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ABSTRACT Large-scale solar photovoltaic (PV) plants play an essential role in providing the increasing
demand for energy in recent time. Therefore, in the purpose of achieving the highest harvested power
under the partial shading conditions as well as protecting the PV array from the hot-spot calamity, the
PV reconfiguration strategy is established as an efficient procedure. This is performed by redistribution
of PV modules according to their levels of shading. Motivated by this, the authors in this article have
introduced a novel population-based algorithm that is known as marine predators algorithm (MPA) to
restructure the PV array dynamically. Moreover, a novel objective function is introduced to enhance the
algorithm performance rather than utilizing the regular weighted objective function in the literature. The
effectiveness of the proposed algorithms based on the novel objective function is evaluated using several
metrics such as fill factor, mismatch losses, percentage of power loss, and percentage of power enhancement.
Besides, the obtained results are compared with a regular total-cross-tied (TCT) connection, manta ray
foraging optimization (MRFO), harris hawk optimizer (HHO) and particle swarm optimizer (PSO) based
reconfiguration techniques. Furthermore, to demonstrate the suitability of the proposed methods, large scale
PV arrays of 16 × 16 and 25 × 25 are considered and evaluated. The results reveal that MPA enhanced
the PV array power by percentage of 28.6 %, 2.7 % and 5.7 % in cases of 9 × 9, 16 × 16 and 25 × 25 PV
arrays, respectively. The comprehensive comparisons endorse thatMPA shows a successful shade dispersion;
hence the number of multiple peaks in the PV characteristics has reduced, and high values of power have
been harvested with least mean execution time in comparison with PSO, HHO and MRFO. Moreover, the
Wilcoxon signed-rank test has been accomplished to confirm the reliability and applicability of the proposed
approach for the PV large scale arrays as well.

INDEX TERMS Renewable energy, energy efficiency, PV reconfiguration, partial shading, marine predators
algorithm, partial shading, optimization.

I. INTRODUCTION
In recent years, research on extraction of maximum power
from a photovoltaic (PV) system has been focused on
dynamic change of irradiation and temperature condi-
tions [1], [2]. This enhanced power generation helps to
maximize the efficiency of a PV plant and reduces the cost

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiqing Wen .

per unit of power generation. Among the various renewable
energy resources, solar PV has attained high priority because
of its abundance and availability throughout the year. In addi-
tion, solar PV has been widely used in various applications
and it is preferred widely in remote locations. The efficiency
of solar PV decreases because of factors such as irradiation,
temperature, non-linearity of PV, and partial shading. Partial
shading occurs mainly because of passing clouds, building
shadows, dust and bird droppings, manufacturing defects,
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and nonuniform aging of PV modules [3]. Because of partial
shading, the power generated by PV systems installed in
buildings can be reduced by 5 to 10% [4], with a reduction
of 3 to 6% in the case of highly rated plants [5].

To overcome the limitations of partial shading, various
authors have proposed different types of maximum power
extraction techniques, such as multilevel inverter based
maximum power point tracking (MPPT) [6], distributed
MPPT techniques [7]–[9], and algorithmic based DC-DC
converter MPPT [10]–[12]. These methods performed well
in individual. However, each method has limitations. For
example, inverter based and distributed MPPT techniques
require a complex control system, and each PV module
used an individual inverter will increase costs [7], [13].
To overcome these limitations, array configuration tech-
niques were introduced in [14]–[16]. Among the previ-
ously discussed methods, PV array configuration is the
most economical and extensively used method. The var-
ious basic configuration techniques are series, parallel,
series-parallel (SP), total-cross-tied (TCT), honeycomb (HC)
and bridge-link (BL) [17]. The authors in [18], followed a
probabilistic approach to reduce shade losses for SP, TCT, and
BL configurations. In [19], by analyzing various performance
parameters among above saidmethods, the authors confirmed
that the TCT configuration gives superior performance and
minimizes mismatch losses in comparison with the basic
configurations. However, the major drawback in TCT is that,
the output current generated by the PV array is limited, when
the maximum number of PV modules in row are shaded [20].
With this motivation, the authors proposed various recon-
figuration techniques, such as adaptive, static, and dynamic
reconfiguration, to diffuse the shade equally over the entire
PV array. This enhances power generation and reduces the
mismatch losses.

In [21], the authors proposed an adaptive reconfiguration
technique to lower the partial shading effect. In this tech-
nique, the PV array is separated into adaptive and fixed
parts through a switching matrix. This follows a simpler
control technique; however, the authors failed to propose this
method for a greater number of re-configurable columns.
In addition, this method requires high number of current
and voltage sensors and switches. This increase the system’s
cost [22]. To minimize cost and complexity, static recon-
figuration techniques were introduced. The notable static
reconfiguration techniques are Su Do Ku [22], optimal Su
Do Ku [23], improve Su Do Ku, futoshiki [24], compe-
tence square (CS) [25], dominance square (DS) [26], and
the Zig-Zag scheme [27]. Other innovative rearrangements
for fixed reconfiguration are presented in [28], [29]. Further-
more, an optimal fixed reconfiguration technique is proposed
by reducing row spacing between arrays in [30]. Another
method based on an odd-even structure for TCT-configured
systems is presented in [31]. A new static reconfiguration
technique for 5 × 5 PV array is proposed in [32].

In static techniques, the reconfiguration takes place based
on puzzles. As per the puzzle output, the positions of the PV

modules will be interchanged without altering electrical con-
nections. Therefore, these methods require lengthy cables,
more skilled technicians, and laborious work. Because of this,
these methods are not preferred in real time, even though they
achieve the best performance.

Dynamic and electrical array reconfiguration techniques
were also introduced to reduce the partial shading effect.
In these techniques, the reconfiguration of PV modules
takes place based on the switching signals received from
the switching matrix. According to the switching signals,
the connections between PV modules will be interchanged
without altering the physical locations of the PV modules.
This technique is implemented at first for grid-connected PV
application in [14]. It works based on principle of reduc-
ing the index of irradiance equalization. Another dynamic
reconfiguration technique based on the irradiance equaliza-
tion method is presented in [33]. In [20], the reconfiguration
is treated as a mixed integer quadratic programming prob-
lem, and a branch-and-bound algorithm is used to find the
optimal reconfigured pattern. This method is time consuming
and fails to implement in real-time applications. The authors
in [34] introduced rough set theory to dynamically reconfig-
ure the SP connected PV array to maximize the power gener-
ation. Improved dynamic programming methods, such as the
smart choice algorithm and munkres assignment algorithm,
were discussed in [35] for effective reconfiguration.

Further, to improve the effectiveness of the dynamic recon-
figuration techniques and for extraordinary improvement of
meta-heuristic optimization algorithms, speaks to the driv-
ing force behind the search for optimal reconfiguration of
PV modules. With this motivation, authors have introduced
optimization-based reconfiguration techniques for the appli-
cation of PV, namely, genetic-algorithm (GA) [16], particle
swarm optimization (PSO) [36], and the grasshopper opti-
mization algorithm [1], and different schemes based on evo-
lutionary algorithms are proposed in [20]. In [16], [36], the
authors reconfigured the partially shaded PV modules in an
array in such a way that the current difference between rows
of the PV array isminimized. Therefore, the power generation
can be enhanced. The previously discussed methods exhibit
limitations such as consuming more time for convergence to
reconfigure the system. In addition, the PSO algorithm may
converge prematurely and become trapped in local optima.
In complex problems, defining initial parameters is diffi-
cult [37]. Furthermore, the quality of the solution deteriorates,
as the population size increases in GA. Recently modified
harris hawks optimizer (MHHO) has been proposed to solve
these issues [38]. Whereas these algorithms have a common
drawback, that is utilizing a weighted objective function
to optimize the shaded PV array reconfiguration problem.
With unreliable selection for the values of the weights, the
algorithms are trapping with the local optimum. Therefore,
authors motivated to introduce a novel objective function to
tackle this issue.

Therefore, this article proposes new reconfiguration tech-
niques to enhance maximum power generation from a PV
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plant based on a novel objective function. The main outcomes
of this article are as follows:

• The authors introduce a novel objective function to avoid
the demerits of the weighted objective function which is
commonly used in the literature.

• Two Novel population-based algorithms named marine
predators algorithm (MPA) and manta ray foraging opti-
mization MFRO) have been proposed to be applied on
PV reconfiguration strategy.

• A comparison between the novel objective function and
the weighted fitness function is carried out to demon-
strate the impact of the novel one on the performance of
the selected algorithms.

• Effectiveness of the proposed techniques is evaluated by
considering two shaded patterns on 9 × 9 PV array.

• To verify the superiority of the proposed population-
based algorithms, efficiency metrics are calculated and
correlated with the TCT and other published methods.

• Large scale PV arrays in ranges of 16× 16 and 25× 25
have been utilized to assess the quality and reliability of
the proposed approach.

• The proposed algorithm is compared with the most
recently published techniques of PV reconfiguration
approach, that are PSO, and HHO based on several
measures including mismatch power loss, fill factor,
percentage power loss, and mean execution time.

• Wilcoxon signed rank test has been accomplished
among the MPA and MRFO, HHO, and PSO to assess
the consistency and the reliability of the proposed tech-
nique.

The remaining sections of the manuscript are formulated
as follows. Section II describes the modeling of the PV mod-
ule. The representation of TCT connected PV array and its
current and voltage calculations are presented in Section III.
The formulation of objective function for the proposed tech-
niques are given in Section IV. Descriptions of the pro-
posed algorithms and implementation steps are presented in
Section V. The obtained results and discussion are provided
in Section VI. Extensive analysis with large scale PV array
structures are presented in Section VII. Finally, the main
conclusion is detailed in Section VIII.

II. MODELING OF PV MODULE
Modeling of a solar PV cell is an essential task in its proper
design which lead in turn to improving the effectiveness
of the whole PV system. An accurate PV cell can emu-
late the real-time characteristics of any PV system. How-
ever, the PV cell modeling is a difficult task because of
the cell’s nonlinearity [39]. Therefore, various authors have
focused on developing an accurate model that can help in
improving the performance of the PV plant. By perform-
ing numerous analyses and using various optimization algo-
rithms, researchers have developed a trio of diode PVmodels:
the single-diode model [40], the two-diode model [41], [42],
and the three-diode model [43]. Among the three diode PV

FIGURE 1. Electrical circuit of single diode PV model.

models, the single-diode PV model is preferred due to its
simplicity, easy of design, and less parameters involved. The
electrical circuit diagram of this PV model is presented in
Fig. 1, which comprises the current source Ipv connected
antiparallel to diodeD1, series and shunt resistance are Rs, Rp
respectively. Similarly, the two-diode and three-diode models
consist of circuits with two and three diodes, respectively.
The current generated by each PV model can be estimated
by applying Kirchhoff’s current law to its equivalent circuit.
The total current generated by the single-diode PV model is
given as follows:

I = Ipv − ID1 − Ip (1)

where Ipv is the current produced by a PV source, ID1 is a
current flowing through the diode, and Ip is a current across
the shunt resistance.

By substituting ID1 and Ip, the current equation can be
written as follows:

I = Ipv − I01

(
exp

(
VD1
a1Vt

− 1
))
−

(
V + IRs
Rp

)
(2)

where Vt is the thermal voltage and can be depicted as NsKT
q ,

where k is the Boltzmann constant = 1.3805 − 10−23J/K ,
T is the cell temperature in Kelvin, q is the electron charge
= 1.6 − 10−19C , Ns is the number of cells in series, a1 is
the ideality factor, and I01 is the diode D1 leakage current.
The power generated by a PV system greatly depends on
environmental conditions. Therefore, the current generated
by a PV source can be mathematically represented as given
in Eq. 3.

Ipv =
(
G
G0

)
[Isc + ki(T − T0)] (3)

where Isc represents the short-circuit current at the stan-
dard test condition (STC), that is, G0 = 1000W/m2 and
T0 = 25◦C . G and T are considered actual irradiation and
temperature values, respectively, and ki indicates the current
coefficient factor.

III. TCT-CONNECTED PV ARRAY
TCT is the most widely used connection scheme to achieve
the required amount of power. Researchers have confirmed
that a TCT-connected system shows extensive performance
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FIGURE 2. TCT connected 9 × 9 PV array structure and modelling of PV module with P-V characteristics.

compared with SP, HC, and BL connections [19], [20]. The
TCT connection is framed by connecting cross-ties across
each row of an SP configuration. In this article, the authors
consider a 9 × 9 TCT PV array for verification of the
proposed methods, as shown in Fig. 2. This TCT-connected
system consists of 9 rows and 9 columns. Each PV module is
indicated by m, n, where m and n indicate rows and columns,
respectively.

The total current and voltage of a TCT connected system
can be calculated as given in Eq. 4 and Eq. 5 for 9 × 9 array,
respectively.

IRm =
9∑

n=1

(
Gmn
Gs

IMmn

)
, m = 1, 2, 3, . . . ., 9. (4)

Varray =
9∑

m=1

VMm (5)

where IRm is the PV arrays current produced at row m, Varray
is the total voltage that appears across terminals of the PV
array, VMm and IMmn are the PV module voltage and current
at row x at the standard Gs = 1000 W

m2 ), respectively.
To achieve maximum power from the considered PV array,

the incident shadow should disperse regularly over the surface
of the PV modules. The uniform distribution for the partial
shading phenomenon cannot be satisfied by using the TCT
arrangement. Moreover the number of the utilized switches
in the TCT connection is so huge that reach for 2 × (M) ×
(M+1)−2+2×N× (M×N -M)whereM,N the total number
of rows and columns. Therefore, the authors motivated to
propose a simpler and more flexible approach to provide
the optimal switching matrix interconnection with minimal
number of switches based on meta-heuristic optimization
algorithms based on the depicted block diagram in Fig. 3.

FIGURE 3. Structure of optimization algorithms based on switching
matrix combination.

The details of the proposed algorithms and the reconfigu-
ration optimization process are presented in the next sections.

IV. OBJECTIVE FUNCTION DEFINITION
Defining the objective function is one of the main require-
ments for the optimization algorithm to start the process. For
the PV array reconfiguration problem, to harvest maximum
power with a regular distribution for the shadow on the PV
array surface, authors proposed a novel objective function as
a ratio among the total of the produced PV array power and
the absolute error among the highest and lowest values of the
rows current that can be framed as follows:

Maximize (obj(i)) =
Arraypower
|Imax − Imin|

(6)

where obj(i) represents the fitness value of the ith element in
the present population. Imax , and Imin are the maximum and
minimum values of the currents in the rows current vector I
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= [I1, I2, I3, . . . ., I9]. Arraypower is the total array power, and
it can be defined as given in Eq. 7:

Arraypower =
X∑

m=1

IRm × Vm (7)

where IRm and Vm are the current and voltage of the PV array
for the mth row, respectively. The symbol X refers to the total
number of the rows of the considered array, for example X =
9 for 9 × 9 PV array and 6 for 6 × 20 PV array.
The principle target of the proposed objective function is

to maximize the harvested PV array power with minimal
deviation among the maximum and minimum values of rows
current to guarantee a regular shade distribution on the PV
surface (one peak (P-V) characteristic will be noted).

V. PROPOSED POPULATION-BASED ALGORITHMS
The population based algorithms have established the supe-
riority of theirs in resolving nonlinear multi modal opti-
mization problems as opposed with specific the conventional
algorithms. So, in the present work, several innovative and
techniques are applied for PV reconfiguration to appraise the
responses of theirs and suggest the best method. As the no-
free-lunch principle states that no entity algorithm is viewed
as a great method for every search engine optimization dis-
putes [44], which motivated the authors to check many pop-
ulation based algorithms. The specifics and implementation
of the proposed algorithms for the application PV reconfigu-
ration are discussed in the following subsections.

A. MARINE PREDATORS ALGORITHM
The marine predators algorithm (MPA) is a fairly recent sug-
gested algorithm inspirited by the actions of predator and prey
in nature [45]. InMPA, the prey as well as predator are viewed
as search representatives, since the predator searching for the
prey, meanwhile the prey itself looking for its food. MPA is
equally as all of the meta heuristic techniques (MHs) began
by arbitrary set of solutions as an initialization. Then those
solutions are customized based upon the primary framework
of the algorithm.

The initial solutions are determined randomly dependant
on the search space as follows;

Z = LB+ r1 × (UB− LB) (8)

where, the LB and UB refer to the upper and lower borders in
the search landscaping, r1 ∈ [0, 1] is the arbitrary number.
As explained early, the prey and predator in MPA are

considered as search agents therefore there are two primary
matrices named best/elite matrix (matrix of probably the
fittest predators) and also the prey matrix must be iden-
tified. The defined two matrices are usually represented
mathematically as follows:

Elite =


Z1
11 Z1

12 . . . Z1
1d

Z1
21 Z1

22 . . . Z1
2d

. . . . . . . . . . . .

Z1
n1 Z1

n2 . . . Z1
nd

 , (9)

Z =


Z11 Z12 . . . Z1d
Z21 Z22 . . . Z2d
. . . . . . . . . . . .

Zn1 Zn2 . . . Znd

 , (10)

Finding optimal solutions is the primary goal of MHs.
Therefore the first arbitrary set of solutions are updated
depending on the algorithm structure. The velocity ratio
among the predator and the prey is the main factor in trans-
mitting the algorithm from phase to another. In MPA, the
large-velocity ratio is the notable feature in the first stage
while the unity and low ratio are the observable marks for
the second and third phases. The specifics of each phase are
reviewed in the following:
1) Phase 1: diversification phase (high-velocity ratio)

This stage devotions for finding the search space
(exploration stage) therefore it is performed for the first
third of the total number of development (i.e., 1

3 tmax).
In this stage the prey moves very fast searching for its
food meanwhile the predator stands without moving.
Faramarzi et al. [45] modeled this stage based on the
following formula:

Si = RB
⊗

(Elitei−RB
⊗

Zi), i = 1, 2, . . . , n (11)

Zi = Zi + P.R
⊗

Si (12)

where, R ∈ [0, 1] and P = 0.5 serve as a vector of uni-
form random numbers and a constant number, respec-
tively. RB is a random vector that refers to the brownian
motion.

⊗
indicates the process of element-wise mul-

tiplications.
2) Phase 2: Unit velocity ratio This phase is a trans-

portable stage out of the diversification to intensifica-
tion where both prey and predator action with practi-
cally identical velocity looking for the foods of theirs.
This phase is the center stage of the algorithm and it is
implemented when 1

3 tmax < t < 2
3 tmax . In this case, the

best tactic for the predator to follow brownian while the
prey to move with lévy flight. For this particular phase
Faramarzi et al. [45] divided the population for 2 halves
and applied Eqs. (13)-(14) to emulate the activity of the
first one half of the population and Eq. (18)-(19) for the
2nd half as outlined below.

Si = RL
⊗

(Elitei−RL
⊗

Zi), i = 1, 2, . . . , n (13)

Zi = Zi + P.R
⊗

Si (14)

where,RL represents the randomnumbers follows Lévy
distribution. Eq. (13)-(14) are applied to the first half of
the population that represents the exploitation. While
for the second half of the population follows the fol-
lowing equations.

Si =RB
⊗

(RB
⊗

Elitei−Zi), i = 1, 2, . . . , n (15)

Zi = Elitei + P.CF
⊗

Si, (16)

CF = (1−
t

tmax
)2

t
tmax

) (17)
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FIGURE 4. Flowchart of MPA technique.

where, CF is parameter that controls the step size of
movement for predator.

3) Phase 3: Intensification (low-velocity ratio) This
stage may be the last phase in the search process. In this
phase, the predator moves faster than the prey that is
why it follows Lévy during updates its position. This
stage executed on the last third of the iteration amounts
(t > 2

3 tmax) which defined as:

Si = RL
⊗

(RL
⊗

Elitei − Zi), i = 1, 2, . . . , n

(18)

Zi = Elitei + P.CF
⊗

Si, CF = (1−
t

tmax
)2

t
tmax

)

(19)

4) Eddy development and fish aggregating devices’
outcome (FADS) The surrounded environment has
a huge effect on the act of the creature, thus
Faramarzi et al. [45] considered the external impacts
from the environment such as the eddy formation or
fish aggregating devices (FADs) effects to avoid trap-
ping the MPA in the local optimum solutions. The
mathematical formula for this stage can be modeled as
below:

Zi =


Zi + CF[Zmin + R

⊗
(Zmax − Zmin)]

⊗
U

r5 < FAD
Zi + [FAD(1− r)+ r](Zr1 − Zr2)
r5 > FAD

(20)

In Eq. (20), FAD = 0.2, and U is a binary option and
this is performed by creating arbitrary solution and then
converted it into binary consuming threshold 0.2. r ∈
[0, 1] symbolizes an arbitrary number. r1 and r2 is the
list of the prey.

5) Marine memory Marine predators have a powerful
memory of the place in which they have been effec-
tive in foraging. This particular function is applied
by saving the optimal solutions in each iteration. The
saved solutions are updated upon better solutions are
identified.

The flowchart of the MPA algorithm is depicted in Fig. 4 to
summarize the structure of the proposed algorithm.

VI. SIMULATIONS AND RESULTS
The framework of this section is divided into two stages;

1) The first one is a comparison among the results pro-
vided by merging the weighted objective function as
well as the novel one with the proposed algorithms. It is
presented to clarify the applicability of the proposed
objective function and its impact on the algorithms. For
fair comparison in this part, both of PSO and HHO are
implemented on the novel objective function to be able
to compare their results with the published ones based
on the weighted objective function published in the
manuscripts of Babu et al. [10] and Yousri et al. [38].

2) Secondly, a comparison among the algorithms is per-
formed to determine the best algorithm for the PV
reconfiguration approach and the results are verified
through several analyses.

The proposed algorithms are implemented with population
size and iterations of 20, and 100, respectively for 30 indepen-
dent runs. All the simulations and analyses are implemented
and computed on ‘‘MATLAB 2018’’ platform on a laptop
with Core i7-6500U CPU, 2.5 GHz of speed and 4 GB of
RAM. The electric specification of the considered PVmodule
of the arrays are as follow: open circuit Voltage (Vocn) is
44.2 (V), and short circuit current (Isc) is 5.2 (A). Temperature
Coefficients: Kv = −0.39851 ×Vocn and Ki = 0.015×Isc.
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A. COMPARISON BETWEEN THE NOVEL OBJECTIVE
FUNCTION AND THE WEIGHTED OBJECTIVE FUNCTION IN
LITERATURE
In this section, a comparison between the results of the
algorithms based on the weighted objective function and the
novel objective function of Eq. 6 is performed to evaluate the
influence of the novel objective function on the algorithms
performance. Therefore, two shade patterns of 9× 9 PV array
are studied. The shade patterns are classified as follows:

1) Pattern 1: short broad shading where the surface of the
PV array is subjected to five levels of sun illumination
which are equal 900 W/m2, 800 W/m2, 600 W/m2,
400 W/m2, and 200W/m2.

2) Pattern 2: long broad shading where the first six
columns in the array receive 900 W/m2 and the others
are subjected to 800W/m2, 700W/m2, 400W/m2, and
300 W/m2.

The shaded PV array in a TCT arrangement and the
obtained reconfigured structure by MPA, MRFO, PSO, and
HHO based on weighted objective function and the novel
one are depicted in Figs. 5(a), 5(b) and 6(a), 6(b) for pat-
tern 1 and 2, respectively. The corresponded current, voltage
and power values for the exhibited patterns are calculated in
Tables 1 and 2 for pattern 1 and 2, respectively.

The following lines clarify the methodology of calculating
the rows current, voltage and power for pattern 1 of Figs. 5(a)
and 5(b).

• The calculation of row currents for the TCT scheme can
be given as follows:

– For the first 5 rows, the currents have the same
value, which are computed as shown:
IR1 to IR5 = 9

(
900
1000

)
IM = 8.1 IM .

– Row currents for 6th row can be given as follows:
IR6 = 9

(
800
1000

)
IM = 7.2 IM .

– Row currents for rows 7, 8, and 9 can be given as
follows:
IR7 = IR8= IR9= 3

(
600
1000

)
IM + 3

(
400
1000

)
IM + 3(

200
1000

)
IM = 3.6 IM .

• The calculation of row currents for the PSO method
based on weighted objective function as in Fig. 5(a) can
be given as follows:

– The row current for the 1st row can be calculated as
IR1 = 5

(
900
1000

)
IM + 1

(
800
1000

)
IM +2

(
600
1000

)
IM + 1(

200
1000

)
IM = 6.7 IM .

– The row current for the 2nd row can be calculated
as
IR2 = 4

(
900
1000

)
IM + 1

(
800
1000

)
IM +2

(
600
1000

)
IM + 1(

400
1000

)
IM + 1

(
200
1000

)
IM = 6.2 IM .

– The row current for the 3rd row can be calculated as
IR3 = 5

(
900
1000

)
IM + 1

(
800
1000

)
IM +1

(
600
1000

)
IM +1(

400
1000

)
IM +1

(
200
1000

)
IM = 6.5 IM .

– The row current for the 4th row can be calculated as
IR4 = 5

(
900
1000

)
IM + 1

(
800
1000

)
IM +2

(
400
1000

)
IM +

1
(

200
1000

)
IM = 6.3 IM .

– The row current for the 5th row can be calculated as
IR5 = 4

(
900
1000

)
IM + 2

(
800
1000

)
IM +1

(
600
1000

)
IM +

1
(

400
1000

)
IM + 1

(
200
1000

)
IM = 6.4 IM .

– The row current for the 6th row can be calculated as
IR6 = 5

(
900
1000

)
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– The row current for the 9th row can be calculated as
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• The calculation of row currents for the PSO method
based on novel objective function as in Fig. 5(b)can be
given as follows:

– The row current for the 1st row can be calculated
as
IR1 = 7
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– The row current for the 3rd row can be calculated as
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– The row current for the 4th row can be calculated as
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– The row current for the 5th row can be calculated as
IR5 = 4

(
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)
IM + 1

(
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(
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)
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2
(
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)
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– The row current for the 6th row can be calculated
as
IR6 = 7

(
900
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)
IM + 2

(
200
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)
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– The row current for the 7th row can be calculated
as
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– The row current for the 8th row can be calculated as
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)
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FIGURE 5. Dispersion of shade by employing proposed algorithms based on (a) weighted objective function, and (b) novel objective function for pattern 1.

FIGURE 6. Dispersion of shade by employing proposed algorithms based on (a) weighted objective function, and (b) novel objective function for pattern 2.
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– The row current for the 9th row can be calculated as
IR9 = 4
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• The calculation of row currents for the MPA method
based on weighted objective function as in Fig. 5(a) can
be given as follows:
– The row current for the 1st row can be calculated as
IR1 = 6

(
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)
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– The row current for the 2nd row can be calculated
as
IR2 = 5
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)
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(
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)
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6.5 IM .
– The row current for the 3rd row can be calculated as
IR3 = 5
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– The row current for the 4th row can be calculated as
IR4 = 6

(
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)
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(
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)
IM =

6.6 IM .
– The row current for the 5th row can be calculated as
IR5 = 2
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1
(
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– The row current for the 6th row can be calculated
as
IR6 = 6

(
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IM + 1

(
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)
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(
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)
IM +

1
(
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– The row current for the 7th row can be calculated as
IR7 = 5

(
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(
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)
IM+ 2

(
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)
IM + 1(

200
1000

)
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– The row current for the 8th row can be calculated as
IR8 = 6

(
900
1000

)
IM + 1

(
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1000

)
IM +2

(
200
1000

)
IM =

6.6 IM .
– The row current for the 9th row can be calculated as
IR9 = 4

(
900
1000

)
IM + 1

(
800
1000

)
IM +2

(
600
1000

)
IM +2(

400
1000

)
IM = 6.4 IM .

• The calculation of row currents for the MPA method
based on novel objective function as in Fig. 5(b) can be
given as follows:
– The row current for the 1st row can be calculated as
IR1 = 4

(
900
1000

)
IM + 2

(
800
1000

)
IM +2

(
600
1000

)
IM+1(

200
1000

)
IM = 6.6 IM .

– The row current for the 2nd row can be calculated
as
IR2 = 6

(
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1000

)
IM + 1

(
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)
IM +1

(
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)
IM +1(

200
1000

)
IM = 6.6 IM .

– The row current for the 3rd row can be calculated as
IR3 = 6

(
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1000

)
IM + 1

(
600
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)
IM +1

(
400
1000

)
IM +1(

200
1000

)
IM = 6.6 IM .

– The row current for the 4th row can be calculated as
IR4 = 4

(
900
1000

)
IM + 2

(
800
1000

)
IM +1

(
600
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)
IM +1(

400
1000

)
IM +1

(
200
1000

)
IM = 6.4 IM .

– The row current for the 5th row can be calculated as
IR5 = 6

(
900
1000

)
IM + 2

(
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1000

)
IM + 1

(
200
1000

)
IM =

6.4 IM .
– The row current for the 6th row can be calculated as
IR6 = 4

(
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(
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)
IM + 1

(
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)
IM +

1
(

400
1000

)
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(
200
1000

)
IM = 6.4 IM .

– The row current for the 7th row can be calculated as
IR7 = 5

(
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(
800
1000

)
IM+ 1

(
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(
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– The row current for the 8th row can be calculated as
IR8 = 6

(
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IM + 1

(
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)
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(
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IM +1(
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1000

)
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– The row current for the 9th row can be calculated as
IR9 = 4

(
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)
IM + 2

(
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)
IM +1

(
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400
1000

)
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(
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1000

)
IM = 6.4 IM .

By following the above procedure the row current values
for the other two methods (HHO, MFRO) are calculated
and presented in Table 1. Similarly, rows current values for
pattern 2 also calculated and listed in Table 2.

The listed power values show that the algorithms based
on the novel objective function achieves higher harvested
power from the considered array for the two shaded pat-
terns. The PSO based on the weighted objective function
provides 55.8 VM IM for pattern 1 and 58.5 VM IM for pat-
tern 2 whilst it achieves power values of 56.7 VM IM and
62.1 VM IM in case of applying the novel objective func-
tion. Similarly, HHO, MRFO and MPA based on the novel
objective function boost the values of the harvested PV
power from 56.7 VM IM and 62.1 VM IM to 57.6 VM IM and
63 VM IM for the considered shadow patterns, respectively.
Accordingly, employing the objective function of equation
6 enhances the performance of the optimization algorithms
in discovering the search space efficiently. Therefore authors
recommend it for the reconfiguration PV array optimization
problem as not only the issues of selecting the values of
the adequate weights in the weighted obj has been tackled
but also it helped the algorithms to provide higher harvested
power.

B. COMPARISONS AMONG THE PROPOSED ALGORITHMS
From the previous subsection, the novel objective function
confirms its remarkable impact on the algorithms perfor-
mance as a higher harvested PV power values are obtained
based on their corresponded patterns. In this part a compari-
son among the algorithms results based on the novel objective
function is carried-out to demonstrate the best algorithm.
In this part the P-V, I-V characteristics and mean execution
time of the proposed algorithms are considered. Moreover,
several quality measures, namely mismatch power loss, fill
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TABLE 1. Analysis of TCT, PSO, HHO, MPA and MRFA for 9 × 9 PV array shade pattern 1 in the Ref [36] based on the weighted objective function and the
novel one.

TABLE 2. Analysis of TCT, PSO, HHO, MPA and MRFA for 9 × 9 PV array shade pattern 2 in the Ref [36] based on the weighted objective function and the
novel one.

factor, and percentage of power loss are taken into consider-
ation. The mathematical formulas of the used factors can be
written as follows:

• Mismatch power loss: (PMismatchloss) = PMaxIC -
PGMPPPSC

• Fill factor: (FF) = (VmpImp)PSC
VOC ISC

• Percentage of power loss: (%Ploss)=
GMPPSTC−GMPPPSC

GMPPSTC
Here, IC is a fully irradiated condition. PMax(IC)

and PGMPP(PSC) are the generated maximum power val-
ues during the fully irradiated condition and at PSC,
respectively. Imp and Vmp are the maximum produced
values of current and voltage under the PSC, respec-
tively. ISC and VOC represent the short circuit current
and open circuit voltage, respectively. GMPP at STC
and PSC are represented by GMPPSTC and GMPPPSC ,
respectively.

Figures 10 and 8 depicts several factors for comparing
the proposed algorithms that included the accomplished I-V
of Figs. 7(a)-7(b) and P-V characteristic’s for the shade
patterns of Figs. 5(b) and 6(b), respectively as well as the
mismatched power loss of Figs.7(c)-8(c), the fill factor of
Figs. 7(d)-8(d), the power loss values of Figs. 7(e)-8(e) and
the mean execution time 7(f)-8(f) by the studied algorithms.
The figures show that implementing the meta-heuristic algo-
rithms for re-configuring the shaded arrays minimizes the

mismatch power loss and tackle the multi-peak issue in the
array characteristics. The MPA, MRFO and HHO based
approach show the same response from the point of achiev-
ing maximum power value with regular distribution for
the shadow. Hence, these approaches provide uni peak PV
characteristics with highest fill factor values and lowest
percentage power loss in comparison with PSO and TCT
arrangements. Whereas MPA has the first rank in achieving
the least mean execution time across the two studied pat-
terns. Consequently, MPA is considered as the recommended
one.

For validating the superiority of MPA statistically, the
Wilcoxon signed rank test is computed to show a pairwise
comparison among any two algorithms based on the follow-
ing steps [46], [47];

1) Report themaximum power values over number of runs
(30) for all the considered algorithms (MPA vs PSO,
MPA vs HHO, and MPA vs MRFO).

2) Compute R+ that refers to the sum of ranks for
runs in which MPA shows superiority in comparison
with the other counterparts (PSO, HHO, or MRFO).
By another means, the number of ranks where MPA
approach generates a higher values of PV array
power.

3) Calculate R− that refers to the sum of ranks for runs
in which the counterparts (PSO, HHO, or MRFO)
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FIGURE 7. The algorithms approaches performances for pattern 1 based on (a) I-V characteristic, (b) P-V characteristic, (c) Miss-match power loss,
(d) Fill factor, (e) percentage of power loss and (f) Execution time.
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FIGURE 8. The algorithms approaches performances for pattern 2 based on (a) I-V characteristic, (b) P-V characteristic, (c) Miss-match power loss, (d) Fill
factor, (e) percentage of power loss and (f) Execution time.
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TABLE 3. Wilcoxon signed rank test results of MPA vs PSO, HHO, or MRFO for 9 × 9 PV array.

TABLE 4. Analysis of TCT, PSO, HHO, MPA and MRFA for 16 × 16 PV array shade based on the objective function of Eq.6.

outperforms MPA. By another means, the number of
ranks where MPA approach provides a lower values of
PV array power.

4) The p-value is calculated to reveal the significance
difference among the proposed approaches in a sta-
tistical hypothesis test. The smaller the p-value, the
stronger evidences against the null hypothesis (reject
null hypothesis, discovering a significant difference
among the pairwise compared algorithms).

In this work, null hypothesis is valid when H0 = ‘Yes’, with
a significance level= 0.05 (p-value > 0.05), that indicates no
significant difference between the compared techniques in the
performance (both have the same behavior). While if H0 =

‘No’, there is a significant difference between the techniques
(p-value < 0.05).

Table. 3 summarizes the R+, R−, p-value and H0 values.
As illustrated from the table, the MPA approach exposes a

TABLE 5. Wilcoxon signed rank test results of MPA vs PSO, HHO,
or MRFO for 16 × 16 PV array.

significant improvements in comparison with PSO, HHO,
and MRFO where the number of ranks where the MPA
shows success in providing the highest values of PV array
power more consistent than the other algorithms. As the
p − values are less than 0.05 (null-hypothesis is rejected),
and the number of ranks where MPA outperforms the other
peers is the largest (R+ > R−), we can conclude that there is
a significant difference among the proposed algorithms in a
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FIGURE 9. PV array arrangement based on, TCT, PSO, HHO, MRFO, and MPA for 16 × 16 PV array.
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FIGURE 10. The algorithms approaches performances for 16 × 16 PV array (a) I-V characteristic, (b) P-V characteristic, (c) Miss-match power loss,
(d) Fill factor, (e) percentage of power loss and (f) Execution time.
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FIGURE 11. PV array arrangement based on, TCT, PSO, HHO, MRFO, and MPA for 25 × 25 PV array.
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TABLE 6. Analysis of TCT, PSO, HHO, MPA and MRFA for 25 × 25 PV array shade based on the objective function of Eq.6.

favor of MPA. For pattern 2, MPA and MRFO has the same
performance.

VII. EXTENSIVE ANALYSES WITH LARGE SCALE PV
ARRAY
Two large scale of 16 × 16 and 25 × 25 PV arrays are
considered in this part to evaluate the applicability of the
proposed approach even for large scale PV plants. Imple-
mentation of proposed techniques for large scale PV plants
proves the robustness and perfectness of the considered
algorithms.

A. THE 16 × 16 PV ARRAY
The surface of the shaded PV array receives four levels
of sun radiation with the profile of 900W/m2, 800W/m2,
700W/m2, 600W/m2, and 400W/m2. The PV array in the
TCT arrangement and the reconfigured schemes based on the
proposed algorithms are illustrated in Fig. 9. The values of
the row current values and corresponded voltage and power
have been computed as listed in Table 4.
The reported results in Table 4 confirm that theMPA-based

arrangement provides the highest value of the PV harvested
power of 211.2 Im Vm whilst the MRFO and PSO occu-
pied the second rank with providing maximum power of
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FIGURE 12. The algorithms approaches performances for 25 × 25 PV array (a) I-V characteristic, (b) P-V characteristic, (c) Miss-match power loss, (d) Fill
factor, (e) percentage of power loss and (f) Execution time.
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TABLE 7. Wilcoxon signed rank test results of MPA vs PSO, HHO,
or MRFO for 25 × 25 PV array.

209.6 Im Vm. HHO-scheme achieves maximum power
of 208 Im Vm and TCT connection exposes maximum power
of 198.4 Im Vm, consequently the TCT is not the efficient
approach for the shaded large scale PV array. By inspect-
ing the I-V and P-V characteristics of Figs. 10(a) - 10(b),
respectively one can recognize that MPA-approach tackled
the multi-peak issue with harvesting the highest PV power.
The bar plots of the mismatch power loss, fill factor (FF),
percentage power loss of Figs. 10(c) - 10(d) and 10(e) expose
that MPA-arrangement minimizes the value of the mismatch
power loss with percentage of 11.8 % in comparison with
TCT connection (where (8828.925−7788.013)∗100

8828.925 = 11.8%),
sequentially it has the highest FF value and lowest per-
centage power loss of 0.783 and 16.840%, respectively (see
Figs. 10(d) - and 10(e)). Whereas the MRFO, HHO, PSO
and TCT-arrangements achieve percentage power loss of
16.975%, 17.273%, 16.909%, and 19.09% respectively. For
themean execution time of Fig. 10(f),MPA has the least value
in comparison with PSO, HHO and MRFO. Therefore, MPA
can recommend successfully for large scale PV re configuring
system.

To intensively investigate the MPA performance the
Wilcoxon signed rank test has been computed as in Table. 5
among the proposed algorithms to clarify the reliability of the
MPA technique. The R+, R−, and p-value prove the superior-
ity of MPA in providing the consistent results across the num-
ber of independent runs consequently the null-hypothesise
has been rejected. At this end MPA confirms its quality not
only in producing the highest PV power and solving the
multi-peak issue but also in achieving the highest consistent
solutions.

B. THE 25 × 25 PV ARRAY
In the purpose of investigating the performance of the pro-
posed approach with a more complicated system, a shaded
PV array with a scale of 25 × 25 has been considered. The
surface of the studied array receives sun radiation at the levels
of 900W/m2, 600W/m2, and 400W/m2. The MPA, MRFO,
HHO, PSO are implemented to disperse the shadow levels on
the PV surface regularly to reinforce the produced PV power
of the array. The row current, voltage, and power values
are reported in Table. 6 regarding for the obtained patterns
in Fig. 11. THe harvested PV power value based on MPA
reconfiguration pattern is the highest value in comparison
with MRFO, HHO, PSO and TCT arrangements where it is
485 IMVM whereas the other meta-heuristic peers provides
482.5 IMVM and TCT connection offers 450 IMVM . For

the obtained I-V curves of Fig. 12(a) and P-V curves of
Fig 12(b), theMPA scheme tackled the appearingmulti-peaks
issue in the obtained curves with high FF and minimum
power loss and mismatch power in comparison with the other
counterparts as illustrated in Figs. 12(d), 12(e) and 12(c). For
evaluating the reliability of the MPA in providing the robust
and consistent solutions in comparison with MRFO, HHO
and PSO, the Wilcoxon signed rank has been performed as in
Table. 7. The reported R+, R−, p-value reveal the superiority
of the proposed MPA approach with a significant difference
from the other counterparts.

According for the early mentioned discussion, the MPA
proves its efficiency and superiority not only with scale
of 9 × 9 PV array but also with the largest scale of
25 × 25 PV array as well.

VIII. CONCLUSION
A regular distribution of the shadow on the surface of the
shaded PV array buttresses the array harvested power. There-
fore, in this paper, authors proposed an innovated objec-
tive function with robust and reliable optimization algorithm
named marine predators algorithm (MPA) to provide the
optimal pattern structure for three dimensions of PV arrays
which are 9× 9, 16× 16 and 25× 25. TheMPA is tested with
several shade patterns and compared with manta ray foraging
optimization (MRFO), Harris hawk optimizer (HHO) and
particle swarm optimizer (PSO) as well as the total-cross-
tied (TCT) connection. Several quality and statistical mea-
sures are computed such as mismatch power loss, fill factor,
percentage power loss as well as Wilcoxon signed rank test
to assess the performance of the proposed approach. The I-V
and P-V characteristics have been exhibited to investigate the
applicability of the proposed MPA in comparison with the
other counterparts. Moreover, the mean execution time has
been evaluated. The results reveal that MPA enhanced the PV
array power by percentage of 28.6 %, 2.7 % and 5.7 % in
cases of 9 × 9, 16 × 16 and 25 × 25 PV arrays, respectively
and a uni-peak PV characterises is achieved as well with
lowest execution time and highest consistency in the results
across the number of independent runs. Therefore, authors
recommend MPA as an efficient and applicable algorithm
for PV reconfiguration system at any dimension of PV array
structures.
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