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ABSTRACT In practice, there are many circular and non-circular signals due to multipath propagation
and various modulations. Conventional direction-of-arrival (DOA) estimation in a mixture of circular and
non-circular signals cannot distinguish two kind of signals and detect more sources than number of sensors at
the same time. This paper proposes a novel separation algorithm based on elliptic covariance matrix (ECM)
which possesses accurate DOA estimation and high degrees of freedom (DOF) with low complexity. Firstly it
estimates non-circular signals using ECMwhich contains non-circular information merely. Considering that
the virtual array generated from nested array using ECM is inconsecutive, a matrix completion method via
nuclear norm minimization is also included and as a result, the freedom degrees are further extended. On the
basis of ECM, the paper also introduces a separation algorithm through subtraction of two reconstructed
Toeplitz covariance matrix (CM). Detailed analysis and theoretically proof is presented subsequently and
DOAs of circular signals can be obtained after separation. Simulation results show that the proposed
algorithm can realize underdetermined estimation and get accurate DOAs while two kind of signals are
separated simultaneously.

INDEX TERMS Direction-of-arrival, nested array, non-circular signals, separation technique, matrix
completion.

I. INTRODUCTION
Direction-of-arrival estimation is a significant problem in
array signal processing [1]. It is also an important signal met-
ric in target localization based on antenna array [2], [3]. DOA
estimation has been studied extensively since multiple signal
classification (MUSIC) [4] was proposed in 1986. In addi-
tion, researchers have developed numerous high-resolution
algorithms like estimating signal parameters via rotational
invariance techniques (ESPRIT) [5], propagator method [6]
and so forth. However, these traditional algorithms have not
considered properties of the impinging sources.

Recently, several works considering about non-circularity
have been proposed to utilizemore available information. The
array output data can be expanded by combining received
data vector and its conjugate together. Thus, the array aper-
ture and degrees of freedom can get great improvement.
Moreover, P. Gupta developed a method for non-circular
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signals estimation based on fourth order cumulant [7]. Other
researchers studied the effect which multipath propagation
projects onDOA estimation and proposed an efficient method
for coherent non-circular signals [8]. Many studies related
to non-circular signals have been proposed, but they cannot
obtain high accuracy as well as underdetermined DOA esti-
mation at the same time. Various uniform arrays are used in
these algorithms, which might be affected by mutual cou-
pling error and cause worse performance. Although some
researchers developed a DOA estimation method which can
calibrate mutual coupling error [9], it was hard for promotion
and was difficult to be widely used. Besides, the resolution
capability and degrees of freedom of half wave length spaced
uniform linear arrays (ULA) is greatly limited by the number
of antenna array sensors.

As a result, sparse array becomes a better choice for DOA
estimation based on antenna array. Shi et al. developed a
DOA estimation method using sparse representation based
on coprime array [10]. Besides, a virtual array interpola-
tion method dealing with discontinuity was also proposed
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recently [11]. Other researchers developed a root MUSIC
method based on coprime array which can reduce the com-
putational complexity [12]. Moreover, some types of sparse
array have been designed and analyzed to meet the property
of non-circular signals [13], [14]. In order to avoid the limit
of ULA, this paper considers a new antenna array named as
nested array which is composed of two or more uniform array
with different spaces [15], [16]. Suppose that there is a two
level nested linear array of O(M ) sensors and it can natu-
rally resolve O(M2) DOAs of impinging sources. A spatial
smoothing MUSIC scheme based on vectorization has been
developed in [15] but it only discusses the circular signals.
The non-circularity of impinging sources has been exploited
in [17] to improve the performance of DOA estimation based
on nested array. In practice, there are also many cases of
mixed circular and non-circular sources. Therefore, it always
makes sense to focus on DOA estimation of mixed circular
and non-circular soures. Although the problem of direction
finding for mixed circular and non-circular signals can be
solved through method in [15] if all impinging sources are
considered as circular signals, DOA estimation in presence
of mixed circular and non-circular signals is still a crucial
problem to address. Given that the sparse nested array has a
high DOF, it is significant to investigate the classification of
circular and non-circular signals and hence to utilize proper-
ties of non-circular signals well, improving the performance
of DOA estimation as much as possible.

Therefore, this paper focuses on underdetermined DOA
estimation of high accuracy in a mixture of circular and
non-circular signals using nested array. Several algorithms
under the condition of mixed circular and non-circular sig-
nals have been proposed for polarization channel estima-
tion [18], DOA estimation of wideband signals [19], dis-
tributed sources [20], [21] and so forth. Yue et al. proposed a
fast DOA estimation algorithm based on polynomial-rooting
although the number of detectable sources is hardly sat-
isfactory [22]. Besides, a compressive sensing (CS) based
algorithm using sparse arrays [23] achieves high DOF but it
introduces heavy calculation burden simultaneously. Gener-
ally, algorithms like [23], [24] using sparse array are raised
to increase DOF and accuracy of estimation results. How-
ever, [24] ignores the inconsecutive parts in co-array and
cannot distinguish between circular and non-circular sig-
nals which come from the same direction. Reference [25]
introduces a circularity-based DOA estimation method which
omits the conjugation part of elliptic covariance and hence
loses DOF. It resolves DOA of circular signals using
estimated DOA of non-circular signals, which will bring
about error accumulation as well. Some other methods
in [26]–[28] could also solve the problem of two-dimentional
DOA estimation.

Solving the problem of DOA estimation in a mixture of
circular and non-circular signals with high accuracy and
DOF is the main concern throughout the paper. Through
revision of difference and sum co-array, it can be found
that circular and non-circular terms spread in entries of

reconstructed Toeplitz covariance matrix respectively. The
feature could also be utilized to distinguish the two types of
signals and resolve the DOAs separately. Moreover, the prop-
erty of non-circular signals can be fully utilized to increase
both accuracy and number of identifiable sources. On the
basis of former research and analysis, this paper presents
the problem formulation including signal model for a mix-
ture of circular and non-circular signals firstly. A Toeplitz
covariance matrix resolving DOAs of non-circular sources is
also constructed with ECM. In this process, holes in virtual
array appear and a method based on matrix completion is
introduced to recover the missing values in reconstructed
covariance matrix, which can also increase the number of
detectable sources. Moreover, based on the property men-
tioned earlier, we can extract circular terms from the Toeplitz
matrix reconstructed by both CM and ECM with a separa-
tion technique whose feasibility is theoretically proved in
Appendix.

This paper is organized as follows. In Section 2, intro-
duction of array model for mixed circular and non-circular
signals and a brief explanation about difference and sum
co-array is given. Then DOA estimation of non-circular
sources with matrix completion using singular value thresh-
old (SVT) is presented in Section 3. A separation technique is
also introduced to extract circular terms and get the DOAs of
circular sources. Section 4 analyzes computational complex-
ity and freedom degrees in detail. Numerical results which
illustrate the efficiency of the proposed algorithm are pro-
vided in Section 5. Finally, conclusions are summarized in
Section 6.

Throughout the paper, [•]∗, [•]T and [•]H denote the
conjunction, transpose and conjugate transpose respectively.
In addition, ‖ • ‖∗ denotes the nuclear norm of matrix and
‖ • ‖F denotes the Frobenius norm of matrix.

II. PROBLEM FORMULATION
A. ARRAY MODEL
A two level nested array of M sensors is considered here.
Assume M1 and M2 are the number of sensors in each level,
which located along the X-axis. Without losing generality,
we assume that the two level nested array has a property of
M1 = M2 = M/2. Suppose that the unit inter-element spac-
ing is d = λ/2 and λ denotes the wavelength of impinging
signals. Consider K far-field narrowband sources impinging
on antenna array from angles θk , k = 1, . . . ,K . Note that the
K sources are uncorrelated with each other. The received data
from M sensors can be described as

X(t) = A(θ )S(t)+ N(t), (1)

where A(θ) ∈ CM×K is the array manifold matrix, S(t) ∈
CK×1 is the source signal vector which is composed of
zero-mean wide sense stationary (WSS) signals and N(t) is
the additive white circular complex Gaussian noise vectors
with identical power σ 2

N .

105238 VOLUME 8, 2020



P. Han et al.: DOA Estimation in a Mixture of Multiple Circular and Non-Circular Signals Using Nested Array

FIGURE 1. A 2 level nested array with 4 sensors in each level.

The array manifold is

A =
[
a(θ1) a(θ2) · · · a(θK )

]
, (2)

where [a(θk )]i = ejNiwk and wk = 2πdsinθk/λ. Note that Nid
denotes the position of the ith sensor. Figure 1 shows the array
geometry of a 2 level nested array whenM = 8 and there are
same sensors in each level.

The source signal vector is

S(t) =
[
s1(t) s2(t) · · · sK (t)

]T
, (3)

where t = 1, 2, . . . ,T denotes the sampling time interval and
T is the number of snapshots.
Second-order statistics of array received data, mainly

covariance matrix of the received data, are mostly used to
estimate θ with given time intervals of sources signals. It can
be expressed as

Rx = E[X(t)XH (t)] = A(θ )RssAH (θ )+ σ 2
N I, (4)

where Rss = E[S(t)SH (t)] = diag[ σ 21 σ 22 ··· σ 2K ] is the source
signal covariancematrix, I is a unit matrix and σ 2

N is the power
of noise N(t). Besides, diag[•] denotes a diagonal matrix
whose diagonal elements are the same as the vector in square
brackets.

However, the number of snapshots would be always finite
in practice, T for example. In this circumstance, Rx can be
estimated with time average instead of statistical average
values. Therefore,

R̂x =
1
T

T∑
t=1

X(t)XH (t). (5)

B. MIXED CIRCULAR AND NON-CIRCULAR SIGNALS
Circularity is an important property of random variables.
In practice, there are many communication signals with
QPSK and QAM modulation that have circular features and
those with ASK, BPSK and UQPSK modulation, which
have non-circular features. Covariance matrix is a common
one for narrowband circular signals in the second orders
statistical properties. Correspondingly, the elliptic covari-
ance can also be fully exploited to improve performance of
DOA estimation for non-circular signals. This paper focuses
on non-circular signals such as BPSK specifically whose
non-circularity rate ρk = 1, namely, strictly non-circular
signals.

Assuming that there are Kc circular signals and Kn
non-circular signas, with K = Kc + Kn. Similarly, all K
impinging signals are uncorrelated with each other. Thus (3)
can be rewritten as

S(t) =
[
sc,1(t) · · · sc,Kc (t)sn,1(t) · · · sn,Kn (t)

]T
, (6)

As it was mentioned earlier, the elliptic covariance of
non-circular signals is not zero and this property can be
utilized to expand the virtual array. The elliptic covariance
can be used by combining X(t) and its conjugate counterpart
as [29]

Y(t) =
[
X(t)
X∗(t)

]
, (7)

According to (4), the covariance matrix can be expanded
to [29]

Ry = E
[
Y(t)YH (t)

]
= E

[
XXH XXT

X∗XH X∗XT

]
. (8)

In (7) and (8), the elliptic covariance matrix can extend
the received data matrix and obtain a better performance
when there are non-circular signals. However, we can hardly
estimate all incoming signal angles through (7) in a mix-
ture of circular and non-circular signals for the elliptic
covariance of circular signals is zero. Therefore, it is help-
ful to separate circular and non-circular signals and esti-
mate them respectively to get more accurate results by
utilizing non-circularity, which is the focal point of this
paper.

C. REVISION OF DIFFERENCE AND SUM CO-ARRAY
As it was analyzed in [15], nonuniform array such as nested
array is one of key ideas behind the ability to find more
sources than physical sensors because its difference co-array
has considerably increased degrees of freedom. Consider a
nested array whose sensors located at Linner = {md,m =
0, 1, . . . ,M/2−1} and Louter = {(M/2+ (M/2+1)n)d, n =
0, 1, . . . ,M/2 − 1}. Following [15] and [30], co-array can
be generated by vectoring the covariance matrix and in (8) it
turns out to be

rd = vec(Ry) =
K∑
k=1

σ 2
k ad (θk )+ σ

2
N
E1

= Adp+ σ 2
N
E1, (9)

where vec(•) denotes vectorization, namely, rearranging
entries of the matrix into a vector by column. In addition,
Ad denotes the equivalent array manifold and p is the cor-
responding source vector. In addition, E1 = [ e1 e2 ··· eM ]T

denotes equivalent noise component, where ei is a row vector
with a 1 at the ith position and zeros at other positions.

p =
[
σ 2
1 , . . . , σ 2

K

]T
, (10)

Ad = [ad (θ1), · · · , ad (θK )]. (11)

With⊗ denotes the Kronecker product, the steering vectors
can be expressed as

ad (θk ) = a∗(θk )⊗ a(θk ), (12)
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FIGURE 2. Difference and sum co-array of 8 sensors nested array when M1 = M2 = 4.

Consider about (9), rd is related to difference component
of co-array. According to [31], [32] about difference co-
array, the location information of difference co-array can be
described as

Pd =
{
Exi − Exj

}
, ∀i, j = 0, 1, · · · ,M − 1, (13)

where Exi denotes the position vector of ith elements in antenna
array.

Similarly, the vector form of elliptic covariance Rx+ =

E[XXT ] (and its conjugation Rx− = E[X∗XH ]) in (8) can
be presented as

rn+ = vec(Rx+ ) =
K∑
k=1

σ 2
k an+ (θk ) = An+pn+ , (14)

rn− = vec(Rx− ) =
K∑
k=1

σ 2
k an− (θk ) = An−pn− , (15)

where

An+ = [an+(θ1), · · · , an+(θK )], (16)

An− = [an− (θ1), · · · , an− (θK )], (17)

an+ (θk ) = a(θk )⊗ a(θk ), (18)

an− (θk ) = a∗(θk )⊗ a∗(θk ), (19)

pn+ =
[
σ 2
1 , . . . , σ

2
K

]T
, (20)

pn− =
[
σ 2
1 , . . . , σ

2
K

]T
. (21)

Accordingly, rn+ (rn−) is associated with sum component
(and its negative) of co-array and the location of these ele-
ments can be defined as

Pn+ =
{
Exi + Exj

}
, ∀i, j = 0, 1, · · · ,M − 1, (22)

Pn− = −
{
Exi + Exj

}
, ∀i, j = 0, 1, · · · ,M − 1. (23)

Figure 2 shows the location of three kinds of co-array,
which indicates that non-circular case has higher array aper-
ture and degrees of freedom than circular case. Take a
two level nested array into consideration, the corresponding
co-array has its elements located at nd,−Mv ≤ n ≤ Mv. Here
Mv = M2/4+M/2−1 if we take Pd only and if we consider
about Pn+ and Pn− , it becomesM2/2+M − 2.

III. DOA ESTIMATION WITH ECM SEPARATION
TECHNIQUE
A. DOA ESTIMATION OF NON-CIRCULAR SIGNALS
As it was introduced earlier, non-circular signals have the
elliptic covariance of non-zero values while that of circu-
lar signals is zero. Therefore, we can first estimate DOA
of non-circular signals by utilizing the property of elliptic
covariance. In this section, the arrival angle estimation does
not involve circular signals and could still enjoy the advantage
of extended array aperture and DOFs.
From (22) and (23), elliptic covariancematrixRx+ andRx−

correspond to positive and negative components of co-array
respectively. Thus we analyze them step by step and first
introduce a toeplitz matrix reconstruction technique instead
of conventional spatial smoothingmethod. According to (14),
(16) and (18), there are repeated elements in an+ (θk ), which
is the generator of sum co-array.

an+ (θk )

=

[
a(θk )T a(θk )T ejwk · · · a(θk )T ej(M

2/4+M/2−1)wk
]T
,

(24)

where an+ (θk ) ∈ CM2
×1.

The above studies prove that virtual sensors containing
location information can be generated by (24). In fact, it is
a vector which can be considered as equivalent virtual array
manifold varying from 0 to (M2/2+M−2)d . Direct toeplitz
matrix reconstruction can be applied to nested array instead
of spatial smoothing technique as a consequence. Though
there are several repeated elements, we can pick up the array
received data in (14) whose location is distinct from each
other. Similar toRx in (4), the equivalent virtual array covari-
ance matrix has a toeplitz structure. It is of great convenience
to reconstruct the covariance matrix through some distinct
elements in (24) without subarray division and moving aver-
age in spatial smoothing.
Similarly, consider about (15), (17) and (19), we get

an− (θk ) =
[
a(θk )H a(θk )He−jwk

· · · a(θk )He−j(M
2/4+M/2−1)wk

]T
, (25)

Combine an+ (θk ) and an−(θk ) together, namely, (24)
and (25), we establish a virtual array with sum component
(and its negative). By removing the repeated elements (after
their first occurrence) and then arrange them in the order of
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sensor location from (−M2/2−M+2)d to (M2/2+M−2)d ,
the new vector r̆n of size (M2

+2M−3)×1 can be expressed
as

r̆n = Ănpn

=

[
Ăn− 0
0 Ăn+

] [
pn−
pn+

]
(26)

It has consecutive and inconsecutive parts as shown
in Figure 2. It is to note that the missing values in the incon-
secutive parts have been set to zero. Although the array aper-
ture and DOFs have been increased under this circumstance
compared to circular signals, they can be further improved
by making full use of those inconsecutive parts. Therefore,
a matrix completion method is employed in this section so
that the whole virtual array can be fully utilized.

The equivalent covariance matrix R̆n can be reconstructed
with elements in (26), including zero values corresponding
to holes in virtual array. Various matrix completion methods
including Toeplitz matrix completion [33], [34] have been
proposed for DOA estimation in the past few decades and
most of them are used in nonuniform sparse array. In matrix
completion theory, approximating matrix with rank mini-
mization is the most popular way to fix the problem [35],
[36]. Furthermore, many rank minimization problems are
converted to nuclear norm minimization problem through
convex relaxation. Considering about [37], Cai et al. has
studied nuclear norm minimization problem and also derived
a computational efficiency and fast converging solution called
SVT to this problem. Hypothetically, R̂n is the unknown
matrix with low rank component,

min ρ
∥∥∥R̂n

∥∥∥
∗

+
1
2

∥∥∥R̂n

∥∥∥2
F

s.t.
∥∥∥P�(R̂n)− R̆n

∥∥∥2
F
≤ ε, (27)

where � denotes a location set of all non-zero values in R̆n.
As is introduced at the end of Section I, ‖R̂n‖∗ denotes
nuclear norm, which equals to the sum of singular values
of R̂n. Similarly, ‖•‖F denotes Frobenius norm and in (27), ‖•
‖
2
F equals to the standard inner product of an arbitrary matrix.
Moreover, we define an orthogonal projector P� which
makes matrices vanishing outside of �. Namely, the (i, j)th
element of an arbitrary matrix, R̆n for example, is equal to
P�(R̆n) if (i, j) ∈ � and the other elements ofP�(R̆n) is zero.
Besides, ρ denotes soft-thresholding level which is a constant
and the bigger it is, the more approximate (27) is to rank min-
imization problem. ε is also a constant that depends on noise
power.

It is noteworthy that the singular value thresholding
algorithm, first applied in image processing, is an itera-
tion algorithm. The initialization has been studied in [37]
and according to the rules, it can be assigned as ρ =
5(M2/2 + M − 1), δ = 1.39 and ε = 10−4 in this paper.
After completion of the missing values in covariance matrix,
subspace-based methods can be applied to find the angle of

impinging signals. Assuming that R̂opt is the optimal solution
to SVT, we can perform eigenvalue decomposition like

R̂opt = US6SVH
S + UN6NVH

N , (28)

here US denotes signal subspace composed of eigenvec-
tors corresponding to Kn large eigenvalues of R̂opt , while
UN denotes noise subspace composed of eigenvectors cor-
responding to another Mn + 1 − Kn small eigenvalues.
We assume that the source number Kn is known, which can
be predicted by source number detection algorithms like min-
imum description length (MDL) method. Considering that
the extended virtual array resulting from non-circular signals
can bring higher computational complexity, we introduce the
root-MUSIC to realize the fast estimation of arrival angle
[38]–[40].

According to (26), the steering vector of virtual array can
be expressed as

ăn(θ ) =
[
1 ejw ej2w · · · ejMnw

]T
, (29)

where w = 2πdsinθ/λ. Note that z = ejw, the Z-transform of
virtual array steering vector ăn(θ ) can be defined as

ăn(z) =
[
1 z1 z2 · · · zMn

]T
, (30)

whereMn = M2/2+M − 2.
Based on the orthogonal relationship between virtual array

steering vector and noise subspace, the root polynomial can
be presented as

p(z) = ăHn (z)UNUH
N ăn(z), (31)

here ăn(z) has the structure of ăn(θ ) and it is orthogonal
to noise subspace UN . Besides, p(z) is Mn-th polynomial
whose roots are symmetrical of unit circle. Note that the
Kn roots with maximum amplitude in the unit circle contain
information of arrival angle, thus the estimation results can
be expressed as

θ̂k = arcsin
(

λ

2πd
arg(ẑk )

)
, (32)

where arg(•) denotes the phase of (•).

B. DOA ESTIMATION OF CIRCULAR SIGNALS
After estimation of non-circular signals, a separation method
can be used to extract circular components from covariance
matrix and give a high precision result of circular signals.
Different from estimation of non-circular signals, the covari-
ance matrix, viz., difference co-array is considered in this
section. Through analysis of sensor location and received data
in covariance matrix and elliptic covariance matrix respec-
tively, we can obtain circular and non-circular information
marked by positions. Based on toeplitz matrix reconstruc-
tion, an equivalent covariance matrix containing only circular
components is constructed through calculations by adding
and subtracting corresponding elements.
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Taking (4), (9) and (12) into account, there are also
repeated sensors in ad (θk ), which is the generator of differ-
ence co-array.

ad (θk ) =
[
a(θk )T a(θk )T e−jwk

· · · a(θk )T e−j(M
2/4+M/2−1)wk

]T
, (33)

where ad (θk ) ∈ CM2
×1 whose sensors location varies from

(−M2/4−M/2+ 1)d to (M2/4+M/2− 1)d .
In (9), Ry includes both circular and non-circular compo-

nents, so is rd . Most importantly, its virtual array is expanded
due to property of nested array and non-circular characteris-
tics does not work on array extension. It means that several
virtual sensors in r̆n will be omited to keep the dimension of
two data vectors same.

Similarly, by removing the repeated elements in rd after
their first occurrence and arranging them in the order of
(−M2/4−M/2+1)d to (M2/4+M/2−1)d , a new data vector
r̆d ∈ C(M2/2+M−1)×1 can be constructed. The covariance
matrix reconstructed from r̆d is of size Mc = M2/4 +M/2.
Suppose pid denotes the ith elements in r̆d which repre-
sents difference co-array. Let m denotesMc for convenience,
the reconstructed covariance matrix can be defined as

R̆d =


pmd pm−1d · · · p1d
pm+1d pmd · · · p2d
...

...
. . .

...

p2m−1d p2m−2d · · · pmd

 , (34)

here R̆d is a m × m reconstructed covariance matrix which
contains both circular and non-circular signals. As it was ana-
lyzed earlier, virtual array generated by non-circular signals is
much longer than r̆d and hence we choose the data whose cor-
responding virtual sensor is located from (−M2/4−M/2+
1)d to (M2/4+M/2−1)d in r̆n. Hence we can get a new data
vector r̆ns ∈ C(2m−1)×1 which denotes array received data in
a shortened virtual array.

Now, suppose that pin denotes the ith elements in r̆ns
which represents the sum (and its negative) co-array. The
reconstructed covariance matrix composed of non-circular
component can be defined as

R̆ns =


pmn pm−1n · · · p1n
pm+1n pmn · · · p2m
...

...
. . .

...

p2m−1n p2m−2n · · · pmn

 , (35)

where R̆ns ∈ Cm×m contains only non-circular compo-
nents in received data. The circular components can be
extracted by subtracting (35) from (34) in theory as long as
non-circular term in one equation is equal to its conterpart in
another. A series of simulations and numerical results prove
that the proposed ECM separation technique works well
and achieves better performance than conventional methods.
Besides, we shall carry out theoretical derivation and give a
proof of feasibility of the separation technique in Appendix.

After separation, the covariance matrix containing only
circular components can be described as

R̂c = R̆d − R̆ns. (36)

Here root-MUSIC is also utilized to give the fast estima-
tion and avoid mass computation. Note that the total source
number can be predicted through source number detection
algorithms like MDL. Furthermore, we establish a covari-
ance matrix containing only non-circular components in last
section so that the number of non-circular signals can be
obtained through methods like MDL. Therefore, the number
of circular signals Kc can be calculated by Kc = K − Kn.
Similar to (29), virtual array steering vector has the form of

[ăc(θ )]i = ejiw, where i = 0, · · · ,m−1 and w = 2πdsinθ/λ.
With z = ejw, the Z-transform of ăc(θ ) can be defined as

ăc(z) =
[
1 z1 z2 · · · zm−1

]
, (37)

Similarly, we can conduct eigenvalue decomposition of R̂c
and list the eigenvalues in descending order. Supposed that
the last m − Kc eigenvectors constitute U′N , which spans
the noise subspace. With the orthogonal relationship between
signal subspace and noise subspace, we can obtain the root
polynomial p̆(z) which is similar to (31).

p′(z) = ăHc (z)U
′
NU
′H
N ăc(z). (38)

Here p′(z) is a m-th polynomial and the Kc roots with max-
imum amplitude within the unit circle contain information of
arrival angle, thus we can estimate the DOA with

θ̂ ′k = arcsin
(

λ

2πd
arg(ẑ′k )

)
. (39)

IV. COMPUTATIONAL COMPLEXITY AND FREEDOM
DEGREE ANALYSIS
In this part, we concentrate on computational complexity
and freedom degree analysis. Then we compare the proposed
algorithm with spectral peak search method like MUSIC and
other circularity-based methods. The proposed algorithm for
circular signals is written as Proposed-C and Proposed-NC
for non-circular signals.

A. COMPUTATIONAL COMPLEXITY ANALYSIS
When circular signals and non-circular signals coexist,
method in [15] can estimate the DOAs by regarding all of
them as circular signals using only CM, thus it is denoted as
CM-MUSIC. The complexity of CM-MUSICmethod mainly
exists in three parts: calculation of covariancematrix based on
time average, matrix eigenvalue decomposition and MUSIC.
The complexities of them are O(TM2), O((M2/4 + M/2)3)
and O((M2/4 + M/2)(M2/4 + M/2 − K )Gθ ) respectively.
HereGθ = 180/1θ+1 denotes the number of spectral points
in peak search grid with1θ represents search step. Therefore,
the total complexity of CM-MUSIC method is O(TM2

+

(M2/4+M/2)3 + (M2/4+M/2)(M2/4+M/2− K )Gθ ).
Method in [25] has complexity mainly existing in four

parts: calculation of covariance matrix through (5), matrix
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TABLE 1. Complexity comparison of different algorithms.

eigenvalue decomposition, MUSIC and calculation of covari-
ance matrix containing circular information only. Since it
estimates circular and non-circular signals respectively, first
three parts are calculated twice. In general, the complexity
of them are O(2TM2), O(2M3), O(M (M −Kn)Gθ +M (M −
Kc)Gθ ) and O(2Kn(M2

+ 2MKn + K 2
n )). Thus the total com-

plexity isO(2TM2
+2M3

+2Kn(M2
+2MKn+K 2

n )+(2M
2
−

MKc − MKn)Gθ ). Although the two methods seem simple,
the spectral peak search actually costs much.

As for proposed algorithm, the common part is covariance
matrix estimation based on time average whose complexity
is O(4TM2). In order to separate the two kinds of signals,
they will be processed respectively. For non-circular signals,
the DOA estimation algorithm mainly includes calculation of
covariancematrix, SVT and root-MUSIC. The corresponding
complexities are O(4TM2), O(2(M2/2 + M − 1)3Ni) and
O((M2/2+M − 1)3), where Ni is the iterations number. The
total computational complexity of Proposed-NC isO(4TM2

+

2(M2/2 + M − 1)3Ni + (M2/2 + M − 1)3). Given that the
ECM separation technique needs non-circular components in
elliptic covariance to get circular components, the Proposed-
C also needs calculation of (8) to estimate DOA of circu-
lar signals. Moveover, it does not need SVT to expand the
virtual array, which reduces the computational complexity.
The major complexities of Proposed-C exist in calculation
of covariance matrix and root-MUSIC, which are O(4TM2)
and O((M2/4 + M/2)3). Therefore, the total computational
complexity of Proposed-C is O(4TM2

+ (M2/4+M/2)3).
Table 1 summarizes the complexity of the three algo-

rithms. In order to express the complexity more clearly,
Figure 3 shows the complexity comparison versus search-
ing step size 1θ . It illustrates that method in [15] has the
heaviest computational burden when 1θ = 0.01◦ and the
complexity of Proposed-NC is higher in other circumstances.
However, the complexity of Proposed-NC mainly exists in
matrix completion which could bring higher DOF. Besides,
SVT is also proved to be computational efficiencywhile com-
pared to other methods solving nuclear norm minimization
problem [37]. Although the computational burden of these
algorithms does not vary much, we can sacrifice DOF for
lower complexity which abandons the use of SVT.

B. FREEDOM DEGREE ANALYSIS
Freedom degree is one of significant performance criteria
in area of DOA estimation, which determines the source
number of estimation. For a two level nested array with M
sensors, method in [15] can only obtain freedom degrees of
O(M2/4 + M/2) because it considers all impinging signals

FIGURE 3. Complexity of different algorithms versus step size 1θ .

as circular signals and cannot expand the virtual array. The
proposed algorithm for non-circular signals, conversely, uses
elliptic covariance to reconstruct an extended virtual array
covariance matrix containing only non-circular components.
Hence it can acquire a higher freedom degrees of O(M2/2+
M − 1) for non-circular signals despite the coexistence.
Depending on circularity, Proposed-C has a freedom degree
of O(M2/4 + M/2) since it estimates circular signals with-
out expansibility. Method in [25], also a circularity-based
approach, obtains O(M − 1) degrees of freedom for both
circular or non-circular signals, a total of O(2M − 2) degrees
of freedom.

Comparing these algorithms, we can find that the proposed
algorithm not only can distinguish two kinds of signals, but
also improve the detection source number and estimation
performance of non-circular signals. The freedom degrees
comparison is presented in Figure 4. Proposed-C has the
same degree of freedom with the method in [15] as is shown
in Figure 4. However, Proposed-C only resolves DOA of
circular signals with up to O(M2/4+M/2) freedom degrees
while method in [15] estimates both circular and non-circular
signals. In other words, Proposed-C can estimate more circu-
lar signals thanmethod in [15] when circular and non-circular
signals coexist. In conclusion, the proposed algorithm can
estimate more signals than method in [15] and [25] if there
are mixed circular and non-circular signals.

V. SIMULATION RESULTS
This section is intended to examine the performance of the
proposed algorithm under various scenarios by comparing
the proposed algorithm using SVT with the CM-MUSIC
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FIGURE 4. Degrees of freedom versus number of sensors.

method in [15] and a circularity-based method in [25]. It is
noteworthy that method in [25] uses a uniform linear array
withM sensors to conduct estimation. To assess the accuracy
of them, we firstly introduce the root mean square error
(RMSE), which is defined as

RMSE =

√√√√ 1
QK

Q∑
i=1

∥∥∥2− 2̂i

∥∥∥2, (40)

where 2 denotes the real value and 2̂ is the ith estimated
value. Q denotes the number of Monte Carlo simulations.
Note that a two level nested linear array withM1 = M2 = 4 is
employed for all experiments. For comparison, the determin-
istic Cramér-Rao bound (CRB) [41] is also included in this
part.

Simulation 1: Performance under the condition of multi-
ple mixed signals.

We concentrate on underdetermined DOA estimation and
consider two cases where K = 15 and K = 25 sources
impinge on the antenna array. It is a remarkable fact that
these signals are uncorrelated with each other and all of them
are strictly non-circular signals except one circular signal for
both cases. The signal-to-noise ratio (SNR) and snapshots
are 10 dB, T = 500 respectively. Besides, step size of
method in [15] is set as 1θ = 0.05◦. The distribution of
estimated DOAs using proposed algorithms and the spectrum
of method in [15] are presented in Figure 5. In (a), it shows
that both method in [15] and proposed method can find all
15 sources, which proves that the proposed method can solve
DOA estimation problems in underdetermined situation. Fur-
thermore, (b) demonstrates the fact that Proposed-NC can
still resolve DOAs even when the number of non-circular
signals is much larger than number of antenna array elements,
improving the freedom degrees significantly. Through these
figures, it shows that the proposedmethod using root-MUSIC
has a robust performance and obtains estimated DOAs close
to real values.

Simulation 2: Feasibility of proposed algorithms in a
special condition.

FIGURE 5. MUISC spectrum under the condition of SNR = 10dB
(a) 15 sources with one circular signal; (b) 25 sources with one circular
signal.

In practical application, the circular and non-circular sig-
nals may come from the same direction, thus resulting in a
problem of missed detection for conventional methods. For
instance, two non-circular signals with θ1 = −30o, θ1 = 30o

and a circular signal with θ3 = 30o are considered in set of
SNR = 0 dB, T = 500,1θ = 0.05◦. Since method in [15]
considers all signals as circular signals, it cannot distinguish
between the circular and non-circular signals from θ = 30o

so that one of impinging sources may be ignored. However,
the Proposed-C and Proposed-NC estimate DOAs separately
and hence they can obtain DOAs of all impinging sources
despite their circularity or non-circularity. Although method
in [25] can distinguish two signals from the same direction,
the proposed algorithm obtains more accurate results. The
results of estimation are tabulated in Table 2.

Simulation 3: RMSE comparison of the proposed algo-
rithms, method in [15] and method in [25] versus SNR.

We conduct the simulation with Monte Carlo simulations
Q = 100, snapshots T = 500 and SNRs from -5dB
to 15dB with step size 5dB. Besides, the parameters are
set as Kc = 1,Ku = 2,1θ = 0.05◦ and Kc = 1,
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TABLE 2. DOA estimation results of three methods.

FIGURE 6. RMSE comparison under different SNRs with D = 3 (a) RMSE
performance with 1θ = 0.05◦; (b) RMSE performance with 1θ = 0.5◦.

Ku = 2,1θ = 0.5◦. It should be noted that step size mainly
affects the performance of method in [15] andmethod in [25],
which use MUSIC to resolve DOA.

In (a) of Figure 6, the step size is 1θ = 0.05◦. The
proposed algorithm outperforms method in [25] in esti-
mating circular and non-circular signals. Method in [25]
only uses elliptic covariance and omits its conjugation
part, thus losing array aperture and accuracy of estima-
tion. When all impinging sources are considered as circu-
lar sources, the performance of method in [15] is slightly
better than the Proposed-C, but worse than the Proposed-
NC. In fact, Proposed-NC has a higher accuracy than other
methods due to the extension of virtual array based on
non-circular characteristics. Moreover, elliptic covariance
estimated with (5) has noise components due to the finite
number of snapshots. Accordingly, the error will accumulate

FIGURE 7. RMSE comparison under different snapshots with D = 3
(a) RMSE performance with 1θ = 0.05◦; (b) RMSE performance with
1θ = 0.5◦.

when non-circular components are subtracted from covari-
ance matrix of array received data and hence method in [15]
outperforms Proposed-C through small searching step size at
the cost of higher complexity. Consequently, Proposed-NC
works better than Proposed-C due to the effect of finite num-
ber of snapshots and array extension based on non-circular
characteristics.

However, error accumulation due to the finite number of
snapshots is also the reason why the gap between Proposed-C
and CRB-C is relatively large. (b) in Figure 6 illustrates that
with1θ = 0.5◦, the performance of method in [15] becomes
worse but the complexity decreases at the same time. Hence
Proposed-C offers a relatively good performance with lower
calculation burden for circular signals and can detect more
circular signals than method in [15] when there are both
circular and non-circular signals.
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FIGURE 8. RMSE comparison under different searching step size with
D = 3 (a) RMSE performance versus SNR with T = 500; (b) RMSE
performance versus snapshots with SNR = 0dB.

Simulation 4: RMSE comparison of the proposed algo-
rithms, method in [15] and method in [25] versus snapshots.

Simulation 4 is conducted with SNR = 0dB,
Q = 100 and the number of snapshots T =

[50, 100, 200, 500, 1000, 2000, 5000, 10000] to study the
impact of snapshots on DOA estimation. (a) and (b) in Fig-
ure 7 show the results of the three methods in set of 1θ =
0.05◦ and1θ = 0.5◦ respectively. The Proposed-C performs
slightly worse than method in [15] in small snapshots when
1θ = 0.05◦. In this circumstance, estimation of covariance
through (5) introduces error due to small snapshots thus
the situation getting worse after processing of separation.
Method in [25] performs worse than other methods due to
its small array aperture, which is similar to the conclusions in
Simulation 3.

Simulation 5: RMSE comparison of the proposed algo-
rithms, method in [15] and method in [25] under different
searching step size.

In this part, several simulations have been done to study
the effect of step size 1θ on RMSE. Assuming that 1θ =
[0.01◦, 0.1◦, 0.5◦], RMSE comparison versus SNR and snap-
shots is shown in Figure 8. It illustrates that step size 1θ has

an important influence on performance of method in [15] and
method in [25]. Large number of snapshots can decrease the
error due to elliptic covariance estimation using (5). Further-
more, Proposed-C outperforms method in [15] when number
of snapshots is large according to (b) in Figure 8, which con-
firms the conclusion of error accumulation in Simulation 3.
The proposed algorithm works better than method in [25]
even when 1θ = 0.01◦.

VI. CONCLUSION
The underdetermined DOA estimation in presence of mixed
circular and non-circular signals is considered throughout
the paper, and an ECM-based algorithm is proposed to cope
with this problem. The proposed algorithm has three signifi-
cant advantages. Firstly, it can detect more circular sources
than number of sensors by utilizing nested array, which is
extended further by SVT for non-circular sources so thatmore
non-circular signals can be estimated than circular ones. Sec-
ondly, the proposed algorithm can estimate non-circular sig-
nals more accurately and obtain better performance than other
circularity-based method like [25]. Finally, the proposed
algorithm can distinguish between circular and non-circular
signals, thus it can identify two signals in a special situa-
tion if circular and non-circular signals come from the same
direction, while method in [15] cannot identify them. The
proof of feasibility of the separation technique is given in
Appendix and numerical results are presented to validate the
conclusions above. Besides, the idea of separating circular
and non-circular signals using elliptic covariance in this paper
can also be applied to solving the problem of DOA estimation
for other sparse arrays.

APPENDIX
THE FEASIBILITY OF SEPARATION TECHNIQUE
Theorem 1: When there are both circular and non-circular

signals impinging on the antenna array, the reconstructed
covariance matrix has exactly the same terms as those in
reconstructed elliptic covariance matrix. Then, there are
same terms in (34) and (35). Specifically, pin, which denotes
non-circular components, is one part of pid . And hence R̂c
only has circular components.

Proof: We first consider covariance matrix Rx =

E[X(t)XH (t)].

Rx = E[X(t)XH (t)]

= E[(AS+ N)(AS+ N)H ]

= ARsAH
+ NNH , (41)

where NNH
= σ 2I and I is a diagonal matrix with all

diagonal elements being 1. Consider about (2) and rewrite it
as

A =
[
ac1 · · · acKc an1 · · · anKn

]
, (42)

here we divide A into two kind of steering vectors—circular
and non-circular.
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Similarly, we have a new expression of Rss according
to (6).

Rss = E[S(t)SH (t)]

= diag
[
σ 2
c1 · · · σ 2

cKc
σ 2
n1 · · · σ 2

nKn

]
. (43)

Thus (41) can be rewritten as

Rx = σ
2
c1ac1a

H
c1 + · · · + σ

2
c1acKca

H
cKc

+σ 2
n1an1a

H
n1 + · · · + σ

2
nKn

anKn a
H
nKn
. (44)

Take an1 as an example and according to the definition of
array steering vector under (2), we can get

an1 =
[
1 ejwn1 · · · ej(M

2/4+M/2−1)wn1

]T
, (45)

where wn1 = 2πdsinθn,1/λ. Then

an1a
H
n1 =


L0n1 L−1n1 · · · L−(m−1)n1

L1n1 L0n1 · · · L−(m−1)+1n1
...

...
. . .

...

Lm−1n1 Lm−2n1 · · · L0n1

 , (46)

where m = M2/4+M/2. For Lab = ej2πadsinθb/λ, subscript b
denotes the signals and superscript a denotes the location of
corresponding sensors, which is the same as the terms in front
of wk . No matter it is circular or non-circular signals, we can
always derive (46) from covariance matrix. Let La denotes
the corresponding elements in (44), it can be defined as

La =
∑
b

σ 2
b L

a
b , b ∈ {c1, · · · , cKc , n1, · · · , nKn}. (47)

Therefore, we can obtain (9) and (12) from (44) and (46).
And r̆d , which is the vector form of distinct elements in (12),
can be expressed as

r̆d =
[
L−(m−1) · · · L0

· · · Lm−1
]T
. (48)

Hence we can use (48) to reconstruct a equivalent covari-
ance matrix based on toeplitz rules, which can be presented
as

R̆d =


L0 L−1 · · · L−(m−1)
L1 L0

· · · L−(m−1)+1
...

...
. . .

...

Lm−1 Lm−2 · · · L0

 . (49)

That is to say, pid is the ith element in (48) and pmd = L0.
Then, we take elliptic covariance Rx+ = E[XXT ] (and

its conjugation Rx− = E[X∗XH ]) into consideration. Since
the complex Gaussian noise has circular characteristics, its
elliptic covariance also equals zero. Therefore, Rx+ can be
defined as

Rx+ = E[X(t)XT (t)]

= E[(AS+ N)(AS+ N)T ]

= ASSTAT . (50)

Considering that the impinging sources contain both
circular and non-circular signals, utilize the property of
non-circular signals and we can get

Rs+ = E[SST ]

= diag[0 · · · 0 σ 2
n1 · · · σ

2
nKn ]. (51)

In this circumstance, (50) can be converted to

Rx+ = 0+ · · · + 0+ σ 2
n1an1a

T
n1 + · · · + σ

2
nKn

anKna
T
nKn
.

(52)

Similar to (45) and (46), we first analyze an1 and hence

an1a
T
n1 =


L0n1 L1n1 · · · Lm−1n1
L1n1 L2n1 · · · Lmn1
...

...
. . .

...

Lm−1n1 Lmn1 · · · L2m−2n1

 . (53)

Apply the same process to Rx− = E[X∗XH ], we can get

Rx− = E[X(t)∗XH (t)]

= E[(AS+ N)∗(AS+ N)H ]

= (ASSTAT )∗. (54)

Note that Rs− = E[S∗(t)SH (t)H ], we can find the follow-
ing results from (42) and (54)

Rx− = 0+ · · · + 0+ σ 2
n1a
∗
n1a

H
n1 + · · ·

+σ 2
nKn

a∗nKna
H
nKn
. (55)

According to (45), we can obtain

a∗n1a
H
n1 =


L0n1 L−1n1 · · · L−(m−1)n1
L−1n1 L−2n1 · · · L−mn1
...

...
. . .

...

L−(m−1)n1 L−mn1 · · · L−(2m−2)n1

 . (56)

Think over (53) and (56) andwe can find that they compose
a complete virtual array located from −(M2/2+M − 2)d to
(M2/2+M − 2)d . It is a remarkable fact that there are some
elements missing in it. Let L̃a denotes the corresponding
elements in (53) and (54), it can be defined as

L̃a =
∑
b

σ 2
b L

a
b , b ∈ {n1, · · · , nKn}. (57)

In Section 3, we remove the repeated elements in sum
(and its negative) co-array after their first appearance and
rearrange them to get the vector r̆n. Now, we rewrite it as

r̆n =
[
L−(2m−2) · · · L0

· · · L2m−2
]T
. (58)

To match the length of difference co-array, we choose the
corresponding sensors and get a new data vector r̆ns in a
shortened virtual array

r̆ns =
[
L−(m−1) · · · L0

· · · Lm−1
]T
. (59)
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Thus, (59) can be used to reconstruct a equivalent covari-
ance matrix for sum co-array. And it can be presented as

R̆ns =


L̃0 L̃−1 · · · L̃−(m−1)
L̃1 L̃0

· · · L̃−(m−1)+1
...

...
. . .

...

L̃m−1 L̃m−2 · · · L̃0

 . (60)

Now, consider about (36), we can find that R̂c equals
to (49) minus (60). Moreover, it can be converted to subtrac-
tion of elements in matrix. Namely, (47) minus (57).

L̆a = La − L̃a

=

∑
b

σ 2
b L

a
b , b ∈ {c1, · · · , cKc}. (61)

That is to say (61) only has circular components, so is R̂c.

R̂c =


L̆0 L̆−1 · · · L̆−(m−1)
L̆1 L̆0

· · · L̆−(m−1)+1
...

...
. . .

...

L̆m−1 L̆m−2 · · · L̆0

 . (62)
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