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ABSTRACT Quantifying the complexity of physiologic time series has long attracted interest from
researchers. The multiscale entropy (MSE) algorithm is a prevailing method to quantify the complexity of
signals in a variety of research fields. However, the MSE method assigns increased complexity to the mixed
signal of a physiologic time series added with white noise, although the mixed signal should become less
complex due to the broken correlation. In addition, the MSE method needs users to visually examine its scale
dependence (shape) to better characterize the complexity of a physiologic process, which is sometimes not
feasible. In this paper, we proposed a new method, namely the power-law exponent modulated multiscale
entropy (pMSE), as a complexity measure for physiologic time series. We tested the pMSE method on
simulated data and real-world physiologic interbeat interval time series and demonstrated that it could solve
the above two difficulties of the MSE method. We expect that the proposed pMSE method or its future
variants could serve as a useful complement to the MSE method for the complexity analysis of physiologic

time series.

INDEX TERMS Time series, multiscale entropy, complexity, power-law, self-similarity.

I. INTRODUCTION
It has attracted considerable attentions to quantify the
“complexity” of physiologic time series in the attempt to
distinguish different conditions, e.g., between the healthy and
the diseased, or between the young and the elderly [1], [2].
Complexity is intuitively connected with “meaningful struc-
tural richness” [3], [4]. In physiologic complexity theory,
healthy systems are assigned the highest complexity because
they present long-range correlations and complex variabil-
ity on various scales; however, diseased systems lose their
complexity due to the impaired ability to adapt to adverse
conditions [5]. It is also generally accepted that neither max-
imally random nor perfectly ordered systems possess struc-
tures (correlation between components) [6], therefore should
be assigned low complexity values.

Generally, a good physiologic complexity measure should
meet the following criteria: (1) it should assign higher
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complexity values to physiologic time series than to periodic
and (2) to random time series [7], [8]; (3) it should assign
higher complexity values to a physiologic time series than
to its shuffled surrogate, due to broken temporal correlations
[7]; (4) it should assign reduced complexity values to the
physiologic time series added with white noise, which is
completely random; (5) it should assign high complexity
values to healthy physiologic time series and low complexity
values to the diseased [1], [8], [9].

To quantify physiologic complexity, a lot of indices have
been employed including various entropy-based measures,
e.g., approximate entropy [10], permutation entropy [11] and
sample entropy [12]. These conventional entropy-based mea-
sures, which quantify the irregularity of time series, assign
the highest complexity values to white noise, therefore are
not satisfactory in describing physiologic complexity.

To solve this problem, Costa ef al. have devised a new
measure, multiscale entropy (MSE), to identify complex-
ity in physiologic systems [9], [13] by calculating sample
entropy on multiple scales of the coarse-grained version
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of the original times series. Moreover, several studies have
been proposed to improve the MSE method. For example,
Wu et al. have proposed the Composite MSE to decrease
the high variances on large scales [14]; Wu er al. have
proposed Modified MSE to improve precision and avoid
undefined entropy values with short time series by a moving
average process [15]; Shi et al. have extended the MSE by
using higher moments (variance and skewness) in the coarse-
graining process, to discern the slight differences between
complex oscillations more easily [16]. The MSE and its suc-
cessive methods have become prevailing methods to quantify
the complexity of signals in different research fields, includ-
ing biomedical [13], [17]-[21], seismic [22], traffic [23], and
financial time series [24].

We will show in the following sections of this study that
the MSE method is not perfection: it meets criteria (1), (2),
(3) and (5) only in an indirect fashion; and fails to meet cri-
terion (4). The underlying reason is that complexity values of
different time series cannot be compared directly in the MSE
method. This weakness is stated by Costa ef al., who have
noted that to better characterize the physiologic processes,
one needs to take into account not only the MSE values,
but also their dependence on time scales (i.e., the pattern of
MSE curve) by visual inspection [9]. For example, the MSE
method considers some cases as low complex, where the MSE
curves have an monotonical decaying pattern. Although this
strategy works well for these specific cases, the pattern is
often subtle for the naked eye to capture in more general
scenarios (e.g., Fig. 6).

Despite these entropy-based measures (both single
scale and multiple scales), another type of complexity
measure is fractality testing [25], which mainly focusses on
self-similarity (or long-term persistence, or system memo-
rability) by analyzing the scaling behavior [25], [26]. Hurst
exponent H is one of the most accepted metric scaling
exponents.

Combining the two types of complexity measures (entropy
and fractality testing), we propose a new complexity measure,
which can overcome the weakness of the MSE method and
can meet the five criteria mentioned above, therefore can pro-
vide a direct complexity measure for physiologic time series.

Il. POWER-LAW EXPONENT MODULATED
MULTISCALE ENTROPY
The power spectrum of some complex signals contains a
single power-law component, i.e., the signals’ power density
falls with increasing frequency as P oc 1/f#, where P is
the power spectral density, f is the frequency, and S is the
power-law exponent [27]. B is related to Hurst exponent H
as H = (1 4 B)/2 for stationary signals [28], [29].

The complexity distribution over 8 of 1/f# time series is
a fundamental question. Zhang has studied this question and
found that the complexity distribution over $ (in the range of
0 < B < 2) presents a bell shape, reaching maxima at § = 1
(namely, the 1/f noise), and reaching minima at 8 = 0 and
B =21[30], [31].

112726

3 . , . : . , .
—0—SE
—O0—pSE
2+ _
1L _
0 L 1 . ] . 1 1
0.0 0.5 1.0 15 2.0

B

FIGURE 1. SE and pSE analysis of power-law time series with single
exponent (mean: 0, variance: 1). On the x-axis, 8 is the power-law
exponent. The pSE curve maximizes when g is approximately 1, which is
in accordance with Zhang's complexity [30], [31].

For a power-law time series with known single power-law
exponent 8, we define a new complexity measure pSE as:

pSE = SE - 'i; (1

where SE is the sample entropy of the time series.

We test the pSE as a function of 8 of simulated power-law
time series in the range of 0 < § < 2. The result shows that
the pSE curve is in accordance with the bell shape of Zhang’s
complexity distribution over g8 (Fig. 1). White noise is widely
considered as having no structure and therefore possesses no
complexity. Sample entropy assigns the highest value to white
noise (Fig. 1 SE curve). In contrast, pSE assigns zero to white
noise (Fig. 1 pSE curve).

A real-world physiologic time series usually has a
spectrum of unknown power-law exponents, therefore the
pSE method needs to be generalized. In order to do that,
we first study the analytical formula of multiscale entropy and
try to work out a way to estimate the scale-wise local power-
law exponents. Then we compute pSE on each time scale
by multiplying the scale-wise sample entropy and the scale-
wise local power-law exponents, a method we would call
power-law exponent modulated multiscale entropy (pMSE).
Finally, we average pMSE over all scales to get an overall
vision of the underlying complexity of the time series in
question.

A. THE RELATIONSHIP BETWEEN MSE AND B

After the invention of the MSE method [13], Costa et al. have
given the analytical formula of the MSE method in the form
of a double integration (see (a-1) in Appendix) [9], which is
not clear in revealing the relationship between MSE and some
hidden parameters. Therefore, we further solve the double
integration for 0 < 8 < 1 (see Appendix section for details)
as follows,

E(s) ~ —In(

r2—-p) ﬂ;l)lns @

+
2 (1 - ﬁ)) (

where, E(s) is the multiscale entropy on scale s, the sign In
indicates the natural logarithm, and r is the tolerance factor,
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apercentage of standard deviation of the time series [9]. From
(2), multiscale entropy is not only related to tolerance factor
r and scale factor s, which is the same as [9], but also related
to an additional parameter §.

Since tolerance factor r is often a constant, and 8 is fixed
for a given time series with single exponent, the MSE curve
E(s) is proportional to Ins as

E(s) p

slope ~ u 3
2
B. ESTIMATION OF SCALE-WISE LOCAL 8 BASED ON
THE RELATIONSHIP BETWEEN MSE AND B
From (3) we propose that, for a complex time series, the
scale-wise local power-law exponents can be estimated as

,éscale = 2slopescaie + 1 @

where slopescqie 15 the local slope of MSE curve on a specific
scale, and B}cale is the estimated S on that scale.

In practice, estimating the slope on each scale directly from
the MSE curve may be affected by the variance of MSE.
One way to address this problem is to first fit a polynomial
of certain degree (e.g., fourth degree) to the MSE curve
(against the natural logarithm of scales), then to differentiate
the polynomial to get the local slopes and finally calculate
the ﬂscale-

C. A MULTISCALE COMPLEXITY MEASURE: POWER-LAW
EXPONENT MODULATED MULTISCALE ENTROPY

From Section II-A and II-B, we have both MSE values
(i.e., sample entropy on each scale) and the B}mle. Next,
we generalize the pSE to pMSE by calculating pSE on
multiple time scales. We define pMSE on each scale as

Ins = slope - Ins

PMSE = SEgcqje - |ﬂs;ale|
= SEscale - |slopescaie + 0.5] (5)

where SE;.q is the sample entropy on each scale.

In the conventional MSE algorithm, sample entropy cal-
culation on coarse-grained time series uses the variance of
the original time series to determine the tolerance level [13],
whereas the refined MSE algorithm uses the variance of each
coarse-grained time series [32]. We compare the two and
find no significant difference in computing pMSE. Therefore,
in (5), we simply use the conventional MSE’s values on each
scale for SE 4.

D. AVERAGE PMISE AS A COMPLEXITY MEASURE

FOR PHYSIOLOGIC TIME SERIES

We define average pMSE (apMSE) as a complexity measure
of a complex physiologic time series as

SH
1
apMSE = o > | pSEscatc ©)

scale=1

where Sy is the highest scale (typically 20).

VOLUME 8, 2020

For comparison, we also define average MSE (aMSE) as

&
aMSE = — > SEscate 7
H scale=1

where Sg is the same as in (6).

In summary, the algorithm takes four steps:

Step 1: Calculate the original MSE and change the linear
scales to natural logarithmic ones.

Step 2: Fit a polynomial (typically of fourth degree) to the
MSE curve (against the natural logarithm of scales) to get a
Matlab fit object.

Step 3: Differentiate the fit object to get the local
power-law exponent B}cale (Section I1-B).

Step 4: Calculate pMSE and apMSE as in (5) and (6).

The algorithm is publicly available at website https://
github.com/kangningxie, with supporting codes from other
research groups.

lll. VALIDATION
The validation procedure of the new complexity measure
pMSE is described in this section.

In the following analysis, MSE was used as a benchmark
method. The MSE toolbox was kindly provided by Ahmed
and Mandic [33]. The sample entropy function in the toolbox
was replaced with a rapid algorithm from Pan et al. [34].

A. THE RELATIONSHIP BETWEEN MSE SLOPE AND
POWER-LAW EXPONENT HOLDS FOR WIDER RANGE

In order to test the validity of proposed estimation method
of B in Section II-B, we reconstructed the 8 parameters from
simulated power-law time series with preset 8 parameters and
then compared them statistically.

The power-law time series were generated with preset
from 0 to 2, and a step of 0.2. Each time series had 30000 data
points. The dataset was produced by the Matlab toolbox
powernoise.m provided by [35].

The scale-wise local power-law exponent Esmle was calcu-
lated from (4) for each scale of every time series. Then, Ewas
calculated as averaged ,B\swle on all scales of a specific time
series. Later, E was plotted against S to reveal their relation-
ship (Fig. 2). Correlation test was then carried out between the
two parameters. Ewas a good estimator except for 8 values
very close to 2 (correlation coefficient R = 0.986, P < 0.01).
Therefore, although the relationship between MSE curve and
B in (2) was theoretically established for 0 < 8 < 1, it should
be valid in broader range (0 < 8 < 2).

B. COMPLEXITY ANALYSIS OF SIMULATED
POWER-LAW PROCESS
Although the pMSE method was proposed as a complexity
measure for real-world physiologic time series with
unknown 8, we first validated the pMSE method on the
simulated power-law time series with known S.

The power-law time series were generated with known S:
0, 0.3, 0.8, 1. Each time series had 30000 data points. MSE
and pMSE were both applied to each of these time series.

112727



IEEE Access

W. Han et al.: pMSE: A Complexity Measure Applied to Physiologic Time Series

FIGURE 2. Performance analysis of the power-law exponent estimation
method. § is the reconstructed power-law exponent from the simulated
time series with given power-law exponent g. This estimation process
was repeated for 30 times. The error bars show the standard deviation.
For most cases of 8, § is a good estimator (correlation coefficient

R =0.986, P < 0.01).
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FIGURE 3. MSE (top) and pMSE (bottom) analysis of 30 simulated
power-law time series, each with 30000 data points. The error bars show
the standard deviation. The curve with g = 0 is the white noise, and that
with g8 = 1 is 1/f noise. In the conventional MSE method, the four
power-law curves are intercepted, whereas the pMSE curves show clear
separation.

In Fig. 3 top, sample entropy of the white noise (8 = 0) is
the highest (see the scale factor 1), indicating highest irregu-
larity other than complexity. The MSE method can indirectly
indicate that white noise has low complexity by showing a
declining pattern, i.e., high MSE values on small scales and
low on large scales.

Determining complexity by looking at the large scales is
valid for 8 = 0, 0.3 and 1, but it has difficulties in explaining
whose complexity is higher for time series with § = 0.8
and 1 due to the fact that the MSE values of time series with
B = 0.8 are all higher than those of § = 1 (Fig. 3 top). One
way to settle this problem is to calculate larger scales than
20 at the cost of requirement of longer time series and higher
computation load. Another way is to consider the shape.
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FIGURE 4. MSE (top) and pMSE (bottom) analysis of periodic, random,
and physiologic series. Figure legend in bottom is the same as the one in
top. pMSE directly shows higher values for physiologic time series and
low values for both random and periodic time series.

The steeper decaying pattern of the MSE curve must be
considered to recognize its lower complexity.

In contrast, the pMSE method consistently presents the
descending complexity values to time series with 8 declining
from 1 to O (Fig. 3 bottom). This result is consistent with the
pSE method with known 8 shown in Section II.

C. COMPLEXITY ANALYSIS OF PERIODIC, RANDOM AND
PHYSIOLOGIC TIME SERIES

MSE and pMSE were applied to random, periodic, and phys-
iologic time series to compare the performance.

Periodic data was generated by a sine function sin(t), t was
from 0 to 99.99 with a step of 0.01. White noise was generated
as random time series. A typical interbeat interval time series
was chosen as the physiologic time series, which was from
Physiobank (nsrdb, 16265) [36]. Data length for each time
series was 10000.

Both pMSE and MSE correctly present curves with low
values for periodic time series (Fig. 4). Therefore, both
methods meet criterion (1) mentioned in Introduction section.

For white noise, MSE presents a decaying pattern, very
high on small scales and low on large scales (Fig. 4 top).
This makes it indirect in determining the complexity level.
Whereas pMSE yields a curve with low values to white noise
across all scales, and relative higher curve to the physiologic
time series for all scales than white noise (Fig. 4 bottom).
Therefore, the pMSE method meets criterion (2) directly.

D. COMPLEXITY ANALYSIS OF PHYSIOLOGIC AND
SHUFFLED TIME SERIES
MSE and pMSE were applied to a physiologic time series and
its shuffled surrogate to compare the difference.

The original physiologic time series was the same as
in Section III-C. The shuffled surrogate was produced by

VOLUME 8, 2020



W. Han et al.: pMSE: A Complexity Measure Applied to Physiologic Time Series

IEEE Access

T T T T T T T T
25 —o— Original
—o— Shuffled 1

Entropy

Modulated Entropy

S0 5 10 15 20
Scale Factor

FIGURE 5. MSE (top) and pMSE (bottom) analysis of original physiologic
time series and its shuffled version. Figure legend in bottom is the same
as in top. pMSE straightforwardly shows clear separation of physiologic

time series and its shuffled surrogate.

shuffling the order of time sequence of the original phys-
iologic time series. The shuffling process used the Matlab
random permutation function (randperm).

In Fig. 5 top, MSE of the shuffled surrogate shows a
decaying pattern. For scales smaller than 10, the shuffled
MSE curve is higher than the original; for the rest of the
scales, the opposite result occurs. This is a pattern similar to
the MSE curve of white noise. Users of MSE are supposed
to mentally regard it as lower complexity, which is neither
straightforward nor quantitative. Therefore, MSE can only
meets criterion (3) indirectly.

In contrast, the pMSE method show values of shuffled
surrogate consistently lower than the original time series on
all scales (Fig. 5 bottom). This reduced complexity can be
caused by the broken correlation of time series by the shuf-
fling. Therefore, the pMSE method can correctly and directly
distinguish the complexity of a physiologic time series and its
shuffled surrogate, which meets criterion (3).

E. COMPLEXITY ANALYSIS OF PHYSIOLOGIC TIME
SERIES CONTAMINATED WITH WHITE NOISE

A very important aspect of a complexity measure is to report
lower values to a time series contaminated with white noise.
Therefore, we further tested the MSE and pMSE methods
on physiologic time series with superimposed white noise of
different intensities.

The physiologic time series was from a healthy subject
from Physiobank (Database: MIT-BIH Normal Sinus Rhythm
Database, record: 16273, length of data points: 30000) [36].
All datasets were normalized by their own standard devia-
tions. The original time series was mixed with Gaussian white
noise of different intensities, 10%, 20% and 30% standard
deviation of the original time series.
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FIGURE 6. MSE (top) and pMSE (bottom) analysis of interbeat interval
time series of a healthy subject, added with Gaussian white noise of
increasing intensities. Figure legend in bottom is the same as in top.
PMSE straightforwardly and correctly shows decreasing complexity values
for mixed signals with more white noise.

The MSE method shows higher curve for mixed signals
with more white noise (Fig. 6 top). For signals with obvi-
ous noise-like decaying pattern (e.g., 30% and 20% noise),
the users of the MSE method need to mentally regard
them as having low complexity, which is not straightfor-
ward. Moreover, for MSE curve without a decaying pattern
(10% noise and original), higher values of MSE curve would
be regarded as having higher complexity, which fails to meet
criterion (4).

Opposite to the MSE method, the pMSE method
consistently shows decreasing values of complexity for mixed
signals with more white noise (Fig. 6 bottom), which meets
criterion (4) straightforwardly and correctly.

F. COMPLEXITY ANALYSIS OF INTERBEAT INTERVAL

TIME SERIES OF HEALTHY SUBIJECTS, SUBJECTS

WITH CHF AND WITH AF

Diseases may have negative effects on the complexity of
a system (and the recorded time series) [37]. We com-
pared MSE and pMSE in the application of physiologic and
pathologic time series.

The interbeat interval time series were from Physiobank
(Healthy: nsrdb, n = 15, CHF: chfdata, n = 14, AF: Itafdb,
n = 16) [36]. Data length for each time series was 10000.

Different scales may represent different physiological
conditions [16], [38], [39]. In the analysis of interbeat interval
time series, ‘“‘small” or “large” time scales are usually used
when scales are shorter or longer than one typical respiratory
cycle length, approximately five cardiac beats [9].

The MSE curves (Fig. 7 top) agree with the results in [9],
[13]. The MSE method is successful in explaining that inter-
beat time series from healthy subjects have higher complexity
than those from AF and CHF patients on large scales by
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FIGURE 7. MSE (top), pMSE (middle) and estimated power-law
exponent (bottom) of interbeat interval time series derived from healthy
subjects (n = 15), subjects with congestive heart failure (CHF, n = 14),
and subjects with atrial fibrillation (AF, n = 16). The error bars show the
standard error. For most scales, the descending order of pMSE curves is:
Healthy, CHF, AF, which is more straightforward than MSE.

considering the values only; yet, it has difficulties in explain-
ing that time series from AF patients have less complexity
than that from CHF patients and healthy subjects. This has
been the reason to take into account the shape of MSE
curves [9]. One can recognize the low complexity nature of
AF time series from its monotonic decaying pattern of MSE,
which is similar to that of white noise. Overall, the MSE
method meets criterion (5) indirectly.

In contrast, on large scales, the pMSE method shows
consistent highest values for healthy subjects, and lowest
values for AF subjects (Fig. 7 middle). One does not need to
further examine the shape of pMSE curves to assign complex-
ity levels to the three time series. The pMSE method directly
shows higher complexity to physiologic time series than to
pathologic time series. Therefore, pMSE meets criterion (5)
directly.

In addition, Fig. 7 middle shows that, for the two
pathologic time series, there is an interception of curves from
CHF and AF at time scale 5. On large scales, pMSE curve
from CHF is higher than that from AF. However, on small
scales, pMSE curve from AF is higher than that from CHF.
This result suggests that the underlying controlling processes
from the two diseased cases may be differently affected by
respiration.

In addition, we estimated Eon each scale (i.e., Ecale) from
the MSE curve by (4) (Fig.7 bottom). Interestingly, the E
values present some similarities to the slope of detrended
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FIGURE 8. Sliding window analysis of a long time series from subjects
with paroxysmal atrial fibrillation. (a): Interbeat interval (second) over
beat numbers. (b) and (c): MSE and pMSE over beat numbers using
sliding window method. (d): the average MSE (aMSE) and average
PMSE (apMSE) over beat numbers. apMSE drops during onset of AF
(40000-60000), presenting a good complexity indicator.

fluctuation analysis (DFA) of both healthy subjects and sub-
jects with CHF [40]. For example, the E values from healthy
subjects are high (peak value is about 1.5 ) on low scales,
decaying to 1 on higher scales; the E values from CHF
subjects are low on small scales and high on large scales.

G. COMPLEXITY ANALYSIS OF LONG-TERM PAROXYSMAL
AF INTERBEAT INTERVAL TIME SERIES

A long-term paroxysmal AF interbeat interval time series was
used to compare aMSE and apMSE.

The time series was from Physiobank database: Itafdb,
record:00 [36]. The calculation was on sliding windows
(window size: 10000; overlap: 9000, sliding step: 1000).
MSE (Fig. 8 b) and pMSE (Fig. 8 c) vs. beat numbers of
a long-term paroxysmal AF interbeat interval time series
(Fig. 8 a). aMSE and apMSE were computed on sliding
windows (Fig. 8 d).

We observe that: 1) the MSE and pMSE can both be plotted
over beat number in sliding windows to show time-varing
features, with some similarities to time-frequency analysis
of a signal; 2) overall, aMSE and apMSE have similar trend
during time course without AF; 3) during the time course
of AF, aMSE still presents the same level (except for short
time periods just before and after the AF), whereas the
apMSE curve consitently drops, indicating that AF has low
complexity. Therefore, apMSE may serve as an applicable
single-valued indicator of complexity.
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IV. DISCUSSION

Determining the complexity of power-law time series is a
funamental problem, which has been addressed by Zhang
[30] that the complexity of power-law time series peaks
when power-law exponent is 1 (1/f noise) and declines when
it goes either up or down, reaching minima at 0 and 2.
In accordance with Zhang’s finding, Costa et al. [9] also show
1/f (power-law exponent 8 = 1) noise has high complexity
and white noise (power-law exponent § = 0) has low
complexity in their proposed MSE method.

Despite these separate cases, Costa et al. have not shown
broader cases with continuous power-law exponents. In addi-
tion, MSE will give a fundamental misleading result when
a complex time series is added with white noise: MSE
shows higher curves indicating higher complexity while less
complexity should be reported due to the contamination of
structure by the white noise (Fig. 6), as stated in criterion
(5). Another difficulty of MSE is that it relies on users to
mentally identify a decaying pattern to rule out “‘noise-like”
pattern instead of quantitively assigning a complexity number
(AF case in Fig. 7), therefore it is not a direct measure of
complexity in criteria (1), (2), (3) and (5).

In this study, we have demonstated that pSE of power-law
time series has the same distribution pattern over power-law
exponent from 0 to 2 as that in Zhang’s study. Also, we have
given the detailed analytical formula for conventional MSE
of power-law time series with power-law exponent 8. The
results have shown that, when the scale factor is in natural log-
arithm, the slope of MSE curve is directly proportional to the
power-law exponent 8 (Appendix (a-10)). This relationship
is valid for 8 in the range of 0 < 8 < 2 (Fig. 2).

We notice that Gao et al. [41] has given the same results
in terms of the relationship between the slope of MSE and
Hurst exponent, which is equivalent to our findings when B
is in the range of 0 < B < 1. In addition, in the range of
1 < B < 2, our proposed relationship still holds, suggesting
that the power-law exponent might be a more fundamental
parameter than Hurst parameter. Therefore, we can estimate
the local B from the MSE curve and calculate the local pSE
as a complexity measure on the specific scale, a method we
call the power-law exponent modulated multiscale entropy
(pMSE).

The proposed pMSE assigns high complexity values to
physiologic time series and low complexity values to both
periodic and random time series (the first and second cri-
teria). Furthermore, pMSE correctly presents a consistently
higher curve to a physiologic time series than to its shuffled
surrogate (the third criterion). pMSE correctly assigns lower
values to physiologic time series contaminated with white
noise (the fourth criterion). For the comparison of healthy and
pathologic time series, pMSE presents a straightforward way
to show the complexity levels, which meets criterion (5).

For the comparison of pMSE and MSE, all parameters
that calculate MSE are selected the same as in [13]. The
degree of polynomial that fits the MSE curve affects the
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performance of pMSE. Generally, higher degree tends to
overfit the curve and lower degree might not be adequate to
capture the pattern. Although no detailed analysis is shown
in this paper, we would empirically suggest the fourth degree
be a reasonable choice.

We note that Silva et al. have proposed generalized sample
entropy based on Tsallis nonadditive statistics and defined
a complexity measure as the difference of this general-
ized sample entropy on one signal and its surrogate [7].
Silva’s complexity measure can also satisfy the criteria men-
tioned in Introduction section, yet the computation cost is
high (It needs to compute the generalized sample entropy for
100 surrogate series).

Our pMSE method may be improved benefitting from
the techniques introduced in the successive MSE methods
(for a review, see [42]), some of which aim to improve
the estimation accuracy, and some to optimize the
coarse-graining procedure. However, pMSE may have diffi-
culties in directly benefitting from the multiscale permutation
entropy (MPE) [43], due to the major difference between
sample entropy and permutation entropy, which extracts a
probability distribution of the ordinal patterns.

V. CONCLUSION

We have proposed and tested a new physiologic complexity
measure (pPMSE) to characterize the complexity of phys-
iologic time series. The pMSE overcomes the weakness
of the MSE method (complexity values of different time
series cannot be compared directly) and meets all five
criteria mentioned in Introduction section, therefore may
provide a promising complexity measure for physiologic
time series.

APPENDIX

First, for uncorrelated Gaussian noise, one can observe n data
points, x1, x2, - - - , X,. Consider that each data point comes
from uncorrelated stochastic variables X. Costa, et al. [9]
calculated the sample entropy,

SE = —InP,(|x; — x;| < ro)
where P, is the probability that the distance between two

data points of the coarse-grained time series (with scale s)
is less than or equal to a predefined threshold r. Note that,

the original equation in [9] is SE = —InP,(|x; — x;| < 1),
which is correct when the time series has standard deviation
o = 1, otherwise the equation SE = —InP,(|x; — x;| < ro)
should be used.

This probability was shown as the

double-integral form

following

Pr(x} — x| < ro)

_ﬁ /L/"O{ x+r o xX—r } —x25/202
=%V ) . erf(am) ed(am) e dx
(a-1)
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where erf refers to the error function:

2 T
erf(x)=ﬁ/0 e "du

and o is the standard deviation of the original time series of
scale 1. The threshold r is often chosen as a constant in the
range of 0.15-0.3.

Next, Costa derived the analytical MSE for 1/f noise by
mapping the correlated noises into white noises via orthog-
onal transformation. The correlated noise is assumed to
come from a fractal Gaussian noise (fGn) process. It has
a time-independent autocorrelation function depending only
on lag and Hurst exponent [28]. Let us consider n random
variables X;(i = 1, 2, - - - n). There is an orthogonal transform
matrix U’ (formed with eigenvectors U; of the covariance
matrix of X;) which can transform correlated X; into uncorre-
lated (independent) Y; with Gaussian distribution with stan-
dard deviation of oy, = +/Ai, where A; is the Eigen values
corresponding to the Uj;.

Now we have n uncorrelated Gaussian variable Y; with an

n n
2 (o) = 5 2 (V.
L ]
For each coarse-grained sequence with scale s, the data length
becomes 2. Therefore, the average standard deviation of the

coarse- gralned sequence becomes
n/s n/s

Gy = %Z(Gn')= %Z(\/E)

average standard deviation of oy =

(a-2)

Li proved that when the sampling data length n is
sufficiently large, the eigenvalues of a fractal Brownian
motion (fBm) process with Hurst exponent H decays as a
power-law [44]

K
A~ FHTT (a-3)
where K is a constant related to H.

The power versus frequency relationship of fBm process
is JA(f)|? o ¢ - f~P, where B is the power-law exponent.
The Hurst exponent H is related with 8 when 8 > 1 [28]:

= (B — 1)/2, therefore, (a-3) becomes
K
i#

Although this is derived from fBm process, we expect
that it is also valid for fGn process without proof. Since the
transform of X to Y does not change the energy, we have

2 2 K
noy = noy ~
X Y § 1: B
=

AR (a-4)

The right-hand side of the above equation can be estimated
by the partial sum of p-series [45]

2”: K Kn'"#
Ay
=i 1-p8
Combine the above two equations, we have K = a)%(l -8B )n/3

2(1—gmb
Equation (a-4) becomes A; ~ i% = Gx(ll#

112732

The mean standard deviation of scaled and transformed

time series is
n/s

6}’5 = E \/
n/s

R
S
~
[N
1M
~
>
=
p—
=
[\)

S S S (a-5)

The multiscale entropy of scale factor s can now be
calculated on the Gaussian distribution of mean zero and
standard deviation oy, by the following equation

¥l < rox)) = —In(e rf(f “SX»

(a-6)

E(s) = —In(P,(ly} —

The erf function can be written as the Taylor series, and for
Srox

typical settings, *2[_ < 1. Therefore,

o= -4 4
e =—ux—-—=4+—
Ve A3 0
Apply the first order expansion of erf(x), we have
erf( \/Ei'ox) 2 \[srox
20'Y \/_ ZO'YS
Therefore,
2 JJsrox
E —In(P -y < ~ —In(—=
() = —In(Pr(ly; — yi| = rox)) = n(ﬁ ors )
(a-7)

According to (a-5) and (a-7), we finally have the analytical
formula for MSE:

E(s) = —In(P(ly; — yi| < rox))

r2-p) B —
~ —1
n(3 —n(l_ﬂ))ﬂ

where, 0 < 8 < 1 and E(1) is the entropy at scale 1.

In Fig. 9, the analytical and numerical MSE values are
plotted against the natural logarithms of scale factors, from
Inl to In20. The power-law exponents § are set from 0.1 to
0.9 with step 0.1. We observe that the analytical (a-8) and
numerical MSE curves are similar for different 8 values, and
the small goodness of fit values (defined as the normalized
root mean square error: 0.0033195) showed that the analytical
and numerical MSE fit well in the range of 0 < 8 < 0.9.

Form (a-8), we can see that the MSE curve E(s) of time
series with power-law exponent § is proportional to Ins and
Inr. In practice, r is often fixed, and (a-8) can be reduced to

)Ins (a-8)

E(s) x p- Ins = slope - Ins (a-9)

where
B —

lope =2~ 10
slope 5 (a-10)
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FIGURE 9. Analytical and numerical entropy comparison while 0 < 8 < 1
and r = 0.15. (a-c) shows the MSE against the natural logarithms of scale
factor of three simulated power-law time series with 8 = 0.1, 0.5, and
0.9, respectively. (d) shows the goodness of fit of analytical entropy to the
numerical entropy as a function of g.

For the estimation of this relation between MSE slope and
B, see Section V-A.
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