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ABSTRACT Due to its inherent characteristics, infrared small target detection plays an important role in the
field of image detection. In order to improve the detection accuracy of small infrared targets under complex
sea background, by analyzing the difference between small targets and sea clutter, we propose an infrared
small target detection algorithm based on the peak aggregation number and Gaussian discrimination. First
we remove the background through local large value detection and extracts suspect targets. Then, the peak
aggregation number of the suspected target is counted to eliminate most of the strong wave clutter and strong
island edges. Finally, the small waves are eliminated by Gaussian discrimination. The experimental results
show that our algorithm has good performance under strong noise interference and calm sea conditions.

INDEX TERMS Target detection, small infrared target, local large value, peak aggregation number, Gaussian
discrimination.

I. INTRODUCTION
The infrared small target detection technology is one of
the key technologies in the sea surface rescue system and
early warning system. The accuracy of the detection method
directly affects the performance of the application system.
Due to the long detection distance and the influence of
atmospheric transmission, the amount of target radiation
received by the sensor is usually small and effective tar-
gets are easily submerged by noise and background wave
clutter. It is extremely difficult to accurately detect effective
targets [1]–[5]. Therefore, the detection of small infrared tar-
gets under complex backgrounds becomes a research hotspot
now.

In general, infrared small target detection methods
are mainly divided into two categories: detection based
on single-frame (SF) and multi-frame (MF), respectively.
SF detection is to use only one image to achieve the goal of
target detection, while MF detection is to achieve the same
goal by multiple images related to each other. Compared
with SF algorithm,MF algorithm requires the targets between
frames have a strong correlation and the background should
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be stable. These assumptions are difficult to meet in the actual
detection environment due to the influence of severe sea and
weather conditions. At the same time, because the MF algo-
rithm needs to process multiple images to achieve detection,
the complexity of these algorithms is usually high and it is dif-
ficult to meet the requirements of real-time detection. In addi-
tion, a large number ofMF algorithms are implemented based
on the results of SF detection. Therefore, compared with
MF algorithms, SF algorithms usually have the advantages
of low prior knowledge, strong real-time performance, and
low hardware requirements. Therefore, we study the detec-
tion algorithms based on SF. Currently, SF detection can be
divided into three types: detection based on target analysis,
detection based on background suppression and detection
based on statistics.

The algorithms based on target analysis focus on the
analysis of target characteristics. By analyzing the target-
background differences, corresponding algorithms are pro-
posed to realize the detection of small infrared targets under
complex backgrounds. For example, Chen et al. adopted a
method based on local contrast, they used the brightness
difference between the target and its neighboring area to
detect the target [6]. Although this method is effective, it will
be affected by high brightness noise [7]. Qi et al. regarded the
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target as a salient area that is distinct from the background,
and detected the target through salient area detection [4].
However, strong wave clutter is also more prominent in some
cases, which will lead to a higher false alarm rate of the
detection results. In 2016, Wei et al. proposed a new mul-
tiscale patch-based contrast measure for small infrared target
detection, which can simultaneously enhance dark and light
targets [8]. However, its robustness is not good enough under
noisy and complex situations. In 2018, Nie et al. proposed a
multiscale local homogeneity measure method by integrating
the internal homogeneity of the target itself and increasing
the heterogeneity between the target and local background
regions [9]. Thismethod also has low discrimination of strong
clutter, which leads to a high false alarm rate. In short, due
to the similarity characteristics between the high-brightness
noise and the target and the analysis of the target characteris-
tics is insufficient, in the background of strong wave clutters,
the above algorithms all have a high false alarm rate.

Algorithms based on background suppression focus on the
estimation of the background. On the basis of estimating the
background, the small target is detected by the difference
between the original image and the background. Most of
these methods are implemented by filtering. Such as tra-
ditional algorithms: top-hat filtering [10], maximum mean
filtering, maximum median filtering [13] and bilateral fil-
tering [14], [15]. These methods are simple and efficient,
and have a good detection effect on the simple background,
but cannot accurately achieve the task of accurate detection
under a complex background. Therefore, in recent years,
domestic and foreign scholars have proposed several new
algorithms for images with complex backgrounds. In [16],
Hou and Zhang proposed the spectral residuals (SR) method.
They transformed the image into a logarithmic domain and
removed redundant backgrounds through the Fourier trans-
form of the image. In order to obtain better background
filtering effect, Liu and Li [17] proposed a soft morphol-
ogy TopHat method, which combined the advantages of soft
mathematical morphology filtering and TopHat filtering to
solve the problem of point target detection. Hu et al. [2]
proposed R-NLM, using a non-local mean (NLM) filter to
estimate the original background. This method is based on
local regularity and self-similarity theory, and achieves accu-
rate background estimation and successful extraction of weak
targets. These algorithms have been greatly improved com-
pared with the traditional algorithms, But the background
estimation methods described above are inadequate for the
detection of weak point targets for the background of islands
and strong wave clutter.

The statistics-based methods regard the infrared small
target detection problem as a two-class pattern recognition
task, mostly are based on massive data and implement using
machine learning [18], [19]. Liu et al. [20] used the non-
linear principal component analysis (NLPCA) neural net-
work (NN) to model the appearance of small objects and
constructing a saliency measure function. Bi et al. [21] pro-
posed multiple novel features from four aspects to establish

elaborate description. Then, learning-based classifier is trai-
ned to screen candidate targets. Yang et al. [22] used the
directional support value of Gaussian transform (DSVoGT) to
enhance the targets and then trained the LS-SVM. Sparse rep-
resentation has drawn strong research interests recently [23].
Zhao et al. [24] modeled a small target as a linear com-
bination of certain target samples and then solved a sparse
0-minimization problem. Although the above methods can
work well in complex background, the quality of selected
features and training samples could evidently influence the
detection results. Targets will not be well distinguished if
the finite training samples are insufficient to involve enough
information.

In order to obtain better performance under the complex
sea surface background, we propose an infrared small target
detection algorithm based on peak aggregation number and
Gaussian discrimination. First, local large-value detection is
performed, and pixels with higher gray levels in the local
range are extracted as suspect targets. Then, based on local
large-value detection, peak aggregation number is used to
remove most of the strong wave clutter. Finally, the Gaussian
discrimination is performed on the remaining suspect targets
to obtain the most appropriate response. Experimental results
show that the method can detect small infrared targets with
high detection rate and low false alarms under complex back-
ground. The contributions of this paper can be summarized
as follows:
• The similarities and differences between small targets

and wave clutter are analyzed, which lays a theoretical foun-
dation for effective extraction of small targets.
• The concept of peak aggregation number is pro-

posed, which can clarify the difference between the internal
grayscale characteristics of strong wave clutter and small
targets in the image. The peak aggregation discrimination
algorithm based on this criterion can effectively distinguish
small targets with strong wave clutter.
• A Gaussian discriminant algorithm is proposed, which

uses the structural characteristics of small targets as a detec-
tion condition. By analyzing the Gaussian characteristic of
suspect targets, weak wave clutters can be effectively distin-
guished from small targets.

This article is organized as follows. The second part ana-
lyzes and demonstrates the difference between the small tar-
get and the wave clutter in detail. In the third part, an infrared
small target detection algorithm based on the peak aggre-
gation and Gaussian discrimination is proposed. The fourth
part gives the experimental results and analysis. The fifth part
summarizes the main work of this paper.

II. ANALYSIS OF WAVE CLUTTER AND
TARGET CHARACTERISTICS
When the sea surface is calm, the difference between the
small infrared targets and the background is large, and the
effective detection of the target can be achieved by simple
threshold judgment. But when there is a lot of wave clutter
on the sea surface, the detection of small targets becomes
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extremely difficult. The difficulty of small target detection
under this complex background is that the wave clutter and
the target have certain similarities. To accurately detect the
small target, it is necessary to analyze the characteristics of
the infrared small target and the wave clutter.

A. INFRARED SMALL TARGET CHARACTERISTICS
According to the research experience of previous scholars,
most scholars regard small targets as internally homogeneous
highlighted individuals [8], and believe that small targets
have no shape characteristics. we consider this approxima-
tion is not comprehensive. The following figure lists four
typical infrared small target images on the sea surface for
analysis.

FIGURE 1. Infrared small target characteristics.

It can be seen from the figure above that the small target
is locally significant compared with the background, and the
gray distribution of the pixels inside the target is unbalanced
and show a characteristic of approximate Gaussian distribu-
tion. In other words, there are a number of pixels with high
gray scale and aggregation characteristics inside the target.
The gray scale of these pixels is quite different from the
surrounding pixels and with the increase of the distance from
the max gray scale pixel, the gray scale value of the pixels
along all directions decrease by roughly the same amount.
We define the number of extremely high grayscale pixels in
the locally significant region as the peak aggregation number
and the shape characteristic caused by the isotropic grayscale
attenuation is called Gaussian feature. Therefore, we believe
that the characteristics of small infrared targets can be sum-
marized as local salient, small peak aggregation number and
Gaussian feature.

FIGURE 2. Wave clutter characteristics.

B. WAVE CLUTTER CHARACTERISTICS
Similar to small targets, sea clutter also shows local salient,
which is the reason for the high false alarm rate of methods
based on local contrast or local significance in complex back-
grounds. Through analysis, we find that unlike small targets,
the grayscale distribution of pixels in the wave clutters is
more balanced, there are more pixels with high grayscale
values than the targets’. We call this characteristic as large
peak aggregation number. In addition, we also find that wave
clutter has strong directivity, which is manifested as higher
gray pixels of wave clutter with greater depth in the horizon-
tal direction and rapid attenuation in the vertical direction.
We define this property as themarginal. Therefore, we believe
that the characteristics of wave clutter can be summarized as
local salient, large peak aggregation number, and marginal.

III. ALGORITHM
Based on the above analysis, we propose a small infrared
target detection algorithm based on peak aggregation and
Gaussian discrimination. The algorithm is composed of three
parts: local large value detection (LLVD), peak aggregation
discrimination (PAD), and Gaussian discrimination (GaD).
LLVD realizes the rough extraction of suspicious targets
with the local significance of small targets as the standard.
PAD realizes eliminating strong wave clutters with the small
peak aggregation number of small targets as the standard; the
GaD realizes eliminating the weak wave clutter with overall
morphological structure of small targets as the standard.

A. LOCAL LARGE VALUE DETECTION
The implementation of LLVD: first we set a local detection
window and calculate the average gray value of all pixels in
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FIGURE 3. Infrared small target detection algorithm based on peak
aggregation and Gaussian discrimination.

the window, then increase the average by λ and define this
value as the local large value threshold ThLL . The calculation
of ThLL is shown in formula (1).

ThLL =
λ

L × L

i+floor( L2 )∑
m=i−floor( L2 )

j+floor( L2 )∑
n=j−floor( L2 )

I (m, n) (1)

Among them, L is the size of the local detection window,
I (i, j) is the gray level of the pixel in the center of the window,
λ is large value adjustment factor and ThLL is the local large
value threshold.

Then the central pixel point in the local window is discrim-
inated based on ThLL . If the central gray level is greater than
ThLL , a suspect area is formed, and the pixel point is retained,
otherwise the pixel point is eliminated. The calculation is
shown in formula (2).

resultLL(i, j) =

{
1 I (i, j) > ThLL
0 I (i, j) < ThLL

(2)

resultLL is the result of LLVD.
LLVD directly calculates the average gray value of the

local area, and then increases λ times as a threshold parameter
to extract the target. Compared with the method of maximum
median filtering and maximum mean filtering, which first
estimates the background, then uses the difference method
to extract the suspect target area, finally perform threshold
segmentation, our algorithm has lower complexity and higher
detection efficiency. Compared with the traditional local peak
method, because the local average gray is more stable relative
to the local peak, the extraction effect of the algorithm is less
restricted by the selection of the window size, which reduces
the complexity of parameter analysis.

In different window sizes, we used three types of typical
pictures: island interference image, high sea state image, and
calm sea image to test the detection effects of the above
four algorithms. Because the above four algorithms have a
good extraction effect on the local salient area, and the target
has local significance will definitely be detected, so we use
the total number of pixels detected by different algorithms
as the standard to evaluate the detection accuracy of these
algorithms. The larger the total number of pixels detected,
the lower the detection accuracy of the algorithm.

FIGURE 4. Extraction accuracy of maximum median filtering, maximum
mean filtering, local peak and LLVD under different sea surface
interference conditions.

It can be known fromFIGURE 4. that the numbers of pixels
detected by the maximum median filtering for the above
three types of images are large, and show meaningless fluc-
tuations with the change of the detection window. It means
that maximum median filtering has low accuracy and low
robustness. Maximum median filtering has better detection
effect on calm sea images, but its detection accuracy is far
from enough for complex sea surface just like (a) and (b).
The detection results of local peak heavily depend on the
size of the detection window. LLVD can maintain a low false
detection rate in various scenarios, and the detection result
is almost unaffected by window selection, which shows that
LLVD is robust and accurate.

B. PEAK AGGREGATION DISCRIMINATION
After LLVD, a coarse extracted image containing small tar-
gets and a large amount of background noise can be obtained.
The background noise is mainly composed of three parts:
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strong wave clutter, weak wave clutter and island edges.
If the image covers the sky area, the extracted noise maybe
including clouds. The grayscale properties of the cloud and
islands after imaging are roughly the same as the waves:
the grayscale distribution of the internal pixels is uniform.
Therefore, for the determination of peak aggregation, strong
wave clutter, island edges and clouds can be considered as the
same kind of noise. According to the analysis in Section 2,
they are considered to be characterized by large peak aggre-
gation number. Small targets are characterized by small peak
aggregation number. Therefore, the PAD has a good ability
to distinguish false targets such as strong waves, island edges
and clouds from real small targets.

The PAD is as follows: first, we find the max grayscale
value in the local area and attenuate it by a certain amount as
the local peak threshold, as shown in formula (3):

ThPeaki,j = max(I (p, q))− a,

p ∈ [i− floor(L
/
2), i+ floor(

L/
2)]

q ∈ [j− floor(L
/
2), j+ floor(

L/
2)]

(3)

where ThPeaki,j is the local peak threshold, I is the original
image, (p, q) is the detection range, L is the size of the
detection window, and a is the peak attenuation. After finding
the local peak threshold, the number of pixels whose gray
level is greater than the threshold is counted in the detection
window, as shown in formula (4):

NumPeaki,j = sum(I (p, q) > ThPeaki,j ),

p ∈ [i− floor(L
/
2), i+ floor(

L/
2)]

q ∈ [j− floor(L
/
2), j+ floor(

L/
2)] (4)

NumPeaki,j , is the peak aggregation number of the pixels at
(i, j) position.

Finally, through the threshold decision of peak aggregation
number, we keep the pixels whose peak aggregation number
is less than the threshold, as shown in formula (5):

resultPAD(i, j) =

{
1 0 < NumPeaki,j < Thnum
0 else

(5)

Thnum is the peak aggregation threshold, resultPAD is the
result of PAD.

The rationality of this method: Firstly, according to the
previous discussion in this section, the peak aggregation
discrimination can distinguish strong wave clutter and small
targets well, so it has a good rejection effect on false tar-
gets; Secondly, in the flat region, the local max gray value
is not much different from the gray of other pixels in the
region. When attenuation by the peak attenuation a, it can
be considered the local peak is smaller than the gray of all
pixels in the region. That means NumPeaki,j ≈ L2. Therefore,
the discrimination of the peak aggregation number can also
well remove the flat background.

But there is a problem with PAD: Compared to the size
of the small target, a large candidate area will be extracted
in the suspect target area, and the extraction result is not

accurate enough. The reason for this problem is that in the
state where small targets exist independently, starting from
the peak point entering the window until it leaving, all points
in this range are considered as target. In our algorithm,
the sliding step size of the detection window is 1, that is, the-
oretically, PAD will detect a rectangular area containing the
target. The size of this area mainly depends on the size
of the window. Because we set the size of the detection win-
dow large (the window size will be discussed in Section 4),
the size of detected area will be larger than the actual target.
In fact, PAD detected a suspected area containing the target.
At the same time, LLVD detected the precise shape of the
target. The results of above two steps are binary. So we
perform an AND operation on the detection results of PAD
and LLVD to obtain accurate targets.

C. GAUSSIAN DISCRIMINATION
Through the above two steps of screening, most of the back-
ground noise can be eliminated. But weak wave clutter is
characterized by the small number of pixels, so even if the
gray distribution is uniform, it is also characterized as local
significance and small peak aggregation number as small
targets. It is still in the detection result. Therefore, according
to the structural differencečžGaussian feature and marginal
between the small target and weak wave clutter, we extract
the small target more finely. Since the Gaussian function is
isotropic, the grayscale accumulation of pixels in the hor-
izontal direction within the target neighborhood should be
approximately equal to the grayscale accumulation of the
corresponding number of pixel points in the vertical direction.
Weak wave clutter is marginal, so the gray accumulations in
the above two directions in their neighborhoods should be
quite different. The following figures show the horizontal and
vertical pixel grayscale distribution of weak wave clutter and
small targets in their neighborhoods:

FIGURE 5. Horizontal and vertical pixel grayscale distribution of weak
wave clutter.

As can be seen from the above figures, the grayscale
distribution of small targets is Gaussian; while the weak
wave clutter has edge nature, the grayscale distribution in
the horizontal direction is greater than the vertical direction.
Based on this difference in gray distribution, we define the
Gaussian discrimination by the difference between the row
gray accumulation and the column gray accumulation:

IGaD(i, j) =
max(IRGA(i, j), ICGA(i, j))
min(IRGA(i, j), ICGA(i, j))

(6)
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FIGURE 6. Horizontal and vertical pixel gray distributions of small target.

IRGA(i, j) =
n∑

k=−n

I (i, j+ k), ICGA(i, j) =
n∑

k=−n

I (i+ k, j)

(7)

IRGA(i, j) is the row gray accumulation amount of pixels
located at the (i, j) position, ICGA(i, j) is the column gray
accumulation amount of the corresponding position, and k is
the gray accumulation range.

The judgment result is obtained by the following formula:

resultGaD(i, j) =

{
1 IGaD(i, j) < ThGaD
0 IGaD(i, j) > ThGaD

(8)

Among them, ThGaD is the Gaussian discrimination thresh-
old, resultGaD is the result of GaD.

IV. PARAMETER ANALYSIS AND EXPERIMENT
A. PARAMETER ANALYSIS
There are many pending parameters involved in our algo-
rithm, including the local detection window size L and the
large value adjustment factor λ in the LLVD; the peak atten-
uation a and the peak aggregation threshold Thnum in the
PAD; The gray-scale accumulation range k and the Gaussian
discrimination threshold ThGaD in GaD. This section will
discuss and analyze these parameters one by one.

1) LOCAL DETECTION WINDOW SIZE
It can be known from FIGURE 4., that for different types of
images, the size of the local detection window has little effect
on the final detection result, and the number of detection
results does not have a specific change law with the change
of the window size. The purpose of LLVD is to find targets
(including false targets) and extract morphology, positioning
is achieved by PAD. So as long as the size of the detection
window is larger than the size of the small target, the goal
of suspicious target discovery can be achieved. The Optical
Society of America defines a small target as a target having a
size of less than 81 pixels [25]. Therefore, in order to be able
to detect the target, L should be greater than 9. In order to
ensure that the target is included, we add 2/3 of the maximum
target as the window size. We set L = 15.

2) LARGE VALUE ADJUSTMENT FACTOR
The role of λ is to solve local large value threshold. When λ is
set to be small, the local large value threshold is small, and the

extracted image containing small targets contains more noise;
otherwise, the extracted image contains less noise, but when
the contrast of the target is low, it is easy to lose the target.
Once the target is lost, it cannot be retrieved. Therefore,
the choice of λ has a great impact on the final detection results
and requires in-depth discussion.

We selected 130 infrared sea images of small targets and
wave clutter, respectively, for analysis. The size of each image
is 15 × 15 pixels, corresponding to the size of the local
detection window L. We selected 26 images as examples,
as shown in FIGURE 7.

FIGURE 7. Small target and wave clutter images.

Because small targets and wave clutter are locally signifi-
cant and only one type of target (small target or wave clutter)
exists in our two types of images. Therefore, by changing λ,
the targets (small target or wave clutter) in these two types of
images are extracted by formula (1) and formula (2). As long
as there are pixels with non-zero gray levels in the final image,
it is considered that targets (small target or wave clutter)
can be effectively extracted. The ultimate goal we want to
achieve is to find an appropriate λ so that the detection results
of LLVD can detect as less wave clutter as possible on the
premise of extracting all small targets. We use the two types
of data sets mentioned above to calculate the detection rates
of small target andwave clutter respectively under different λ,
as shown in FIGURE 8.

FIGURE 8. Targets and wave clutter detection rates for different λ.

As can be seen from the figure above, when λ = 1.2,
the detection rate of small targets is 100%, and the detection
rate of wave clutters is less than 50%. When λ increases,
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the detection rate of wave clutters decreases significantly, but
at the same time, the detection rate of small targets cannot
be guaranteed to 100%. Because the subsequent processing
steps can further reduce the false alarm rate, the retention of
valid targets should be guaranteed during the LLVD stage.
Therefore, based on the above analysis, we take λ as 1.2.

3) THRESHOLD OF PEAK AGGREGATION NUMBER
Thnum is an index used to describe the number of high pixel
values. It divides the pixels in the small target into two
categories, one is high gray value, the other is obvious gray
value attenuation. Because the Optical Society of America
defines a small target as a target smaller than 81 pixels in
size [25], and the imaging characteristics of an ideal small
target are consistent with Gaussianity, we analyze the value
of Thnum combination with the size of the small target and its
Gaussianity. The following figure is the normalized gray dis-
tribution of the two-dimensional Gaussian function. The size
of the function is 9× 9, the mean is 0, and the variance is 1.

FIGURE 9. Gaussian function distribution.

As can be seen from the above figure, the main energy
of the Gaussian function image is concentrated in a 3 × 3
square area in the central area, so the value of Thnum should
be set to 9 in theory. In order to make the value of Thnum
more convincing, we use the two types of data sets mentioned
in Section 4.A.(2. to calculate the difference between the
grayscale maximum value and the top 9 grayscale values,
respectively, in each picture. Then we calculate the average
and standard deviation (STD) of these differences. The result-
ing data is shown below.

FIGURE 10. Statistical characteristics of the difference between k-th
largest value and MAX value in two types of data sets.

According to the above figure, it can be clearly seen that,
for small targets, the gray values of the top 5 pixels are larger

than the rest. Moreover, the STD among the top 5 pixels is
relatively small, which means that the degree of difference
between each pixel is smaller. So compared to other pixels,
these 5 pixels are singular. For the wave clutter, although it
is consistent with the small target in the trend, its amplitude
of average and STD are much smaller than the small target.
Therefore, we take Thnum as 5.

4) PEAK ATTENUATION
The role of a is to find the local peak threshold. When a is set
large, the local peak threshold is small and the peak aggre-
gation number is large, the final extraction result contains
more noise; Otherwise, the final extraction result contains
less noise, but when the contrast of the target is low, it is easy
to lose the target.

According to the analysis in Section 3.B., in order to elim-
inate flat areas, the larger the value of a the better. For wave
clutter, the local gray level of it is quite balanced, so when the
value of a is small, a large peak aggregation number can be
obtained. If a is larger, the corresponding peak aggregation
number will be larger; for small targets, when a is small,
the local peak threshold is large, because of the gray value
of the pixels around the small target has a large difference
from the max value, the peak aggregation number will be
extremely small. With the increase of a in a certain range,
the peak aggregation number of the small target will be almost
unchanged. From the discussion above, we think that the
value of a should be relatively large.
After discussion in section 4.A.(3., we set Thnum to 5 as

a basis, and this section will analyze the peak attenua-
tion a. It can be known from the formula (3) that the local
peak threshold is determined by the local gray max value
and a. Therefore, we only need to determine the value of a,
so that a should be larger than the difference between the max
gray value and the 6th largest gray value in the target, smaller
than the gray value difference of the corresponding pixel point
in the wave clutter.

FIGURE 11. The difference between the max gray value and the sixth
largest gray value in the small target and the wave clutter.

As can be seen from the above figure, when Thnum is set
to 5, the difference between the grayscale max value and the
sixth largest grayscale value of the wave clutter is within 15,
and the grayscale difference corresponding to the pixels of
the small target is distributed between 10 ∼ 85 and most of
the targets have a gray difference greater than 15. So as long
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as a > 15, the peak aggregation number of the waves will be
greater than 6. But at the same time, a must not be too large.
When a is too large, peak aggregation number of the target
will be greater than 5, which will cause the loss of the real
target. We use the following formula to solve a.

a =
1
2
[(µT − σT )− (µw + σw)]+ (µw + σw)

=
1
2
[(µT − σT )+ (µw + σw)] (9)

where, µT is mean value of grey level difference for small
target, σT is standard deviation of the same signal, µw and σw
are corresponding parameters for wave clutter.

The rationality of formula (9) is that for the target, in order
to increase the detection rate, it is required to reduce the
peak aggregation number, so a should be small, therefore
we subtract the standard deviation from the mean value of
the target. In order to better eliminate the wave clutter, it is
required to increase the peak aggregation number, so a should
be larger, therefore we add the standard deviation to the cor-
responding mean value of the waves. Then find the difference
and take 1/2. Finally add the expected value of the wave
clutter, which means that we have established a threshold
condition where the difference between the wave and the
target is the largest. Through calculation, we get a = 17.8.

5) GRAY ACCUMULATION RANGE
Due to the first two stages: LLVD and PAD, most of the inter-
ference has been eliminated, so in the image to be processed at
this stage, only a few suspicious regions are retained. Except
for the suspected target area, the gray levels are all zero.
Therefore, the size of k has little effect on the final extraction
result, as long as k can cover the longest diameter (horizontal
or vertical directions) of the target to be detected in the local
area. In Section 4.A.1., we believe that L > 9 can meet the
requirements, and setting L to 15 can guarantee to cover small
targets. Because of the pre-processing, the requirements on
the window coverage are reduced. In this section, in order
to reduce the amount of computation and at the same time
through experimental verification, we take k as 13.

6) GAUSSIAN DISCRIMINATION THRESHOLD
ThGaD is another of the most important parameters in this
paper. The final detection result is obtained after ThGaD
discrimination. The role of ThGaD is to judge the similarity
between the horizontal gray distribution and the vertical gray
distribution of the suspected target. If the small target is an
ideal imaging result, then ThGaD = 1. Since there is no ideal
imaging in practice, ThGaD should be a number greater than
and close to 1. If ThGaD is too close to 1, the judgment criteria
are too strict, and the probability ofmissed detection is greatly
increased. If the ThGaD is too large, the effect of reducing the
false alarm rate will not be achieved. Therefore, the value of
ThGaD needs to be discussed and analyzed.
Use the two types of images in FIGURE 7 for analysis,

and calculate the Gaussianity of the small targets and the

wave clutters. We set the k to 13, and draw the result as a
line chart as shown below.

FIGURE 12. Gaussian difference between small targets and wave clutters.

Because the wave clutter and small target images used
in this section are not extracted, that is, they contain back-
ground areas in addition to thewave clutters and small targets,
the background area is gray-balanced and the gray value is
not 0. In this case, Gaussian calculation results of the target
have little effect. However, it has a greater impact on the
result of the wave area, which will reduce the value of the
Gaussianity of the wave clutter. The principle that causes this
phenomenon is as follows:

R =
A+ C
B+ C

(10)

when A ≈ B andC = 0, R is approximately equal to 1, in this
case, if C 6= 0, the effect on R is small. When the difference
between A and B is larger, if C is not equal to 0, the existence
of C will cause R to approach 1.And in the algorithm of this
paper, when calculating the Gaussianity, the gray values of all
areas except the suspect target area are all 0, so C = 0 can
be considered. Therefore, when the algorithm calculates the
Gaussian, the Gaussian value of the wave clutter should be
larger than the value in FIGURE 12. in this section, and the
target’s Gaussian value is basically unchanged.

We use the same method as formula (9) in Section 4.A.4.
to calculate ThGaD and get ThGaD = 1.08. and through sub-
sequent experiments (FIGURE 13.), it can be found that there
are very few wave clutter in the GaD stage. Comprehensive
analysis above, we set the ThGaD to 1.1 at last.

B. EXPERIMENT
1) DETECTION RESULTS OF OUR ALGORITHM
After the parameters of the algorithm are determined, we use
four types of images to verify the effectiveness of our
algorithm. We list five sea surface images with complex
backgrounds and one calm sea surface image, as shown in
FIGURE 13., where the first and second are island interfer-
ence images, the third and fourth are sea antenna interference
images, the fifth is sea fog interference images, the sixth is a
calm sea image.

From the above experimental results, it can be known that
under complex backgrounds, the LLVD is relatively accurate
in extracting the morphology of small targets, but there is
a large amount of background noise; the PAD can more
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FIGURE 13. Experimental results of our algorithm. For easy observation, the results after GaD have undergone morphological
expansion operation.

accurately locate the location of the target with less noise,
but the coverage of small target detection results is large.
After AND these two results, the image contains only a small
amount of noise and small targets can be obtained. After the
last step of the GaD, the residual noise is also removed, and
only small targets exist in the image. The process proves that
our method has a good detection effect on small infrared
targets in a complex and calm sea backgrounds.

2) COMPARISON OF DIFFERENT ALGORITHMS
In order to illustrate the effectiveness of our algorithm,
we conducted comparative experiments. The algorithm
used are: Texture orientation-based algorithm for detecting
infrared maritime targets (TO) [26], Infrared small target
detection via non-convex rank approximation minimization
joint l2,1 norm (NCL) [27], Multiscale patch-based contrast
measure for small infrared target detection (MPCM) [18],

Infrared small target detection based on local intensity and
gradient properties (LIGP) [28]. The comparison detection
results are shown in Figure 14.

For the three images: C, D, and E interfered by the sea
antenna and fog, all algorithms can accurately detect the tar-
get without false targets. For the A affected by island interfer-
ence, the detection results of NCL, MPCM, LIG and TO have
different levels of noise interference. There are no false tar-
gets in detection results of our algorithm; for the multi-target
image B of strong sea clutter interference, only our algorithm
detects all targets. However there is some noise in the detec-
tion result of B, it can be found that a large amount of noise is
distributed around the left-most target and a small amount of
noise exists below the right-most target. In the original image,
there is a dark band of low grayscale on the outer edge of the
left-most target. The existence of this dark band reduces the
local gray mean value, resulting in more pixel points being
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FIGURE 14. Comparison of detection results of different detection algorithms.

extracted in PAD. At the same time, since the target area
detected by LLVDwill be larger than the real target, the noise
distributed around the real target will be retained, which even-
tually leads to the phenomenon of noise distribution around
the target. In the actual detection mission, especially in the
maritime search and rescue, the noise distributed around the
target will not interfere with the final search. The target below
the right-most target is detected because it is too similar to the
target. On the premise of not knowing the real target, human
eyes have the probability to confuse the truth and falsity of
the right-most target and the target below, we believe that it
is acceptable to detect such noise. Therefore the above exper-
iments show that the detection results of our algorithm are
accurate.

In order to more objectively judge the detection effect of
our algorithm, we use four types of common sea surface
scenes: island interference images A, sea antenna interfer-
ence images B, calm sea images C, and sea fog interference
images D to construct four data sets, each data set contains

FIGURE 15. Typical images of four types of data sets.

50 images. Typical images of each type of data set are
shown in FIGUURE 14.: (a), (b), (c), and (d) for quantitative
analysis.
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TABLE 1. FAR of five detection algorithms.

TABLE 2. MAR of five detection algorithms.

TABLE 3. F1 score of five detection algorithms.

The evaluation index uses False AlarmRate (FAR),Missed
Alarm Rate (MAR) and F1 score. The definitions of FAR and
MAR are shown in formulas (11), (12) and (13).

FAR =
FD

DT + FD
× 100% (11)

MAR =
MT

DT +MT
× 100% (12)

F1 = 2×
(1− FAR)× (1−MAR)
(1− FAR)+ (1−MAR)

× 100% (13)

Among them, FD is the number of false targets detected,
DT is the number of true targets detected, and MT is the
number of small targets not detected. The statistical results
are shown in Table 1, Table 2 and Table 3:

For FAR, our algorithm has the best detection results in
various types of images, which shows that our algorithm has
a good ability to remove false targets. For the MAR indicator,
LIGP shows excellent detection performance, but it can be
found from the comprehensive FAR indicator that the low
MAR of LIGP is due to the existence of a large number of
false targets in its detection results. It shows that the algorithm
uses a strategy of increasing the FAR in exchange for a low
MAR. This idea is of low value in practical applications,
so it cannot explain the superiority of the performance of
the algorithm. NCL also shows a similar phenomenon of
high FAR and low MAR. Although the MAR index of our
algorithm can not be the best among the five algorithms,

according to the F1 score, we can get a conclusion that good
trade-off between MAR and FAR is achieved, which proves
the effectiveness of the algorithm in this paper.

V. CONCLUSION
This paper presents an infrared small target detection algo-
rithm for complex sea background images based on peak
aggregation and Gaussian discrimination. Firstly, by ana-
lyzing the characteristics of small targets and wave clutters
on the sea surface, it lays a theoretical foundation for the
proposed algorithm. Then elaborate the algorithm in this
paper, based on the local saliency, the small number of peak
aggregation, and the gray distribution of the Gaussian of the
target, the LLVD, PAD, and GaD are proposed. Through
step-by-step screening, various types of interference: flat
background, strong wave clutters, island edges, and weak
wave clutters can be effectively eliminated. Then detailed
analysis and discussion are performed on each parameter of
the algorithm. Finally, a large number of analysis experiments
and comparative experiments illustrate the superior detection
performance of the algorithm.
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