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ABSTRACT The rapid and accurate identification of water source types in mine water inrush has been
achieved by combining laser-induced fluorescence technology (LIF) with artificial intelligence algorithms.
However, these algorithms solely rely on data and image processing analysis to identify different kinds of
water samples. To address this issue, we analyzed the fluorescence spectrum and the types of mine water
inrush sources from the signal point of view. Firstly, a LIF water inrush spectral analysis system was built
to collect spectral data and exhibit fluorescence spectra. Different methods of spectral signal decomposition
and reconstruction were compared. The complementary ensemble empirical mode decomposition (CEEMD)
algorithm with a better signal evaluation index was selected to preprocess raw spectral signals. Then, the
multi-class support vector machine of the cuckoo search optimization (CS-MSVM) model was implemented
to the reconstructed spectral signals in different stages. The classification accuracy of the reconstructed
signals in the fifth stage was 100%. Compared with raw spectra, other signal processing methods, and other
different classifiers, the proposed method has the highest classification accuracy. Finally, the reliability of
the algorithm was validated by using the LIF spectral signals of different edible oils and the classification
accuracy was 100%. The experimental results show that the CEEMD signal processing method combined
with LIF spectroscopy is effective for the accurate identification of mine water inrush source, and it also
provides a theoretical basis for the spectral analysis technology that can be used for the identification of
other substances.

INDEX TERMS Laser-induced fluorescence, signal processing, cuckoo search, mine water inrush.

I. INTRODUCTION
Because of the complexity of hydrogeological conditions
and the increase of mining depth over the years, the mine
water inrush has become the second most serious problem
in production after coal mine gas [1]. Mine water disaster is
a serious threat to safety during production and construction
in the mining area. Compared to other major accidents and
general accidents, the major flood accidents have the charac-
teristics of difficulty in rescue and in post-disaster production
recovery and so on. Once it happens, it will cause more
serious casualties and economic losses, and will also bring
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serious adverse effects to the society. The premise to solve
the problem of mine water inrush is to distinguish the source
of water inrush and effectively perform water prevention and
control in advance, so as to prevent and reduce the occurrence
of water disasters [2]. Therefore, it is more important to study
the previous coal mine flood accidents, to fundamentally pre-
vent the similar coal mine flood accidents in the future. The
methods of water source identification of mine water inrush
mainly include water chemistry, isotope, water temperature,
dynamic observation of groundwater level, etc [3]. Although
these methods have reached a certain level of recognition
effectiveness, there are some inherited problems such as long
analysis time, low recognition accuracy, complex operation
process, etc. It is difficult to achieve early online warning and
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rapid identification of water inrush sources, therefore, they
are not useful to prevent and control water disasters.

Laser-induced fluorescence technology (LIF) has the
advantage of high sensitivity, strong real-time performance,
and high precision [4]. In order to solve the limitations of the
existing methods of water inrush source identification, the
technology is used in the field of prevention and control of
coal mine flood accidents. For example, Wang et al. [5] used
SG to preprocess the original fluorescence spectral data and
used principal component analysis (PCA) to extract feature
information. The model of extreme learning machine (ELM)
can be used to distinguish the source of water inrush quickly.
Hu et al. [6] used a successive projection algorithm to
select characteristic wavelength points of LIF combined with
extreme learning machine to achieve timely recognition of
mine water inrush. Yang et al. [7] proposed a water source
discrimination model of mine water inrush based on the
LIF and convolution neural network (CNN). This model can
effectively avoid the complicated feature extraction in the
recognition process. However, the machine learning algo-
rithms currently in use are all data processing methods. After
dimensionality reduction by feature extraction or feature
selection, the original form of fluorescence spectra cannot
be reconstructed from spectral data. These methods can only
use the new characteristic data to establish the water source
identification models, and then by applying the accuracy and
other evaluation indexes to achieve the identification of mine
water inrush, therefore, they can not distinguish and analyze
different kinds of water samples directly through the fluores-
cence spectra. CNN and other deep learning algorithms are
not only complex in parameter adjustment, requiring a large
number of samples, and time-consuming, but also requiring
to draw spectra map before recognition, therefore, can not
directly identify the raw spectral data.

Complementary ensemble empirical mode decomposi-
tion (CEEMD) is an improved non-stationary and non-linear
signal processing method based on EMD. This method can
process the non-stationary data stably and decompose and
reconstruct the complex signals into new stationary sig-
nals [8]. CEEMD has been widely used in medical electrical
signal analysis, atmospheric environment detection, crop pest
detection, bearing fault diagnosis, and other research fields.
For example, Zhang et al. [9] combined CEEMD - Lempel-
Ziv complexity and extreme learning machine (ELM) to
improve the precision and stability of wind power prediction.
Zhu et al. [10] put forward a hybrid algorithm of CEEMD and
particle swarm optimization and gravitational search algo-
rithm (PSOGSA) to realize the prediction and early warning
of air quality. Qiao et al. [11] realized the classification and
detection of wheat pests by using the spectral analysis and
feature extraction method based on CEEMD. LU et al. [12]
proposed an auxiliary CEEMD combined with unsupervised
clustering algorithm to diagnose the damage degree of rolling
bearing. cuckoo search (CS) is a heuristic intelligent opti-
mization algorithm [13], which can be used to optimize the
parameters of a multi-class support vector machine (MSVM),

FIGURE 1. Schematic diagram of laser-induced fluorescence spectral
analysis system of mine water inrush.

it can effectively avoid being trapped in the local optimal
solution, and therefore, improve the classification accuracy.
For example, Zhang et al. [14] proposed the combination of
singular spectrum analysis and CS for short-term electric load
forecasting. Arnab et al. [15] used a cascaded CS algorithm
based on the minimum signal attenuation to realize the effi-
cient transmission of indoor wireless sensor network data.
Wang et al. [16] used CS-SVM fluorescence spectroscopy
to identify polycyclic aromatic hydrocarbons. Yin et al. [17]
realized the non-destructive identification of rubber by using
terahertz spectroscopy technology combined with PCA and
CS-SVM.

The CEEMD algorithm adopted in this paper can decom-
pose the raw fluorescence spectral signals into signals
of different frequencies, and use the reconstructed spec-
tral signals to establish the CS-MSVM model for water
inrush classification. This method provides a theoreti-
cal basis for the identification of mine water inrush by
LIF spectra.

II. MATERIALS AND METHODS
A. INSTRUMENT AND EQUIPMENT
The schematic diagram of the LIF spectral analysis system
of mine water inrush shown in Fig. 1, which is used to
complete the collection of spectral data. The system is mainly
composed of laser, spectrometer, fluorescence probe, opti-
cal fiber, and host computer. The USB2000+ micro-optical
fiber spectrometer (Ocean Optics, USA) is selected in the
experiment, which contains a linear CCD array with high
sensitivity of 2048 pixels (model ILX511, Sony Corporation,
Japan). The spectral detection range is 340∼1021nm, the
resolution is 0.5nm, the integration time is 1s/1000nm, and
the blue-violet laser diode (Beijing Huayuan Tuoda Laser
Technology Co., Ltd. China) with the wavelength of 405nm
is used. The adjustable range of laser incident power is
100∼130mv, and the experimental setting value is 120mW.
The laser is connected with the fluorescence spectrome-
ter through the optical fiber interface of SMA905 connec-
tor, and the immersion micro fluorescence probe (model
FPB-405-V3, Guangzhou Biaoqi Optoelectronics Technol-
ogy Development Co., Ltd., China) is used to insert the water
samples to be tested to obtain the fluorescence signals.
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To avoid the interference of other light sources on the
acquisition of fluorescence spectra in the experiment, the
experiment must be done in a dark room away from the light.
During the experiment, the probe was vertically immersed in
the water samples, and experiments were performed repeat-
edly to ensure that the height of the probe invading the
transparent container was always consistent. The hardware
conditions of the computer used in the experiment include an
Intel Core i7 processor, an NVIDIA RTX 2070 graphics card,
a 16G Kingston memory module, etc. The algorithm simu-
lation is run in MATLAB R2019a (MathWorks, USA) envi-
ronment, using the libsvm-mat-3.1 support vector machine
toolkit [18].

B. PREPROCESSING FOR SPECTRAL SIGNALS
In the process of fluorescence spectral data acquisition, there
are some problems in the spectrometer, such as spectral
amplitude jitter, random error, and light interference. This
will cause the received spectral signals to jitter in different
degrees in the whole band range, and these spectral signals
contain some redundant information. Therefore, the collected
raw spectral signals need to be preprocessed. The common
preprocessingmethods of spectral signals are Savitzky-Golay
(SG) smoothing [19], median filter (Median) smoothing [20],
robust locally weighted regression (Rlowess) smoothing [21],
moving average smoothing [22] and so on.

In order to verify the superiority of the signal processing
methods used in this paper, we will make a horizontal com-
parison and analysis with SG smoothing, Median smoothing,
Rlowess smoothing, and moving average smoothing. The
identification models of mine water inrush are established for
the spectral data after signal processing, and the classification
accuracy is taken as the evaluation index of the processing
methods. Finally, the most suitable preprocessing method of
the spectral signal is selected.

C. MATERIALS AND SAMPLES
In the mine water inrush accident, the goaf water has the fea-
ture of fast-moving, strong destructive capacity, large static
content, etc., and its harmfulness is higher than other water
inrush sources [23]. In this experiment, the goaf water, the
limestone water, the sandstone water, and the mixture of
the above three were used as the experimental materials.
The water inrush samples collected in Huainan mining area
on August 21, 2019, were used for the experiment. The goaf
water is mixed with limestone water and sandstone water
with different proportions to produce seven different kinds
of water samples. 50 groups of spectral data are collected
from each individually kind of water sample, result in a total
of 350 groups of spectral data.

The first is the pure goaf water, the second is the pure
limestone water. The third is the pure sandstone water. The
fourth is the mixture of goaf water and sandstone water with
the volume ratio of 1:1. The fifth is the mixture of goaf water
and limestone water with the volume ratio of 1:1. The sixth
is the mixture of goaf water and sandstone water with the

volume ratio of 1:2. The seventh is the mixture of goaf water
and limestone water with the volume ratio of 1:2.

D. CEEMD
Complementary ensemble empirical mode decomposi-
tion (CEEMD) is an improved signal decomposition method
for ensemble empirical mode decomposition (EEMD) [24]
proposed by Yeh et al. [25] in 2010. Based on the noise aided
analysis, this method can solve problems of residual white
noise and too much calculation in EEMD decomposition, and
also effectively suppresses the problem of mode mixing [26].
The decomposition process of the CEEMDalgorithm is based
on empirical mode decomposition (EMD) [27] and EEMD.
A pair of auxiliary noises with the same amplitude and oppo-
site sign is added to the signal. This method can effectively
eliminate the residual auxiliary noise in the reconstructed
signals, reduce the reconstruction error, and improve the
performance [28].

The decomposition process of CEEMD is as follows:
1) Add a group of auxiliary noise signals with opposite

symbols to the original signals, and the amplitude of each new
noise added should be the same.

x+i (t) = x(t)+ n+i (t) (1)

x−i (t) = x(t)+ n−i (t) (2)

where x(t) is the original signal, n+i (t) is the positive noise,
and n−i (t) is the negative noise;
2) The added noise signals x+i (t) and x

−

i (t) are decomposed
by EMD to obtain two groups of IMF components e+i (t) and
e−i (t). e

+

i (t) is obtained by the decomposition of x+i (t) and
e−i (t) is obtained by the decomposition of x−i (t);
3) Repeat steps 1) and 2)N times to get N IMF components

e+ni(t) and e
−

ni(t);
4) Calculate the total integrated average value of compo-

nents e+ni(t) and e
−

ni(t) respectively.

E+i (t) =
1
N

N∑
j=1

e+ni(t), j = 1, 2, . . . ,N (3)

E−i (t) =
N∑
j=1

e−ni(t)/N, i = 1, 2, . . . ,N (4)

5) Take the average of E+i (t) and E
−

i (t) as the final result.

IMF =
1
2
(E+i (t)+ E

−

i (t)) (5)

E. CS-MSVM
The cuckoo search (CS) is a heuristic optimization algorithm
to simulate the parasitic propagation of cuckoo, which was
proposed by Yang [29] of the Engineering Department of
Cambridge University in 2009. This algorithm can enhance
the global search ability through Levy flight, therefore, it can
not only effectively reduce the local search time, but also
avoid being trapped in the local optimum in the search
process.
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The multi-class support vector machine (MSVM) is a
classification algorithm based on the original two classi-
fication support vector machines, which solves the limita-
tion of only two classifications [30]. Combining the advan-
tages of the two algorithms, we use the CS algorithm to
optimize the penalty factor C and the RBF kernel func-
tion parameter g in MSVM, and find a group of optimal
C and g as the optimal parameters to build a CS-MSVM
model. Compared with the KNN, Bayesian, decision tree,
and random forest, the learning performance of these clas-
sification algorithms depend on the manual adjustment of
parameters [31]–[34]. CS-MSVMmodel does not need man-
ual adjustment of parameters. CS optimization algorithm can
automatically find the optimal solution of MSVM model
parameters, which not only avoids the complex process of
manual parameter adjustment, but also reduces the error of
subjective parameter adjustment, so that the performance of
the classifier is fully improved, and has a good generalization
ability [35].

The specific steps are as follows:
1) Determine and set the search range of penalty factor C

and kernel function parameter g;
2) Set iterations time, the number of nests n, the probability

of being discovered P(λ), and the number of optimization
parameters d ;
3) For each nest, the values of penalty factorC and function

parameter g are initialized randomly as parameters of MSVM
to obtain the accuracy value, and the prediction error rate is
taken as the fitness value. Finding the optimal nest is the value
of the current optimal C and g.

FN = 1−
1
100

fitness (6)

where FN is the fitness at the moment, fitness is the accuracy
of MSVM under the parameters of C and g;
4) Use Levy flights to update the nest, taking the updated

values of C and g as parameters of SVM, repeat step 3) to
obtain a new set of nests;

5) Randomly eliminate some nests with probability, and
repeat step 3) to get a new set of nests. The new fitness value
is compared with the fitness value obtained in step 4), and the
optimal nest is obtained;

6) If the function value of the optimization objective meets
the end condition, the global optimal nest and fitness value
will be output, otherwise, otherwise, step 4) is returned to
optimize the parameter values of C and g.

F. EVALUATION INDEX
The effect of a signal processing method is determined by
the comparison of some digital evaluation indexes, such as
signal to noise ratio (SNR) [36], root means square error
(RMSE) [37] and Pearson correlation coefficient (r) [38].
SNR indicates the relationship between signal and noise,
RMSE indicates the difference between noise reduction sig-
nal and original signal, and r indicates the similarity of sig-
nals before and after noise reduction. In general, the larger

the SNR value, the truer the signal, and the less distortion.
The smaller the RMSE value, the better the signal filtering
effect. The larger the r value, the greater the linear correlation
between the signals.

The expression of the SNR:

SNR = 10 log10[

N∑
i=1

w2(n)

N∑
i=1

(w(n)−w∗(n))2
] (7)

The expression of the RMSE:

RMSE =

√√√√ 1
N

N∑
n=1

[w2(n)−w∗(n)2] (8)

The expression of the r:

r =

n∑
i=1

(wi(n)− w(n))(w∗i (n)− w
∗(n))√

n∑
i=1

(wi(n)− w(n))2
√

n∑
i=1

(w∗i (n)− w
∗(n))2

(9)

where w(n) is the raw signal, w∗i (n) is the processed signal,
w(n) is the average value of the raw signal, and w∗i (n) is the
average value of the processed signal.

III. RESULTS AND DISCUSSION
A. RAW SPECTRAL SIGNALS OF WATER INRUSH
The spectral data are collected by the LIF spectral analysis
system of mine water inrush, and the collected raw fluores-
cence spectra are shown in Fig. 2.

The fluorescence spectrum of a single water sample is
shown in Fig. 2 (a), the band range is 340 ∼ 1021nm, and
the difference of water samples is mainly concentrated in the
band of 400∼ 650nm. The trend of other bands is gentle, and
the signal overlaps seriously. There are two peaks at 475nm
and 514nm for the goaf water, the mixture of goaf water and
limestone water, and the mixture of goaf water and sandstone
water. The difference between sandstone water and limestone
water is mainly reflected in the fluorescence intensity of only
one peak at 475nm, and the difference between the goaf water
and other water samples is obvious. The spectral signals of
sandstone water, limestone water, and three kinds of mixed
water are overlapped, therefore, it is difficult to distinguish.
It can be clearly seen from Fig. 2(b) that total fluorescence
spectra of 350 water samples, except the goaf water, there
is little difference among the other six water samples, which
contain a large number of redundant signals, so it is difficult
to distinguish the types of water samples through observa-
tion. Therefore, it is necessary to preprocess the fluorescence
spectral signals of mine water inrush with the help of a
signal processing algorithm to eliminate the interference of
redundant signals and reduce the spectral overlap.
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FIGURE 2. Raw fluorescence spectra.

B. SPECTRAL SIGNALS PREPROCESSING BY CEEMD
By using the principle of the CEEMD algorithm, the fluo-
rescence spectral signals corresponding to each water inrush
sample can be adaptively decomposed into a certain number
of IMF components. The standard deviation of adding white
noise is 0.2 times the original signal standard deviation, and
the number of iterations is 100.

The fluorescence spectral signals of the first water inrush
samples are taken out for analysis. As can be seen from
Fig. 3, the raw fluorescence spectral signals are adaptively
decomposed into 11 IMF components. The decomposed IMF
components are arranged in the order of frequency from high
to low. Each component has its own amplitude and frequency.
The random noise of spectra is mainly distributed in the
first three IMF components, which have a higher frequency
and smaller amplitude and fluctuate violently. Other IMF
components belong to low-frequency components. With the
increase of the component number, the fluctuation becomes
more and more gentle, and the frequency becomes smaller
and smaller, which represents the useful signal part. IMF11
is generally called a trend term, which generally shows a slow
downward trend. This shows that with the increase of wave-
length of fluorescence spectra, the absorption of fluorescence
substances in the water inrush to the laser shows a downward
trend. Compared with raw fluorescence spectra, only the
static category information of the corresponding spectra of
different water samples can be obtained, while the CEEMD

FIGURE 3. Adaptive decomposition of CEEMD.

method can get the implicit information in the spectral
data.

Comparing EMD, EEMD, and CEEMD according to the
evaluation index of signal processing effect. As shown in
Table 1, the three methods decompose the SNR of different
IMF with negative values, which indicates that the signal
power in these IMF is less than the noise power, and the
corresponding RMSE value is also significantly larger, which
belongs to the redundant component signal. The positive
values of the first three order IMF components are sig-
nificantly lower than those of the other order components,
and all of them are less than 0.1, indicating that there are
some noise signals in these IMF components. The number
of IMF components of negative SNR of the EMD method
is more than that of other two methods, which may lead to
mode mixing. It can be seen that the SNR of different IMF
decomposed by the raw spectral signals is smaller, and the
RMSE is larger. It shows that a single IMF is not enough
to represent all the information of the raw spectral signals,
and these components have serious distortion problems. It is
necessary to reconstruct these signals and select some useful
IMF components to eliminate the interference of redundant
signals to the subsequent recognition results of mine water
inrush.

Firstly, the redundant IMF component signals of negative
SNR are eliminated, and then the remaining IMF component
signals are summed and reconstructed. Based on the IMF11
component corresponding to the maximum value of SNR
and the minimum value of RMSE, different IMF components
are gradually superposed according to the reconstruction
sequence of increasing SNR value and decreasing RMSE
value. The average SNR, the average RMSE, and the average
r are used as the evaluation indexes of decomposition and
reconstruction of spectral signals.
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TABLE 1. Evaluation indexes decomposed by different decomposition
methods.

TABLE 2. Evaluation indexes reconstructed by different decomposition
methods.

As can be seen from Table 2. The evaluation indexes of
reconstructed spectral signals are obviously better than those
of single IMF component signals, which shows that signal
reconstruction is a necessary signal processing work. the
difference of average r of spectral signals reconstructed by the
three decompositionmethods is very small, and the difference
between the average SNR and the average RMSE is obvious.
In conclusion, the filtering effect of the CEEMD method is
good. Finally, CEEMD is selected as the processing method
of spectral signals of mine water inrush, which makes prepa-
ration for the construction of the subsequent classification
model.

C. ESTABLISHMENT OF CS-MSVM CLASSIFICATION
MODEL
The fluorescence spectral signals of 350 groups of water
inrush samples are decomposed by CEEMD, and then all
water samples are divided into the training set and the test
set according to the ratio of 3:2. Among them, 210 groups
of samples are randomly selected as the training set, the
remaining 140 groups of samples are selected as the test set,
and the data of training set and test set are used as input
of the CS-MSVM model. When CS-MSVM is trained in
classification, the number of nests is set to 20, and the number
of iterations is 50. Radial basis function (RBF) is selected as
the kernel function of MSVM, and the fluorescence intensity
value is normalized to [0,1] interval for training. It can be

FIGURE 4. Classification accuracy of different modes.

seen from Fig. 4 that all water sample spectral signals are
divided into 11 IMF components. Although the accuracy of
the first three IMF components in the training set is very
high, the accuracy of the test set is very low, which indicates
that there is a large noise interference signal in the training
data, resulting in a serious overfitting phenomenon. The accu-
racy of the test set of IMF2 is the lowest. Because of the
redundant signals in samples, the accuracy of the training set
of IMF10 is the lowest. The accuracy of IMF6, IMF7, and
IMFf11 signal components is more than 90%, which shows
that the CEEMD processing method can decompose the IMF
components that affect the performance of the CS-MSVM
classification model.

The evaluation indexes SNR and RMSE are used as the
basis for the reconstruction order of the spectral signals of all
the water inrush samples. Firstly, the IMF10 component of
the negative SNR is removed. Finally, IMF11 with the largest
SNR and the smallest RMSE is used as the basis for spec-
tral reconstruction. The reconstructed signals are gradually
superposed in the order of increasing SNR and decreasing
MSE.

The reconstruction process of each stage is shown in Fig. 5,
which is divided into 9 stages of (a) ∼ (i), and the last
one is raw spectra. The first stage is the reconstruction of
IMF11 and IMF7. The (b) refers to add IMF8 on the basis
of (a). The (c) refers to add IMF6 on the basis of (b). The
(d) refers to add IMF9 on the basis of (c). The (e) refers to
add IMF5 on the basis of (d). The (f) refers to add IMF4
on the basis of (e). The (g) refers to add IMF3 on the basis
of (f). The (h) refers to add IMF1 on the basis of (g). The
(i) refers to add IMF2 on the basis of (h). The spectral signals
reconstructed in stages of (a) ∼ (d) have only one peak, and
the signal spectral lines are scattered. From the (e) stage, one
peak of the spectral signal gradually becomes two peaks, and
the spectral lines of the signal become denser and denser.
Because the noise signal component is added, the spectral
signal reconstructed in stages of (h) ∼ (i) is very similar
to the raw signal, and the distortion of the signal processed
in stages of (e) ∼ (i) is relatively small, which retains the
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FIGURE 5. Reconstructed spectra of all water samples.

TABLE 3. Classification accuracy results of reconstructed spectra.

characteristics of the data itself. Although the spectral lines
presented in stages of (a) ∼ (g) are more scattered than raw
spectra, there are still overlapping spectra which are difficult
to distinguish intuitively. Therefore, it is necessary to use
the pattern recognition classification algorithm to accurately
identify the water inrush samples.

The classification accuracy results of reconstructed spectra
in different stages are shown in Table 3, the classification
accuracy of the training set and test set of the reconstructed
spectral signals is significantly higher than that of the single
IMF component. The accuracy of the first stage and the stage
of (e) can reach the highest value. Due to the mixing of
noise IMF component, the accuracy of the last four stages
is slightly reduced. Compared with reconstructed spectra of
the water sample in Figure 5, serious distortion occurs in the
first stage of spectra. To ensure that spectra can display more
information and achieve high classification accuracy, the fifth
stage reconstructed spectra are selected as the final signal

FIGURE 6. Classification results of the test set of raw spectra.

FIGURE 7. Classification results of the test set of spectra processed by
CEEMD.

processing result, at which point, the model parameters of the
MSVM are C = 23.2518, g = 0.01.
To clearly express the difference between the test category

and the actual category, the blue ‘‘◦’’ in the figure is the
actual category of the input samples, and the red ‘‘∗’’ is the
predicted result of the classification model. If ‘‘◦’’ and ‘‘
∗’’ coincide, the sample is correctly classified. Fig. 6 shows
the classification results of CS-MSVM classification model
for test set samples after the training of raw spectral data.
Among the 140 water inrush samples, the 7th kind water
sample is mistakenly identified as the 6th kind water sample,
it shows that the two kinds of water samples have similar
chemical components and fluorescent substances, which lead
to misclassification.

The classification results of the test set treated by CEEMD
is shown in Fig. 7, there is no deviation in 7 kinds
of water inrush samples, and all of them are classified
correctly.

In order to verify the accuracy and effect of CEEMD
algorithm combined with CS-MSVMmodel for water source
identification of mine water inrush, the method in this paper
will be compared with Savitzky-Golay (SG) smoothing,
median filter (Median) smoothing, robot locally weighted
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FIGURE 8. Spectra under different signal processing methods.

TABLE 4. Accuracy of different signal processing methods.

expression (Rlowess) smoothing, and moving average (Mov-
ing) smoothing. The processed spectra are as shown in
Fig. 8. Compared with Fig. 5, the CEEMD successfully
reduces the overlapping degree of spectral signals of the
mixed water samples. However, the other four methods only
reduce the burr of the spectral signals and enhance the
spectral smoothness, but spectra between the mixed water
samples is still stacked seriously and the filtering effect
is poor. From the modeling accuracy of different process-
ing methods in Table 4, it can be seen that the various
processing methods all can improve the accuracy of the
classification model in varying degrees. The classification
accuracy of training set and test set after CEEMD processing
can reach 100%, and the classification accuracy is also the
highest.

We also use random forest (RF), extreme learning machine
(ELM), probabilistic neural network (PNN), and decision
tree (DT) classifiers to evaluate the preprocessing perfor-
mance of the signal processing method. The number of trees
in RF is set to 400, and each decision tree contains 45 vari-
ables. The optimal number of hidden layer nodes in ELM
is 143. The optimal parameter value of spread in PNN is

FIGURE 9. Evaluation results of different classifiers.

FIGURE 10. Comparison of fluorescence spectra.

FIGURE 11. Classification results of the test set of spectra processed by
CEEMD.

set to 1.5. Fig. 9 provides the classification effect under
different classifiers. We can find that in addition to the ELM
classifier, the accuracy of other classifiers of training sets can
reach 100%, and the accuracy of test sets can reach more
than 95%. It shows that the signal preprocessing method
proposed in this paper is capable of adapting to different
classifiers and has a better performance. Compared with
other classifiers, the test set accuracy of the DT classifier
is lower, and its value is 96.43%. Only one sample under
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the PNN classifier is wrongly identified. The accuracy of the
training set and the test set of RF and CS-MSVM both reach
100%, which shows that these two classifiers have an excel-
lent classification learning ability for training samples after
preprocessing.

D. VERIFICATION OF GENERALIZATION ABILITY
Good generalization ability can ensure the reliability
of the training model. If the algorithm used in this
paper can achieve good classification effect for differ-
ent data sets, it can show that the algorithm has strong
reliability.

Now, the reliability of the algorithm is verified by the data
of LIF spectra of edible oil collected in the laboratory on
September 22, 2019. Seven kinds of edible oil are soybean oil,
rapeseed oil, peanut oil, corn oil, and sunflower oil purchased
on the market. From 250 samples (50 groups of each kind),
150 groups are randomly selected as training sets,and the
remaining 100 groups are selected as test sets. The spectral
signal is decomposed and reconstructed by CEEMD, and then
the edible oil recognition model of CS-MSVM is established.
As shown in Fig. 10 (a), raw fluorescence spectra of edible oil
are partially overlapped and hard to distinguish. It can be seen
from Fig. 10 (b) that spectra of edible oil treated by CEEMD
are more dispersed, and different edible oil can be visually
distinguished by naked eyes. The actual classification results
of the test set are shown in Fig. 11. When the optimization
parameter C is 24.4272 and g is 0.01, all samples are clas-
sified correctly, which fully reflects the advantages of this
method.

IV. CONCLUSION
In this paper, we proposed a new method of mine water
inrush identification based on LIF signal processing. The
new fluorescence spectra signals are decomposed and recon-
structed by the CEEMD algorithm, and the CS-MSVM
model is established. This approach is established for training
to identify different kinds of mine water inrush. Finally,
we compared and analyzed the effect of different processing
methods on classification results, and verified the reliabil-
ity of the algorithm. The experimental process and results
show:

1) The CEEMD algorithm based on SNR analysis is supe-
rior to the traditional EMD and EEMD algorithm in various
evaluation indexes. Because the spectral signals contain all
kinds of recessive information, it is difficult to find all the
rules through observation. CEEMD can adaptively decom-
pose complex spectral signals into IMF components with
practical physical significance. As a result, we can mine
hidden signals that cannot be obtained directly from the
raw spectral signals, therefore distinguish useful and useless
information. By using this method, the noise in raw spectra
and the interference of redundant signals on the identification
results are both reduced.

2) The normalized data get rid of the influence of too
large difference of sample data, which not only speeds up

the search for the optimal solution but also improves the
classification accuracy. In the training process, the C and g
parameters optimized byCS are used in themodeling of water
inrush identification of MSVM. This method not only has
high recognition accuracy but also avoids the occurrence of
overfitting and underfitting.

3) CEEMD combined with CS-MSVM algorithm is appli-
cable to the identification of mine water inrush by LIF tech-
nology. The recognition effect of the method used in this
paper is better than the classificationmodel established by the
signal smoothing method. It can ensure that the underground
workers find out the cause of mine water inrush timely and
obtain the type of water inrush source safely and accurately.
Ultimately, it will be useful to improve water disaster preven-
tion and control.

4) This method is applicable to identify not only mine
water inrush, but also edible oil by LIF technology. The
experimental results show that the model established in this
paper is highly adaptable, reliable, robust, and applicable to
other research areas.

All the spectral data in the experiment are collected by
the laser-induced fluorescence spectral analysis system in
the laboratory. The collection conditions of the spectral data
are better than that of the actual water inrush source in the
mine, and the interference is relatively less than that in the
mine. In this study, 350 groups of sample data (7 kinds of
water inrush samples) are tested, but there may be more kinds
of water samples with many uncertain factors in the actual
industrial field analysis, which brings a lot of challenges
to the identification of mine water inrush source. How to
overcome these difficulties will become the focus of the next
research, and also the key to improving the recognition rate
of mine water inrush source. At present, we are all experi-
menting with static water. We are going to do some research
on the identification of dynamic mine water inrush in the
future.

In the simulation test, the IMF component is reconstructed
mainly based on the signal-to-noise ratio and RMSE, and we
finally achieve an ideal recognition effect. In the following
research, we may choose more signal evaluation indexes
to reconstruct spectral signals and explore its influence on
classification accuracy.
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