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ABSTRACT Radar coincidence imaging (RCI), used in conjunction with a uniform circular array (UCA),
is presented in this paper. When performing two-dimensional (2-D) imaging for a target, using RCI in
conjunction with a uniform linear array (ULA), in three-dimensional (3-D) coordinates, the symmetry
phenomenon occurs in certain situation. To overcome this problem, using RCI with a UCA is proposed.
First, the symmetry phenomenon of RCI with a ULA and the causes are introduced. Then, the RCI method
with a UCA is presented, the signal model is given based on the UCA, and the imaging method is introduced.
Finally, the general relationship between the resolution of RCIwith a UCA and the independent characteristic
of the reference radiation field is analyzed. In view of this, RCI with a UCA has better adaptability to 2-D
imaging in 3-D coordinates. Simulation results validate the theoretical analysis and the imaging method.

INDEX TERMS Radar coincidence imaging, spatial autocorrelation, symmetrical images, uniform circular
array.

I. INTRODUCTION
As a method for all-weather, all-day and long-range infor-
mation acquisition, radar imaging has more advantages than
optical imaging and has been widely utilized in civilian
and military applications [1]–[6]. A synthetic aperture radar
(SAR) or an inverse synthetic aperture radar (ISAR) requires
the translational or rotational motions of a target in the
azimuth positions corresponding to the radar; however, this
introduces challenges for motion compensation. Though
some methods have been proposed to address this problem
[7]–[15], range-Doppler-based imaging methods, such as
SAR and ISAR imaging, require long observing time, which
causes difficulties when performing fast imaging. Compared
with SAR and ISAR imaging, radar coincidence imaging
(RCI), originated from optical ghost imaging [16]–[19],
is highly effective for rapid real-time imaging, and is suitable
static or quasi-stationary targets [20], [21]. The ability of RCI
processing to simplify the complicated motion compensation
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of a non-cooperative target make it applicable to both coop-
erative and non-cooperative targets.

In recent years, RCI is proposed and researched extensively
[20]–[26]. There is amode of the correlation betweenA andB
in the RCI processing, where A is the reference radia-
tion field and B is the echo. Importantly, it is essential
that A requires the time-space independence. In order to
acquire the time-space independent reference radiation field,
the core for achieving RCI is to design the transmitted signal.
Consequently, in [20], a multi-transmitting configuration
with multiple independent sub-sources is reasonable for RCI
and is used to produce the time-space independent signals.
The time-space independent reference radiation field is cal-
culated with high resolution but no target information. On the
contrary, the echoes have no spatial resolution but carry the
target information. Therefore, RCI images can be acquired
by processing the reference radiation field and the echoes
together.

Based on the typical configuration of the RCI system,
simulation results show that the resolution is related to sev-
eral factors [20], [23], [25], [27], such as the transmitted
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signals, the array geometry, as well as the reconstruction
algorithms. The resolution of coincidence imaging, as derived
using the second-order correlation method, is proportional
to the wavelength and inversely proportional to the limited
size of the source [25]. Based on a uniform one-dimensional
(1-D) antenna array and a phase and amplitude modulation
signal, the general relationship between the RCI resolution
and the deployment of a microwave source was analyzed
in [25]. The derivation of the angular-resolution limit of an
RCI system is based on a uniform spacing linear array and
a frequency random modulation signal [28]. High-resolution
RCI requires the reference radiation field to be independent
of time and space. This independence depends on the random
signal waveform and the array geometry. Furthermore, RCI
can be enhanced by exploiting the target prior information in
the image reconstruction [29], [30].

As a novel imaging mode, several problems have been
investigated for the RCI method, i.e., RCI with different
errors [22], [24], resolution analysis of RCI [28], construction
of radiation field [26], [31]. However, current research into
RCI has focused on two-dimensional (2-D) coordinates, and
this means that the target and radar are in the same plane,
and the imaging area is only selected in this plane, which
limits the application of RCI in three-dimensional (3-D)
coordinates. Otherwise, the RCI system most adopts the
uniform linear array (ULA), and the research on RCI using
other arrays is rare. Hence, this paper examines RCI in 3-D
coordinates. However, using RCI with a ULA in 3-D coordi-
nates manifests an interesting phenomenon: when the ULA is
not within the plane that the selected imaging area is located
in, and the imaging area is symmetrical with respect to the
projection line generated by the ULA alignment projecting
in this plane, symmetrical images are formed in the imaging
area. To avoid this phenomenon, we propose using RCI in
conjunction with a uniform circular array (UCA). Moreover,
the general relationship between the resolution of RCI with
a UCA and the independent characteristic of the reference
radiation field is analyzed, and we find that the resolution of
RCI with a UCA is also related to the elevation angle.

The rest of this paper is structured as follows. Section II
introduces the symmetry phenomenon and its causes.
Section III presents RCI with a UCA in 3-D coordinates,
introduces the signal model including transmitted signals and
received signals, and provides the resolution analysis of RCI
with a UCA. Section IV provides our simulation results to
demonstrate the validity of the theoretical analysis and the
imaging method. In Section V, we draw the conclusions of
this paper.

II. SYMMETRY PHENOMENON
At present, the imaging area is selected in the 2-D plane
formed by radar and target in most of the researches
[20]–[26], and a ULA is used to form spatial independent
reference radiation field which can meet the imaging require-
ments. However, in 3-D coordinates, the selection of imaging
area is more flexible. In some cases, it is no longer in the

2-D plane formed by radar and target. In this case, the ref-
erence radiation field formed by the ULA no longer satisfies
the spatial independence under specific circumstances, and
the imaging results will be symmetrical.

When performing 2-D imaging for a target in 3-D coor-
dinates, the symmetry phenomenon occurs in the aforemen-
tioned situation using RCI with a ULA. Assume that the ULA
is aligned along the X -axis, N elements are distributed in
[b,Nb] with equal interval b, the receiving antenna is located
at the origin, and a burst of RPM signal consists of D sub-
pulses of duration Tp. Then the signal transmitted by the nth
element can be expressed as

sn (t, d) = rect
(
t − d · Tsub

Tp

)
· exp

{
j2π fd (t − d · Tsub)+ jϕdn

}
(1)

where rect
(
t
/
Tp
)
is a rectangular window function that

serves to constrain the imaging time and to ensure that the
signals transmitted by the radar elements are effectively cap-
tured at the imaging cells [25]. fd = fc + d · 1f , d =
0, 1, · · · ,D − 1 is the frequency of the d th sub-pulse, fc
is the carrier frequency, Tsub and 1f denote the sub-pulse
repetition interval and the frequency increment, respectively,
and

{
ϕdn , d = 0, 1, · · · ,D− 1

}
, n = 1, 2, · · · ,N are a

set of random sequences uniformly distributed in [0, 2π ].
The random sequences

{
ϕdn , d = 0, 1, · · · ,D− 1

}
, n =

1, 2, · · · ,N aremutually independent. The cross-correlations
of the transmitted signals between the different elements can
be computed as

Rnm (k) = E
[
sn (t) s∗m (t − kTsub)

]
=

D−1∑
d=k

E
[
sn (t, d) s∗m (t − kTsub, d − k)

]
=

D−1∑
d=k

exp {j2π fdkTsub}E
[
exp

{
j
(
ϕdn − ϕ

d−k
m

)}]
=

D−1∑
d=k

exp {j2π fdkTsub}Rϕnϕm (k)
(0 ≤ k≤D− 1

k ∈ Z)

(2)

where E [∗] denotes the expected value, Rϕnϕm (k) =
E
[
exp

{
j
(
ϕdn − ϕ

d−k
m

)}]
/E
[
exp

{
j
(
ϕdn − ϕ

d
m
)}]

denotes the
normalization cross-correlation between

{
exp

{
jϕdn

}
, d = 0,

1, · · · ,D−1} and
{
exp

{
jϕdm

}
, d = 0, 1, · · · ,D− 1

}
. When

n = m, Rϕnϕn (k) denotes the normalization autocorrelation
of
{
exp

{
jϕdn

}
, d = 0, 1, · · · ,D− 1

}
. Rϕnϕn (k) has the max-

imum Rϕnϕn (0) = 1, and Rϕnϕn (k) = 0 at k 6= 0. When
n 6= m, Rϕnϕm (k) = 0. Therefore,

Rϕnϕm (k) =

{
δ (k) (n = m)
0 (n 6= m) ,

where δ (α) is an impulse sequence. If α = 0, then
δ (α) = 1; otherwise δ (α) = 0. Under this condition,
the cross-correlation obeys Rnm (k) = Dδ (k) δ (n− m).
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FIGURE 1. The symmetry phenomenon in RCI with a ULA.

As shown in Fig. 1, the imaging area is selected and
parallel to the XOY plane, and the projection line generated
by the ULA alignment is the dotted line l. To realize RCI,
the imaging area is first discretized as a grid of Q cells.
The position vectors of the cells are expressed as V =

{rq|q = 1, 2, · · · ,Q}, where rq =
(
rq, θq, φq

)T is the posi-
tion vector of the qth cell. Then, perform the discretization
of the time domain in accordance with the time series ts =
[t1, t2, · · · , tP]. According to [25], the measurement matrix
element SL

(
tp, rq

)
of RCI with a ULA can be expressed as

SL
(
tp, rq

)
=

N∑
n=1

exp
{
tp − jkp

(
2rq − nb sin θq cosφq

)
+jϕpn

}
(3)

where tp denotes the pth sample time, kp = 2π fp/c denotes
the wave number and fp is the frequency of the sub-pulse.
When the imaging area is symmetrical with respect to l,
then, for ∀rq =

(
rq, θq, φq

)T , ∃rq′ = (
rq′ , θq′ , φq′

)T , make
rq = rq′ , θq = θq′ , and φq + φq′ = 2π workable. Hence,
SL
(
tp, rq

)
= SL

(
tp, rq′

)
can be derived, and the reference

radiation field is symmetrical with respect to the dotted line l.
In other words, the spatial independence of the reference
radiation field is no longer satisfied. It causes that half of
column vectors in the measurement matrix repeat the other
half, so that rq and SL

(
tp, rq

)
no longer meet the one-to-one

correspondence. In this case, the scatterer cannot be correctly
reconstructed in the image reconstruction process, i.e., the
position of the scatterer cannot be determined.

III. RCI WITH A UCA
A. SIGNAL MODEL
In the RCI system shown in Fig. 2, a UCA antenna consisting
of N elements is used as the transmitting antenna. The N
elements are assumed to be distributed uniformly around the
circle of radius a. Their azimuthal positions are denoted φn.
The receiving antenna is located at the origin. RPM signals
are used to ensure that the transmitted signals are temporally
and spatially independent, and the parameters of transmitted
signals are consistent with those of RCI with a ULA. For a
detection point A(r, θ, φ), the detection signal can be denoted

SI (t, r) =
N∑
n=1

D−1∑
d=0

sn (t − τn (r) , d) (4)

where τn (r) = ‖r− Rn‖
/
c is the time delay from the nth

element to the detection point A, r = (r, θ, φ)T denotes the
initial position vector for the detection point A in spherical
coordinates, Rn = (a, π/2, 2π (n− 1) /N )T denotes the
position vector of the nth element, and c is the speed of light
in a vacuum.

A target is composed of M scatterers. The receiving
antenna captures the echo scattered from the target, which
can be described by

y (t) =
M∑
m=1

σm · SI
(
t − ‖rm − Rr‖

/
c, rm

)
=

M∑
m=1

σm ·

(
N∑
n=1

D−1∑
d=0

sn
(
t − τ tn (rm) , d

))
(5)

where σm and rm = (rm, θm, φm)T , respectively, denote
the scattering coefficient and the initial position vector
of the mth scatterer. Rr = (0, 0, 0)T denotes the posi-
tion vector of the receiving antenna, and τ tn (rm) =

(‖rm − Rn‖ + ‖rm − Rr‖)
/
c denotes the total time delay.

Generally, ‖rm‖ � ‖Rn‖ and ‖rm‖ � ‖Rr‖ in the obser-
vation time, hence τ tn (rm) can be approximated as

τ tn (rm) ≈ (2rm − a sin θm cos (φm − φn))
/
c (6)

After the discretization of the time domain in accordance
with the time series ts = [t1, t2, · · · , tP], the echo vector can
be obtained and expressed as y = [y1, y2, · · · , yP]T ∈ CP×1,
where tp denotes the pth sample time, and P is the sample
number. Hence, yp can be further expressed as

yp =
M∑
m=1

σm ·

(
N∑
n=1

exp
{
tp − j2π fp · τ tn (rm)+ jϕ

p
n
})

(7)

B. IMAGING METHOD
Assuming that the target is located in an imaging area I shown
in Fig. 2, and the variation in the phase distribution caused
by the motions is ignored, the echo can be expressed as the

FIGURE 2. RCI system model with a UCA.
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superposition of detection signals SI (t, r) [20]

y (t) =
∫
I
σr · SI

(
t − ‖r− Rr‖

/
c, r
)
dr (8)

where σr is the scattering coefficient of a scatterer located
at r. If there is no scatterer at r, then σr = 0. According to
RCI theory, SI

(
t − ‖r− Rr‖

/
c, r
)
is defined as the reference

radiation field, which is simply the transform of the detection
signal SI (t, r) with an additional time delay induced by the
propagation to the receiving antenna [20]. Hence, the refer-
ence radiation field S (t, r) can be expressed as

S (t, r) = SI
(
t − ‖r− Rr‖

/
c, r
)

≈

N∑
n=1

D−1∑
d=0

sn
(
t − τ tn (r) , d

)
=

N∑
n=1

D−1∑
d=0

sn (t, d) · exp
{
−j2π fdτ tn (r)

}
(9)

where τ tn (r) denotes the total time delay from the nth element
to the receiving antenna, and it can be expressed as

τ tn (r) = (‖r− Rn‖ + ‖r− Rr‖)
/
c

≈ (2r − a sin θ cos (φ − φn))
/
c (10)

To realize RCI, the imaging area is first discretized as a
grid ofQ cells. The position vectors of the cells are expressed
as V = {rq|q = 1, 2, · · · ,Q}, where rq =

(
rq, θq, φq

)T is
the position vector of the qth cell. The scattering coefficients
of these cells form a vector σ =

[
σ1, σ2, · · · , σQ

]T
∈

CQ×1. Then, after sampling in accordancewith the time series
ts = [t1, t2, · · · , tP], a reference radiation field vector of the
imaging area can be calculated:

Sp =
[
S
(
tp, r1

)
, S
(
tp, r2

)
, · · · , S

(
tp, rQ

)]
(11)

where

S
(
tp, rq

)
=

N∑
n=1

exp
{
tp − jkp

(
2rq − a sin θq cos

(
φq − φn

))
+ jϕpn

}
(12)

To make the reference radiation field be independent
of time, P ≤ D, and

{
ϕ
p
n , p = 1, 2, · · · ,P

}
⊆{

ϕdn , d = 0, 1, · · · ,D− 1
}
, which implies that

{
ϕ
p
n ,

p = 1, 2, · · · ,P} ia also a random sequence. Hence, the mea-
surement matrix formed by the vectors of reference radiation
field can be written as

S = [S1,S2, · · · ,SP]T

=


S (t1, r1) S (t1, r2) · · · S

(
t1, rQ

)
S (t2, r1) S (t2, r2) · · · S

(
t2, rQ

)
...

...
. . .

...

S (tP, r1) S (tP, r2) · · · S
(
tP, rQ

)
 (13)

Finally, we consider the influences of noise. The linear imag-
ing model, based on the parameterized method, is expressed
as [31]

y = S · σ + e (14)

where e ∈ CP×1 is a noise vector. When the target scatterers
are sparse in the imaging area, the above model amounts
to a typical compressed sensing (CS) problem. The super-
resolution image can be obtained by solving (14). Also,
the temporal and spatial independence inherent in the mea-
surement matrix S can affect the imaging performance.
Considering the prior information of the noise, we used the
sparse Bayesian learning (SBL) algorithm [32] to reconstruct
the image. To ensure to reconstruct the image accurately,
the sample number requires to satisfy the expression P ≥
K log2 (Q/K ), where K denotes the sparse degree of σ [33].
Based on the parameterized method and the SBL algorithm,
the imaging process works as follows:

1) Take the sample of the echoes and obtain the echo
vector;

2) According to the prior information such as the target
position and rough target size, determine the reference point
and imaging area, and discretize the imaging area as a grid;

3) Calculate the reference radiation field in the imaging
area and obtain the measurement matrix;

4) Solve the linear imaging model and reconstruct the
target image.

C. RESOLUTION ANALYSIS
In fact, the RCI resolution is determined by several factors,
such as the transmitted signals, the array geometry, as well as
the reconstruction algorithms. As the linear imaging model,
presented in (14), is generally established with the parame-
terized method, it is difficult to obtain an analytical expres-
sion of the resolution limit theoretically [31]. Still, to give a
quantitative analysis of the resolution of RCI with a UCA,
the spatial autocorrelation is used to address the spatial res-
olution. Because of 1f � fc, the spatial autocorrelation of
RCI with a UCA can be expressed as [34]

RspaceS (r1, r2)

= E
[
S (t, r1) S∗ (t, r2)

]
=

N∑
m=1

N∑
n=1

E
[
sn
(
t − τ tn (r1) , p

)
sm∗

(
t − τ tm (r2) , p

)]
=

N∑
m=1

N∑
n=1

exp
{
j2π fp

(
τ tm (r2)− τ

t
n (r1)

)}
E
[
exp

{
j
(
ϕ
p
n − ϕ

p
m
)}]

≈

N∑
n=1

exp
{
j2π fc

(
τ tn (r2)− τ

t
n (r1)

)}
(15)

where kc = 2π fc/c.
When there are sufficiently many UCA elements and the

space deviation is small, the range, elevation, and azimuthal
autocorrelations are derived from (15) based on the first order
approximation of Taylor expansion and described as follows:

1) When r2 − r1 = (1r, 0, 0)T , RspaceS (r1, r2) can be
rewritten as

RspaceS (1r) ≈
N∑
n=1

exp {j2kc1r} = Nexp {j2kc1r} (16)
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2) When r2 − r1 = (0,1θ, 0)T , RspaceS (r1, r2) can be
rewritten as

RspaceS (1θ) =

N∑
n=1

exp {−jkca [sin (θ +1θ)− sin θ ]
· cos (φ − φn)}

≈

N∑
n=1

exp {−jkca cos θ ·1θ cos (φ − φn)}

≈
N
2π

∫ 2π

0
exp {−jkca cos θ ·1θ cos (φ−ϕ)} dϕ

≈ −NJ0 (kca cos θ ·1θ) (17)

3) When r2 − r1 = (0, 0,1φ)T , RspaceS (r1, r2) can be
rewritten as

RspaceS (1φ) =

N∑
n=1

exp {−jkca sin θ
· [cos (φ +1φ − φn)− cos (φ − φn)]}

≈

N∑
n=1

exp {jkca sin θ ·1φ sin (φ − φn)}

≈
N
2π

∫ 2π

0

exp {−jkca sin θ ·1φ
· cos (π/2+ φ − ϕ)}

dϕ

≈ −NJ0 (kca sin θ ·1φ) (18)

where J0 (∗) denotes the zeroth-order Bessel function of the
first kind. (16) implies that the range resolution is poor.
In other words, the utilization of the UCA cannot achieve
range resolution. However, the wideband signals can be
exploited to distinguish the distance information from the
time dimension [31]. The relationship between signal band-
width and resolution can be measured by calculating the
temporal autocorrelation, and the temporal autocorrelation
can be expressed as

RtimeS (τ )

= E
[
S (t, r) S∗ (t − τ, r +1r)

]
= E

[(
N∑
n=1

D−1∑
d=0

sn (t, d)

)
·

(
N∑
m=1

D−1∑
d=0

s∗m (t − τ, d)

)]

=

N∑
m=1

N∑
n=1

D−1∑
d=0

E
[
sn (t, d) s∗m (t − τ, d)

]
=

N∑
m=1

N∑
n=1

D−1∑
d=0

exp {j2π fdτ } · E
[
exp

{
j
(
ϕdn − ϕ

d
m

)}]

=

N∑
m=1

N∑
n=1

D−1∑
d=0

exp {j2π fdτ } · Rϕnϕm (0)

= N
D−1∑
d=0

exp {j2π fdτ } (19)

The main lobe’s 3 dB width of
∣∣RtimeS (τ )

∣∣ / ∣∣RtimeS (0)
∣∣ can be

used to express the resolution, and
∣∣RtimeS (τ )

∣∣ / ∣∣RtimeS (0)
∣∣ can

be expressed as∣∣RtimeS (τ )
∣∣∣∣RtimeS (0)
∣∣ ≈

∣∣∣∣1− exp {j2πD1f τ }
1− exp {j2π1f τ }

∣∣∣∣
=

∣∣∣∣ sin (πD1f τ)πD1f τ

∣∣∣∣
=

∣∣∣∣ sin (2πD1f1r/c)2πD1f1r/c

∣∣∣∣ (20)

Hence, according to (20), the range resolution can be derived

ρr ∝
1

D1f
=

1
B

(21)

(17) and (18) imply that the elevation and azimuthal resolu-
tions can be obtained because of the existence of the main
lobe. The main lobe’s 3 dBwidth of

∣∣RspaceS (∗)
∣∣ / ∣∣RspaceS (0)

∣∣,
where ‘‘∗’’ respectively refer to 1θ and 1φ, can be used to
express the resolution. Hence, according to the property of
the Bessel function, the elevation and azimuthal resolutions
are respectively derived

ρθ ∝
1

kca cos θ
ρφ ∝

1
kca sin θ

(22)

From (21) and (22), the range resolution is inversely propor-
tional to the signal bandwidth; the elevation and azimuthal
resolutions are both proportional to the wavelength and
inversely proportional to the size of the UCA. This conclu-
sion is in accordance with the previous research results [25].
Besides, when θ ∈ (0, π/2), the elevation resolution is
proportional to the elevation angle θ , while the azimuthal
resolution is inversely proportional to the elevation angle θ ,
i.e., the elevation resolution ability become better with the
elevation angle θ decreasing and the azimuthal resolution
ability become better with the elevation angle θ increasing.

IV. SIMULATION AND ANALYSIS
This study performs simulation experiments to validate the
proposed analysis and imaging method. A 16-transmitter
1-receiver UCA with radius a = 1m and a 16-transmitter
1-receiver ULA aligned along the X-axis with interval b =
1m are used. Every element transmits the RPM signal with
carrier frequency fc = 9.5GHz, bandwidth B = 500MHz,
and pulse duration Tp = 2µs. Also, the RPM signal phase
is randomly distributed [0, 2π ]. The white complex Gaussian
noises are added, whose signal-to-noise ratio is SNB = 10 dB.

A. SYMMETRY PHENOMENON
Two different kinds of imaging areas and targets are chosen
to validate the symmetry phenomenon.

If the reference point of the imaging area is chosen to
be (100m, π/6 rad, 0 rad)T and the imaging area is set as
0.4 rad × 0.4 rad , it satisfies the condition of symmetry
phenomenon. The imaging area is discretized to a grid of
21 × 21 cells with an elevation resolution of ρθ = 0.02 rad
and an azimuth resolution of ρφ = 0.02 rad . Suppose that
there are 3 scatterers on a target. The reflection coefficients
of the 3 scatterers are all one. The scatterers are located at
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FIGURE 3. With the imaging area of 0.4 rad × 0.4 rad at (100 m, π/6 rad ,
0 rad )T discretized to a grid of 101 × 101, radiation distribution of
reference radiation field formed by different arrays.

the cell centers. Hence, the unknown scattering coefficient
vector of the imaging area σ is K -sparse, and K = 3. The
sample number is chosen to be P = 255, which satisfies

the expression P ≥ K log2 (Q/K ). With the aforementioned
imaging process implemented, the symmetry phenomenon of
RCI with a ULA is displayed.

As shown in Fig. 3, intensity distribution and phase-front
distribution of reference radiation field formed by ULA are
depicted in Fig. 3(a) and (b), and intensity distribution and
phase-front distribution of reference radiation field formed
by UCA are depicted in Fig. 3(c) and (d). In view of
Fig. 3(a) and (b), the reference radiation field formed by the
ULA is symmetrical with respect to the white dotted line.
However, the reference radiation field formed by the UCA
is spatially independent, as depicted in Fig. 3(c) and (d).
Therefore, RCI with a ULA yields the symmetrical images
shown in Fig. 4(a). Two target images were reconstructed,

FIGURE 4. Imaging results using RCI with different transmitting arrays at
the reference point

(
100 m, π/6 rad , 0 rad

)T .

FIGURE 5. Airplane arget model.
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FIGURE 6. With the imaging area of 10 m × 10 m at (100 m, π/4 rad ,
0 rad )T discretized to a grid of 101 × 101, radiation distribution of
reference radiation field formed by different arrays.

FIGURE 7. Imaging results using RCI with different transmitting arrays at
the reference point

(
100 m, π/4 rad , 0 rad

)T .

represented by white solid circles and white dotted circles,
which are symmetrical with respect to the white dotted lines.
By comparison, using RCI with a UCA can correctly recon-
struct the target image shown in Fig. 4(b).

Also, the reference point of the imaging area is chosen
to be (100m, π/4 rad, 0 rad)T . A plane of 10m × 10m is
set as the imaging area. As depicted in Fig. 5, an airplane
target model with 12 scatterers is used as a simulation model.
The reflection coefficients of 12 scatterers are all one. The
scatterers are located at the cell centers. Hence, the unknown
scattering coefficient vector of the imaging area σ is
K -sparse, and K = 12. The sample number is chosen to be
P = 255, which satisfies the expression P ≥ K log2 (Q/K ).
With the aforementioned imaging process implemented,

the symmetry phenomenon of RCI with a ULA is displayed.
As depicted in Fig. 6(a) and (b), the reference radiation
field formed by the ULA is symmetrical with respect to
the white dotted line. However, the reference radiation field
formed by the UCA is spatially independent, as depicted
in Fig. 6(c) and (d). Therefore, RCI with a ULA yields the
symmetrical images shown in Fig. 7(a). Two target images
were reconstructed, represented by white solid lines and red
dotted lines, which are symmetrical with respect to the white
dotted lines. By comparison, using RCI with a UCA can
correctly reconstruct the target image shown in Fig. 7(b).
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FIGURE 8. Theoretical and actual autocorrelations of the reference
radiation field.

FIGURE 9. For the two point-targets being 0.04 rad apart in elevation
direction, imaging results at different elevation directions.

B. RESOLUTION OF RCI WITH A UCA
The derivations of (17) and (18) are validated in this section
firstly. At the reference point (100m, π/4 rad, π/10 rad)T

and (100m, π/5 rad, π/10 rad)T , the theoretical and actual
normalization autocorrelations of the reference radiation
field in the elevation and azimuth directions are shown
in Fig. 8, where curves express the normalization auto-
correlation modulus. Fig. 8 (a) and (b) show that the
theoretical and actual normalization autocorrelations of
the reference radiation field in the elevation direction
at the reference point (100m, π/4 rad, π/10 rad)T and
(100m, π/5 rad, π/10 rad)T , respectively. Fig. 8 (c) and (d)
show that the theoretical and actual normalization autocorre-
lations of the reference radiation field in the azimuth direc-
tion at the reference point (100m, π/4 rad, π/10 rad)T and
(100m, π/5 rad, π/10 rad)T , respectively.

In the elevation and azimuthal directions, the main lobe-
like sections of the theoretical autocorrelations are almost
identical with those of the actual autocorrelations, though
there are some errors in other regions. This implies that
the derived results can effectively express the elevation and
azimuthal autocorrelations. Hence, the expressions of the
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FIGURE 10. For the two point-targets being 0.04 rad apart in azimuthal
direction, imaging results using RCI with a UCA at different elevation
directions.

elevation and azimuthal resolutions can be derived correctly.
As shown in Fig. 8, the resolution is proportional to the 3dB
width of the main lobe, as indicated by the arrows.

Because the aforementioned elevation and azimuthal res-
olutions are not analytical expressions of the resolution limit
theoretically, they only indicate the general proportional rela-
tionship between the resolution and the array geometry of the
UCA. Therefore, by implementing imaging for the two point-
targets being 0.04 rad apart at different elevation directions,
imaging performance is used to indirectly reflect the resolu-
tion. The mean square error (MSE) is used as a metric for
quantifying imaging performance.

When the two point-targets are 0.04 rad apart in elevation
direction, imaging results at different elevation directions are
shown in Fig. 9 and the MSEs of images at different elevation
directions are listed in Table 1. With the elevation angle θ
increasing, the MSE gradually increases. It implies that the
imaging performance becomes worse and worse, so that the
two point-targets are no longer reconstructed correctly at
θ = π/3 rad . So, it indirectly reflects that the elevation
resolution becomes worse.

TABLE 1. MSEs of images at different elevation directions.

By contrary, when the two point-targets are 0.04 rad apart
in azimuthal direction, imaging results at different elevation
directions are shown in Fig. 10 and the MSEs of images at
different elevation directions are listed in Table 2. With the
elevation angle θ increasing, the MSE gradually decreases.
It implies that the imaging performance becomes better and
better, though the two point-targets are not reconstructed
correctly at θ = π/6 rad . So, it indirectly reflects that the
azimuthal resolution becomes better.

TABLE 2. MSEs of images at different elevation directions.

From the above simulations, it can be found that the sym-
metry phenomenon and the resolution analyses have been
validated.

V. CONCLUSION
When using RCI in conjunction with a ULA in 3-D coordi-
nates, the symmetry phenomenon occurs in certain situation.
It is first proposed and the causes are introduced. To avoid
this phenomenon, hence, this study proposes using RCI in
conjunction with a UCA. Because the reference radiation
field formed by the UCA is independent, the symmetry
phenomenon does not occur. This suggests that the method
can obtain the accurate imaging result without symmetrical
images. Therefore, in 3-D coordinates, using RCIwith a UCA
is not limited by the target location, it can image for the target
in any plane, and its adaptability is stronger.

Besides, the general relationship between the resolution of
RCI with a UCA and the independent characteristic of the
reference radiation field is analyzed. It has been found that
the resolution is not only related to the signal wavelength
and the size of the UCA, but also to the elevation angle. The
elevation resolution and the azimuth resolution are mutually
restricted. With the increase of elevation angle, the former
becomes lower and lower, while the latter becomes higher and
higher.This indicates that the resolution of RCI with a UCA is
sensitive to the choice of reference point in the imaging area.
How to choose the appropriate elevation angle to maximize
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the two resolutions is worth investigating. Therefore, we will
further study in the future.
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