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ABSTRACT The Taylor-Kalman filter (TKF) is a linear filter that can be modeled using either an accurately
modeled TKF (known as the modified TKF) or an approximately modeled TKF. The higher-order TKF can
not only adapt to the small frequency deviation condition but also prevents certain harmonics leakage. It has
been increasingly widely applied in power grid synchronization and other power system fields. However,
to the best of authors’ knowledge, systematical analyses of the impact of different models on the estimation
performance and the methods for extraction of the shifted grid frequency have not been reported to date. The
aim of this paper is to examine the TKF-based phase estimation algorithms (PEA) with regard to aspects
such as the steady state, dynamic state and computational cost. Comparisons were carried out to evaluate
the effects of the model and the order of TKF on the dynamic response and steady-state error. A strong
tracking algorithm was also introduced to enhance the dynamic response. Several approaches for reducing
the computational burden are given. Finally, combined with the moving average filter (MAF), which is a
typical low-pass filter, an application example of TKF-based PEA was developed, and its performance was
verified by experiments.

INDEX TERMS Grid synchronization, signal decomposition, phase estimation, Kalman filter (KF),
Taylor-Kalman filter (TKF), moving average filter (MAF).

I. INTRODUCTION
Recently, fast and robust techniques for fundamental fre-
quency positive sequence (FFPS) detection have played an
important role in applications such as grid harmonic com-
pensation and control of the grid connected converter for
distributed energy and island detection.

A large number of new algorithms for FFPS estimation
have been proposed in recent years under different steady-
state and dynamic conditions. They can be divided into the
frequency domain and time domain algorithms. DFT (Dis-
crete Fourier transform)-based methods [1]–[3] are well-
known techniques for spectrum analysis of grid signal in the
frequency domain. However, these techniques often assume
that the grid voltage waveform is periodic and repetitive,
which may lead to spectrum leakage problem due to the
unsynchronized sampling effect, giving rise to errors in fre-
quency and phase angle detection [4]. The time domain
methods can be classified into the phase locked loop (PLL)-
based algorithms [5], [6] and the non-PLL algorithms. The
underlying concept of the PLL-based algorithms is obtain
a balance between the steady state accuracy and the transient
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response [7]. Many researchers have also devoted efforts to
improving the PLL estimation performance by preventing
the interferences arising from harmonics, and flickers. For
the non-PLL methods, the different approaches are based
on their operational principles. Least square (LS)-based
algorithms [8], [9], Newton algorithms and modern signal
processing-based algorithms [10], [11] are some examples of
these techniques.

The concept of state space is used to describe the mathe-
matical formulations of the Kalman filter (KF) [12]. Based
on whether or not the prediction model is linear, Kalman
filters are classified as traditional linear Kalman filters and
nonlinear Kalman filters. The Extended Kalman filter (EKF)
and the Unscented Kalman filter are two typical nonlinear
Kalman filters. Both of these are Gaussian nonlinear models;
the EKF transforms a nonlinear problem into a linear problem
by using linearizationmethods, while theUKF approximately
estimates the statistical characteristics of random variables
by analyzing limited data sets. EKFs and UKFs are highly
accurate and have been widely used. However, the use of non-
linear models affects their dynamic performance and gives
rise to a significant computational cost. The grid signal is
relatively stable, and its estimation should be performed
rapidly. Thus, EKF and UKF are more likely be used in
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state estimation [13]–[15] and other power grid applica-
tions [16], [17].

The conventional KF has been widely applied in power
systems [18]–[21]. It is a linear minimum variance estimation
algorithm that is not only suitable for nonstationary processes
but is also recursive.ManyKalman filters have been proposed
in the previous studies, and these differ mainly in their differ-
ent modeling approaches. A second-order and a third-order
linear KF-based adaptive PLL algorithms were proposed
in [19] and [22], respectively. By tuning the Kalman gains
to a series of certain constant values, the KF-based adaptive
PLLs can be obtained to be equivalent to some traditional
PLLs [23]. However, the KF-based PLLs may show poor
performance under harmonic conditions. To address the har-
monics, several KF-based harmonic-decomposition methods
have been developed [24]–[28].

As a linear KF, The Taylor Kalman filter (TKF) signal
decomposition algorithm that uses the Taylor polynomial for
the kth approximation of the dynamic phasor was proposed in
[26], [27]. TKF has been applied not only in grid synchroniza-
tion but also in many other fields [29], [30]. All of these TKF
methods have simplified the rotating dynamic phasor model.
An accurate model of TKF called the modified TKF (MTKF)
was proposed in [31]. To distinguish the above two TKF
methods, the approximately modeled TKF is called ATKF in
this paper.

Tests results have shown that both high-order ATKF and
MTKF can meet the low frequency deviation condition, but
systematic analyses of the methods for the estimation of
the shifted grid frequency have not been reported to date.
The main purpose of this paper is to compare and analyze
the TKF-based algorithms. The paper focuses on TKFs and
makes the following contributions.

1) The mathematical basis of TKF is derived
2) The frequency responses of both ATKF and MTKF are

presented. A mathematical analysis is also performed
to illustrate how ATKF and MTKF can track the FFPS
component under the frequency deviation condition.

3) The effects of the model and its order on the dynamic
response are analyzed. A strong tracking algorithm is
provided. The enhancement of the TKF dynamic per-
formance is also explained based on the strong tracking
algorithm and the comparison of traditional TKFs.

4) The computational cost of different TKFs in the steady
state and two approaches for reducing the computa-
tional burden are presented.

5) An example of a design of a prefilter-based TKF algo-
rithm is provided, and several tests are conducted to
evaluate its performance.

II. BASIS OF k th ORDER TKF
Generally, the grid signal can be expressed as:

y(t) = VDC +
M∑
m

Vm(t) cos(ωmt + ϕm(t)), (1)

where VDC is the direct current (DC) component, and Vm(t)
and ϕm(t) are the dynamic magnitude and the dynamic phase
of the mth harmonic, respectively. ωm = 2πmfnt is the angu-
lar frequency, and fn is the nominal frequency of the grid. M
is the maximum order of the harmonics. The state vector can
be expressed as X(n) = [xDCX1(n) · · ·Xm(n) · · ·XM(n)]T ,
where Xm(n) = [Xm(n) X−m(n) ] = [ rm(n) r−m (n)]. rm is
the matrix form of rotating dynamic phasor which is defined
as r(t) = p(t)ej2π ft and pm is the k th Taylor polynomial
matrix form of the dynamic phasor pm(t) = Vm(t)ejϕm(t) that
is defined as [26]:

pm(n) = T(τ )pm(n− 1), (2)

where p(n) =
[
p(n) p(1)(n) · · · p(k)(n)

]T , τ is the interval
of each sample, and T(τ ) is the state transition matrix of the
dynamic phasor:

T(τ ) =


1 τ · · ·

τ k

k!

0 1 · · ·
τ k−1

(k − 1)!
...

...
. . .

...

0 0 · · · 1


, (3)

and the order of TKF depends on the order of the Taylor
polynomial.

Inmost TKF studies reported in the literature, rm is approx-
imated as [26], [27]:

Xm(n) = rm(n) = [ rm(n) r (1)m (n) · · · r (k)m (n) ]T

≈ ejnωmτpm(n) (4)

Strictly, r (k)m is not the k th derivative of rm. The Process model
and the measurement model of ATKF can be obtained by:

X(n) =


xDC
X1(n)
...

XM(n)

 =

1 0 · · · 0

91(τ ) · · · 0
. . .

...

9M (τ )


×X(n− 1), (5)

y(n) =
[
1

1
2
(hh) · · ·

1
2
(hh)

]
X(n), (6)

where

9m(τ ) =
[
ejωmτ · T(τ ) 0

0 e−jωmτ · T(τ )

]
, (7)

and

h =

[
1 0 · · · 0︸ ︷︷ ︸

k

]
. (8)

To obtain the full accurate model, it is helpful to start with
the connection between the dynamic phasor and the rotating
dynamic phasor:

rm(n) = ejωmt ·Mm · pm(n), (9)
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andMm is an invertible matrix defined as:

Mm =


1 0 · · · 0
jωm 1 · · · 0
...

...
. . .

...

(jωm)k k(jωm)k−1 · · · 1

. (10)

Thus, the state equation of the mth harmonic component in
MTKF can be obtained as:

rm(n) = ejωmτ ·8m(τ ) · rm(n− 1), (11)

where

8m(τ ) =Mm · T(τ ) ·M−1m . (12)

The transition matrix of mth harmonic component can be
rewritten as:

9m(τ ) =
[
ejωmτ ·8m(τ ) 0

0 e−jωmτ ·8−m(τ )

]
. (13)

Hence, each component of the grid signal can be extracted
by the Kalman filter, and the estimated grid signal at a given
instance (n) is obtained as follows:

a) Calculate the Predicted state matrix

X̂(n|n− 1) = 9X̂(n− 1), (14)

b) Obtain the Predicted error covariance matrix

P(n|n− 1) = 9P(n− 1)9T
+Q, (15)

c) Compute the Kalman gain K

K(n) = P(n|n− 1)HT (r+HP(n|n− 1)HT )−1,

(16)

d) Drive the Estimated state matrix

X̂(n) = X̂(n|n− 1)+K(n)(u(n)−HX̂(n|n− 1)),

(17)

e) Update the Estimated error covariance matrix

P(n) = P(n|n− 1)−K(n)HP(n|n− 1), (18)

where u(n) is the input grid signal, and Q and R are
the covariance matrices of the process and the measure-
ment noise, respectively.

III. STEADY STATE ANALYSIS OF TKF
Under the steady state, the Kalman gain K depends only on
the ratio of the state variable covariance matrix Q to the mea-
surement noise variance matrix R and is not affected by the
initial error covariance matrix P [26]. Hence, the frequency
response of TkKF (the kth order Taylor Kalman Filter) can
be easily obtained by taking z transform of its update state
equation that is derived in the appendix to save space.

FIGURE 1(a) shows the frequency response of the kth
accurately modeled Taylor-Kalman filter represented by the
transfer function corresponding to the state variable r1.

FIGURE 1. Frequency response of the Taylor-based Kalman filter:
(a) Frequency response of MTk KF, (b) Frequency response of ATk KF.

An analysis of this curve easily leads to the following
conclusions:

Regardless of the order of MTKF, the characteristic
reflected by r1 extracts the FFPS component and eliminates
the other harmonics when the grid frequency is at its nominal
value and all of the harmonic models are included in the
transition matrix. With the increase in the number of har-
monic models, the computational cost will increase, and the
computation of the Kalman filter can be reduced by designing
an appropriate prelow-pass filter.

As the order of MTKF increases, the magnitude-frequency
and phase-frequency curves become increasingly flat near
the nominal frequency and other integer harmonics, imply-
ing that MTKF can accurately extract the target component
and eliminate other harmonics under the frequency deviation
condition.

The frequency response of ATKF is depicted in FIGURE 1
(b) and is similar to that ofMTKF. The high-order ATKF has a
smaller flat region (compared to MTKF) around the nominal
frequency, indicating that the high-order ATKF can also track
the FFPS component when the grid frequency varies slightly.

Analyses are carried out below to illustrate that bothMTKF
and ATKF can fit a small frequency deviation.

Since the nominal frequency of the rotation factor ej2π ft

is a constant value, the frequency offset is reflected by the
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phasor change under steady state. When the real frequency
varies from the nominal frequency f to f̃ , the dynamic phasor
p(t) will change according to:

p̃(t) = p(t)ej2π (f̃−f )t = p(t)ej2π1ft . (19)

The rotating dynamic phasor can be rewritten as:

r(t) = p̃(t)ej2π ft = p(t)ej2π f̃ t . (20)

Then, the derivative of the rotational dynamic phasor r (1)(t)
can be written as:

r (1)(t) =
[
j2π f̃ p(0)(t)+ p(1)(t)

]
ej2π f̃ t = j2π f̃ r (0)(t).

(21)

Therefore, the real frequency at instant n can be esti-
mated by:

f̃ (n) =

∣∣∣∣ r (1)(n)
2πr (0)(n)

∣∣∣∣ . (22)

Noticing that both r (0) and r (1) are state variables of the
Kalman filter, the order of the Kalman filter should be 1 or
higher.

For ATKF, we take the derivative of (19) to obtain:

p̃(1)(t) = p(1)(t)ej2π1ft + j2π1fp(t)ej2π1ft = j2π1f p̃(t)

(23)

Then, we rewrite the expression for the rotating dynamic
phasor as:

r(t) = p̃(t)ej2π ft

r (1)(t) = j2π1f p̃(t)ej2π ft . (24)

The real frequency can be estimated by f̃ = f +1f where

1f = sign(6
r (1)(t)
r (0)(t)

) ·

∣∣∣∣ r (1)(t)
2πr (0)(t)

∣∣∣∣ . (25)

The frequency response of r (1)/2π is shown in FIGURE 2.
The r (1)/2π of MTKF estimates the real frequency, and the
r (1)/2π of ATKF reflect the difference between the real fre-
quency and the nominal frequency, which is consistent with
the results of the mathematical analysis.

Two tests were carried out to analyze the influence of the
grid frequency on the estimated performance of TKFs.
Test 1: the grid voltage is a pure sinusoidal signal with an

amplitude of 311 V.
Test 2: the grid voltage is contaminated with a 5th-order

harmonic (0.1 p.u.) and a 7th-order harmonic (0.073 p.u.).
As is shown in FIGURE 3, the following conclusions can

be drawn:
1) The error increases with increasing frequency

deviation.
2) The order of the Kalman filter plays a leading role

when the grid voltage is a pure sinusoidal signal (see
FIGURE 3 (a)). A higher order implies a higher esti-
mation accuracy. MTKF and ATKF have a very similar
estimation performance if they have the same order.

FIGURE 2. Frequency response of r (1)/2π : (a) MTKF, (b) ATKF.

3) The error also increases when the voltage is contami-
nated with harmonics, as shown by the comparison of
FIGURE 3(a) and FIGURE 3(b). This is because when
the frequency is varied, the order of the harmonics will
not be an integer for the nominal frequency. Lower-
order MTKF and ATKFs cannot completely filter all
of these harmonics.

4) Under harmonics condition, frequency deviation has
the greatest influence on AT1KF, followed by MT1KF
and AT2KF, and finally MT2KF. The Taylor-based
Kalman filter with an accurate model and higher
order has larger flat regions in its frequency response,
enhancing its estimation performance under the fre-
quency deviation condition.

IV. DYNAMIC PERFORMANCE ANALYSIS OF TKF
A. DYNAMIC PERFORMANCE ANAYLSIS
FIGURE 4 shows the Kalman gain of the FFPS component
state variable r1 for MTKF. The curve of the Kalman gain of
ATKF is similar to that ofMT0KF, and therefore is not shown.
It can be observed from FIGURE 4:

1) The convergence speed of the Kalman gain increases
with the decreasing order of the Kalman filter.

2) All of theKalman gainwill remain around a small value
after one cycle of the FFPS (approximately 0.02 s).
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FIGURE 3. Results for (a) test 1, (b) test 2.

FIGURE 4. Kalman gain of state variable r1 in the iteration process for
MTKF.

As shown by (14), (15) and (17), the Kalman gain is
independent of the state vectorX (see appendix). The Kalman
gain becomes increasingly small with time, leading to a worse
frequency response under the steady state condition [27] and
a long-time adjustment under the dynamic conditions.

The abovementioned problem can be solved using two
approaches:

1) Fix the Kalman gain when the Kalman filter reaches its
steady state.

2) Use the strong tracking algorithm; here, the Predicted
error covariance matrix must be adjusted with the
change in the grid condition. Inspired by the introduc-
tion of the suboptimal scaling factor in [32] to improve

the filter’s tracking ability and response speed under
dynamic conditions, (15) need to be rewrite as:

P(n|n− 1) = λn9P(n− 1)9T
+Q (26)

where λ is the suboptimal scaling factor. By intro-
ducing the suboptimal scaling factor, the error covari-
ance matrix P will increase when the grid signal
changes dynamically, and then the Kalman gain will
also increase, so that a fast response can be realized.
The enhanced MTKF and ATKF are called STMTKF
and STATKF, respectively, in this paper.

Dynamic analysis is developed to evaluate the performance
of the two strategies mentioned above (see FIGURE 5).
A sinusoidal signal at 50 Hz with unit amplitude is tracked by
the Kalman filter. The real and imaginary signals of the state
variable that estimate the FFPS component are employed to
represent the trajectories in a four-quadrant XY plane (the
blue line). When the signal is accurately traced, the trajectory
is a unit radius circle (overlap with the red line).

The initial point of the trajectory is (X, Y) = (0, 0).
Figures 5(a-d) depict the performance of ATKF and MTKF
with constant Kalman gains that are obtained after the first
fundamental cycle., The comparative group adopts the strong
tracking algorithm (Figures 5(e-h)).

Analysis of the results presented in FIGURE 5 shows the
following:

1) The overshoot increases with increasing order of the
Kalman filter. An accurate model of the Kalman filter
also contributes to a poorer dynamic response ability.

2) The strong tracking algorithm can improve the
response speed for at least half of the fundamental
cycles compared to the constant Kalman gain method.
Therefore, the dynamic response ability is clearly
enhanced by introducing the strong tracking algorithm
at the expense of a small additional computational cost.

B. COMPUTATIONAL COST
It is assumed that there will be no significant offset in the
frequency of the power grid. Once the Kalman gains of ATKF
are established, the filtering algorithm is performed using
only the state prediction equation in (14). Therefore, it takes
only ((k+1)(k+2)/4+1)N multiplications to obtain the entire
filtering for ATkKF containing N blocks (harmonic models)
for each iteration [27].

Unlike for ATKF, matrix8 in (12) of MTKF does not have
the submatrix diagonal nature and superior triangular form
requiring (k + 1)2 multiplications. Thus, the computational
cost of a state transition is (k + 1)2N/2 and the cost of the
entire filtering is ((k + 1)2/2+ 1)N .
For the strong tracking algorithm, additional computation

must be performed to calculate the suboptimal scaling factor
λ that requires four more operations in the steady state.

Considering the characteristics of Kalman filter, two
approaches can help to alleviate the computational burden:
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FIGURE 5. Trajectories in the XY plane: (a) trajectory of AT1KF,
(b) trajectory of MT1KF, (c) trajectory of AT2KF, (d) trajectory of MT2KF,
(e) trajectory of STAT1KF, (f) trajectory of STMT1KF, (g) trajectory of
STAT2KF, (h) trajectory of STMT2KF.

1) Simplification of the model: as mentioned above,
the computational cost of an approximately modeled
Kalman filter is lower than that of an accurately mod-
eled Kalman filter.

2) Application of a prefiltering stage: by using prefilters,
harmonics can be eliminated or at least attenuated to a
certain extent so that the order of harmonic models can
be reduced, and moreover, the harmonic models can be
removed from the transition matrix 9 of the Kalman
filter. If the order of the TkKF’s harmonic model is
reduced to zero, only ((k + 1)(k + 2)/2 + 3N/2 − 1)
multiplication operations are sufficient for the entire
filtering in each sampling period. For ATkKF, only
((k+ 1)2 + 3N/2− 1) multiplications are required.

V. A MAF-TKF BASED PHASE ESTIMATION ALGORITHM
In this section, examples of MAF-TKF algorithms are pro-
posed to provide a reference to the design of the TKF-based
FFPS component estimation algorithm.

It is important to note that using a prefiltering stage is an
alternative approach, and high-order TKFs for signal decom-
position can meet the frequency deviation condition. The aim
of this section is to analyze the influence of prefiltering stage
used for TKF, so that we do not perform comparisons between
the proposed method and the PLL/FLL-based algorithm.

A. WHOLE STRUCTURE OF THE MAF-TKF
The whole structure of theMAF-TKF is shown in FIGURE 6.

The MAF used as a prefiltering stage is a linear-phase
finite-impulse response filter with the s-domain transfer func-
tion given by

GMAF(s) =
1− e−Tws

Tws
, (27)

where Tw is the window length that determines the filtering
and response ability of MAF. Since the Taylor-based Kalman
filter has a certain intrinsic filtering ability, the window length
Tw = T/2 (T is the fundamental period of the grid voltage) is
considered in this paper. Based on the previous mathematical
works [33], the input-output transfer function of the filter can
be described as

v̂α(s) =
2s(1+ e−Tws)
Tw(s2 + ω2

n)︸ ︷︷ ︸
Gα

vg(s), (28)

v̂β (s) =
2ωn(1+ e−Tws)
Tw(s2 + ω2

n)︸ ︷︷ ︸
Gβ

vg(s), (29)

where ωn = 2π/T is the nominal angle frequency of FFPS.
It can completely filter all of the odd harmonics up to
the aliasing frequency and give rise to a half-cycle delay.
FIGURE 7 depicts the frequency response of the transfer
functions Gα and Gβ .
As shown in FIGURE 7, both Gα and Gβ have a 0 dB

magnitude gain at the nominal frequency, and can completely
block out the dc component and all of the odd harmonics
when the frequency is at its nominal value. However, when
the frequency of the grid voltage varies from its nominal
value, the magnitude attenuation and phase shifting of the
FFPS component will arise accompanied with the ‘‘leakage’’
of the other harmonics. Fortunately, the components in Gβ
always show a −90◦ difference from the same order compo-
nents in Gα at all frequencies.
As observed fromFIGURE 7, Gβ has better filtering ability

than Gα: the amplitude of the signal from the β-axis will be
attenuated by at least 20 dBwhen the frequency is higher than
200 Hz but is 600 Hz in the α-axis. A higher filtering ability
of the prefilter stage leads to a lower computational burden
for the calculation of the state matrix 9 of TKF. Therefore,
the input of TKF is taken from the β-axis.
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FIGURE 6. STTKF with the nonadaptive MAF-based prefilter/QAS in the α mode.

FIGURE 7. Frequency response of MAF for Tω = 0.01 s.

As mentioned above, the magnitude and phase must be
compensated.

Suppose that V is the FFPS component of the grid voltage.
The outputs of the MAF-based prefilter equal to |Gβ (jωg)|V
in the steady state. Meanwhile, the transfer function will
not be equal to 1 under the frequency deviation condition.
Therefore, the signal V̂ estimated by TKF should be divided
by |Gβ (jωg)| to correct the magnitude attenuation:

V = V̂β/|Gβ (jωg)|. (30)

The amplitude gain of the transfer functions Gβ (jωg) can
be approximated by taking their Taylor series expansion:

|Gβ (jωg)| =
4ωn
Tw

∣∣∣∣ sin(Tw1ωg/2)
−1ωg(2ωn +1ω)

∣∣∣∣
≈

2ωn(1− T 2
w(1ωg)

2/24)
2ωn +1ωg

, (31)

where 1ωg = ωg − ωn = 2π1fg is the difference between
the grid angle frequencies ωg and ωn.

As indicated in (29), the phase difference in the β-axis is
given by:

6 Gβ (jωg) = −(Tw/2)1ωg − π/2. (32)

Therefore, the phase should be compensated by adding
(Tw/2)1ωg + π/2.

B. SIMULATIONS
The FFPS grid signal in all tests is a cosine function that has
a magnitude of 380 V, initial phase of 0◦ and frequency of 50
Hz. It can be expressed as

y1(t) = 380 cos(100π t). (33)

The sampling frequency is 1 × 104 Hz and all of the tests
are assumed to reach their steady state in the beginning of the
test.
Test 1: in this test, a 30◦ phase jump occurs om the signal

at 0.2 s.
Test 2: the grid voltage experiences a sag with a magnitude

of 0.3 p.u.
Test 3: in this test, the frequency of the signal will jump

from 50 Hz to 49.5 Hz at 0.2 s. This test is also repeated
under harmonics condition: the grid voltage is contaminated
with 5th-order and 7th-order harmonics (0.1 p.u. and 0.73 p.u.,
respectively).

FIGURE 8 and FIGURE 9 show the simulation results for
tests 1 and 2, respectively, and it can be observed that all of the
MAF-TKFs are free from any steady-state offset errors under
voltage sag and phase jump. The first-order TKFs require
shorter setting times than the second-order TKFs. Moreover,
the strong tracking algorithm improves the dynamic response
of TKFs in contrast to the fixed Kalman gain algorithms.

FIGURE 10 depicts the MAF-TKFs performance under
the frequency deviation condition. The steady-state errors
of the fixed Kalman gain based MAF-TKFs are consistent
with the results of the steady-state analysis in section III.
It should be emphasized here, far from improving the
dynamic response, the strong tracking algorithm leads to
more poor results under the frequency deviation condition.
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FIGURE 8. Simulation results for test 1: (a) results for first-order
MAF-TKFs, (b) results for second-order MAF-TKFs.

FIGURE 9. Simulation results for test 2: (a) results for first-order
MAF-TKFs, (b) results for second-order MAF-TKFs.

This is due to the delay caused by the MAF prefiltering stage
and the slight error caused by frequency offset that may lead
to the incorrect direction of the correction.

In summary, the prefilter can filter out the harmonic com-
ponents and strongly reduce the computational cost, but this
leads to some delay. When the prefilter stage is applied,
the fixed Kalman gain algorithm is superior to the strong
tracking algorithm. The simulation results show that the
accurately modeled TKFs have higher accuracy than the

FIGURE 10. Simulation results for test 3: (a) results for
first-order MAF-TKFs under no harmonic condition, (b) results for
second-order MAF-TKFs under no harmonic condition, (c) results for
first-order MAF-TKFs under harmonics condition, (d) results for
second-order MAF-TKFs under harmonics condition.

approximately modeled TKFs, while their response speeds
and computational costs are similar. Therefore, MTKF is
recommended.With regard to the order of TKF, the first-order
TKFs have shorter setting times than the second-order TKFs
(approximately 25 ms for the first-order TKFs and 40 ms for
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FIGURE 11. Experimental results for MAF-MT1KF and MAF-MT2KF:
(a) experimental results for phase jump, (b) experimental results for
voltage sag, (c) experimental results for frequency deviation,
(d) experimental results for frequency deviation under harmonics
condition.

the second-order TKFs). However, the second-order TKFs
have lower steady state error offset under the frequency devi-
ation condition. A comprehensive consideration is necessary
for the choice of the order of the TKF.

C. EXPERIMENTS
MAF-MTKFs are implemented on a DSP TMS320F28335
control board for a further evaluation of their performance
characteristics, and the condition type of each test is designed
to be the same as that used in the simulation tests.

As shown in FIGURE 11, the magnitude and phase error
detected by the proposed PEA are displayed on the oscillo-
scope and are in agreement with the simulation results.

VI. CONCLUSION
In this paper, the Taylor-based Kalman filter was analyzed
using two approaches: the estimation performance in the
steady state was evaluated by mathematical analysis and
frequency domain analysis. In dynamic condition, the con-
vergency of Kalman gain was analyzed. Then, the fixed
Kalman gain algorithm and strong tracking algorithm were
proposed and their effects in the dynamic condition were
analyzed using the XY plane trajectories. The computational
cost was also discussed. The conclusions can be summarized
as follows:

1) The MTKF has higher estimation accuracy, but its
response is slower than that of ATKF.

2) The higher-order TKFs have higher estimation accu-
racy, but require a greater computational cost and
longer setting time compared to the lower-order TKFs.

3) The strong tracking algorithm based on TKFs can
achieve fast response at the expense of a heavier com-
putational burden. Therefore, it is not suitable for the
case with the prefiltering stage.

4) The prefilter can filter out the harmonic components
and strongly reduce the computational cost but gives
rise to a certain delay.

APPENDIX
Since the linear Kalman filter theory is themathematical basis
of TkKF, the frequency response of TkKF can be obtained by
analyzing the update state equation of linear Kalman filter:

X̂(n) = 9X̂(n− 1)+K(n)(y(n)−H9X̂(n− 1)) (34)

Takeing z-transform of (34), we obtain

X̂(z) = 9z−1X̂(z)+K(y(z)−H9z−1X̂(z)) (35)

and solving for X̂(z), we have

[I−9z−1 +KH9z−1]X̂(z) = Ky(z) (36)

Thus, the transfer functions of input and output are given by

G(z) = [I−9z−1 +KH9z−1]−1K (37)

The frequency response of the state filters can be obtained
by replacing z by ej2π f τ .
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