolites, which may lead to
bias in its selection of important pathways. We believe the
results of the proposed MSAN method may complement the
conventional ORA results, and the results from both analysis
may convergewith increasing number of detectedmetabolites
in a pathway.

3) KEY PATHWAYS IDENTIFIED BY NetGSA
Another commonly used pathway analysis tool, NetGSA
[49], incorporates network relationships into pathway anal-
ysis. When the network information is incomplete, a prob-
abilistic graphical model is used to complete the pathway
topology based on the available data, while using the exist-
ing topology information as constraints [9]. Here, we first
construct a Gaussian graphical model (GGM) [50] of the
metabolite-level network following the instruction of the
R-package of NetGSA, then conduct NetGSA method based
on the GGM model. We use samples in each comparison
group to construct network, i.e. healthy samples were used to
construct the healthy network and cancer samples were used
to construct the cancer network. We have not used pooled
samples for a single network construction due to heterogene-
ity in the data which may cause bias on the result. Fig.5 shows
the network obtained from GGM, with the top five important
pathways listed in TABLE 2.

As shown in TABLE 2, the top five selected pathways
between the healthy and cancer groups include: Butanoate
biosynthesis; Arginine biosynthesis; Purine metabolism; Cit-
rate cycle (TCA cycle); and Pyruvate metabolism, which are
different from the previous results. Compared with ORA,
NetGSA incorporates the network structure of metabolites
and the information of network structure is constructed using
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FIGURE 5. Metabolite level network by the Gaussian graph model
approach. (a) Cancer versus healthy; (b) Cancer versus polyp; (c) Polyp
versus healthy. Points in black are metabolites which belong to more than
one pathway. For the other points, those with same color and same
marker are the metabolites from a same pathway.

a propagated effect on each other metabolite through the
influence matrix. This approach leads to more biologically
meaningful results. However, NetGSA relies on the given
network structure and the parameters in GGM. It is com-
mon that the metabolites in a given pathway cannot be fully
detected in a metabolomics analysis. Thus, it is a challenging
issue to construct a constrained network and estimation of a
robust and meaningful GGM network in NetGSA. In our pro-
posed method, instead of limiting the analysis to the metabo-
lite level, we provide further analysis at the pathway level.

TABLE 2. Top five important pathways identified by NetGSA.

The pathway interaction is constructed using estimation of
mutual information and DPI, which not only took the non-
linear effect into account but also alleviated the background
network information.

V. CONCLUSION
Network-based pathway analysis represents a new genera-
tion of pathway analysis methods which involves network
construction and topology analysis. To date, the number of
detected metabolites is still far lower than the actual number
due to limitations inherent in the analytical platforms used in
metabolomics. Thus, it remains a challenge to identify and
interpret the differential pathways based on the limited num-
ber of metabolites. The results of the identified differential
pathways may also differ based on the selected methods. In
addition, the network-based pathway analysis methods cur-
rently in use are mainly based on metabolite-level networks,
and the connections and interactions between pathways are
often not taken into consideration.

In the current study, we develop the MSAN-based analysis
method and apply to a published CRC metabolomics dataset.
The method constructed a MSAN network where the path-
way is represented as a node, and the irreducible statistical
dependency between two pathways as an edge. From the per-
spective of biological information, the MSAN network may
provide useful insights into the linkages between pathways.
In addition, disease-related pathways can be evaluated by
differentialMSAN network analysis between disease patients
and the controls. The results from the analysis of a CRC
metabolomics dataset suggest that MSANmay reflect impor-
tant biological states of the samples set. MSAN may help
identify pathways that have a greater impact on the network
and provide insight into changes in pathways across different
disease states.
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