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ABSTRACT In Unmanned Aerial Vehicle (UAV) networks, mobility of the UAV and the corresponding
network dynamics cause frequent network adaptation. One key challenge caused by this in Flying Ad-hoc
Network (FANET) is how to maintain the link stability such that both the packet loss rate and network
latency can be reduced. Clustering of UAVs could effectively improve the performance of large-scale UAV
swarm. However, the use of conventional clustering schemes in dynamic and high mobility FANET will lead
to more link outages. Besides, frequent updates of cluster structure would cause the instability of network
topology and the increase of control overhead and latency. To solve this problem, we propose a location-
based k-means UAV clustering algorithms by incorporating the mobility and relative location of the UAVs
to enhance the performance and reliability of the UAV network with limited resource. The objective of the
proposed Mobility and Location-aware Stable Clustering (MLSC) mechanism is to enhance the stability
and accuracy of the network by reducing unnecessary overheads and network latency through incorporating
several design factors with minimum resource constraints. Furthermore, we derive the relationship between
the maximum coverage probability of Cluster Head (CH) and cluster size to find the optimal cluster size to
minimize the network overhead. Our simulation results show that the proposed MLSC scheme significantly
reduces the network overheads, and also improves packet delivery ratio and network latency as compared to
the conventional clustering methods.

INDEX TERMS Unmanned aerial vehicles (UAVs), coverage probability, stable clustering, k-means
clustering.

I. INTRODUCTION
The Unmanned aerial vehicles (UAVs), also known as drones
are considered as the enablers of many emerging applica-
tions in telecommunications, goods delivery, and surveil-
lance [1]. The rapid development of wireless technologies
such as low cost Wi-Fi modules, micro-computer, Global
Position System (GPS), and sensors enables small UAVs
to be extensively used in broader range of applications.
However, a number of UAVs often have to be grouped as
a collaborative swarm in carrying out critical missions due
to the limited resource and capability of each UAV. The
deployment of a large number of drones could bring some
challenges such as collisions and interference, and subse-
quently affects the seamless operation of a UAV swarm. For
the effective collaboration and cooperation among multiple
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UAVs, inter-UAV communication is critical to form Flying
Ad-hoc Network (FANET). Moreover, UAV networks need a
highly accurate location information with smaller interaction
intervals due to the high mobility pattern in a multi-UAV
environment.

In a FANET, one critical challenge is the effective man-
agement of a large number of mobile UAVs and various
static ground stations. In overcoming this challenge, an exten-
sive set of mini networks can be formed in an intelligent
swarm. The self-organized network formation is an example
of the intelligent cluster formation, where the UAVs are self-
organized to reconnect themselves after a disruption in con-
nections. Effective management of FANET is also directly
related to the flying speed of UAVs, which are usually appli-
cation dependent. The mobility of FANET is higher than
that of Vehicular Ad-hoc Networks (VANETs) and Mobile
Ad-hoc Networks (MANETs) [2]. The UAVs are highly
mobile, with the speeds of 30 to 460 km/h [3].
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The UAV mobility causes a significant impact on the link
connectivity of UAV swarm networks. Effective management
of UAV swarms and FANETs also relies on low latency
communications. A wide variety of applications includ-
ing surveillance, rescue operations, and disaster monitoring
require minimal latency as the information needs to be trans-
ferred instantly. To control and minimize the communication
latency, the concept of data prioritization has been developed.
In addition, the priority-based routing protocol can be used
to manage the Quality of Service (QoS) for various message
types. Therefore, the implementation of the most suitable
protocol is essential for minimizing the latency and improv-
ing the QoS of overall networks. In multi-UAV networks,
the network may have several types of communication links
such as UAV-UAV and UAV-to ground link. The failure of
a single UAV will disrupt the network stability and QoS
requirements. Hence, the key features of mobile networks are
reliability and survivability through redundancy.

The peer to peer connections are formed among the UAV
swarms tomaintain the coordination and collaboration, which
can be effectively achieved by clustering/grouping [4]. For
the homogeneous small-scale FANET, a single grouping is
the best choice; however, for multi-purpose heterogeneous
networks, there is a need for multi-cluster network. In this
scenario, the Cluster Head (CH) is responsible for the inter-
cluster communication as well as down-link communication.
In the clustering process, the mobile UAVs are relocated in
the cluster, where the position of CH is vertically projected
on the centroid of the cluster. In the clustering process, CH
selection and cluster formation schemes are very important to
maintain the overall cluster structure. The clustering scheme
enhances the overall QoS performance of the network such
as network stability, throughput, and battery life [5].

The technical challenges in UAV networks are optimal
deployment of UAVs, energy limitations, path planning, inter-
ference management, and stable wireless links. The optimal
UAVs deployment and finding stable wireless links have great
impacts on the network reliability and lifetime. Moreover,
the packet drop rate and network latency are also dependent
on the link stability between UAVs. The packet forwarding
in UAV networks relies on the routing mechanisms applied
in the MANETs. However, due to the frequent topology
changes, high mobility, and unstable wireless links make
the MANET protocols unreliable in UAV networks. The
main contribution of this paper is to propose a Mobility and
Location-aware Stable Clustering (MLSC) scheme for ran-
domly deployed UAVs network by incorporating the mobility
and coverage probability. In this regard, we first present the
coverage probability and the optimal number of CH UAVs
can have to maximize the coverage area with the minimum
transmit power in the given geographical area. Subsequently,
we propose the k-means clusteringmechanism to select stable
CHs in optimal locations. Furthermore, we also present the
cluster maintenance scheme with reference to the relative
mobility and locations to enhance the stability of the cluster
network.

The rest of this paper is organized as follows. Section II
summarizes the related works and provides the literature
review in the area of clustering schemes in UAV networks.
In Section III, the proposed location and mobility aware clus-
tering scheme is described in detail. In Section IV, the perfor-
mance of the proposed scheme is evaluated via simulations.
Section V, concludes the paper.

II. LITERATURE REVIEW
The clustering is an efficient network management scheme
that can improve the overall performance of the ad-hoc UAVs
network by dividing the complex network into the number
of clusters. The clustering in UAV network provides several
benefits such as reliability, scalability, fault tolerance, energy
efficiency, latencyminimization, coveragemaximization, and
stable connectivity. The literature of existing clustering algo-
rithms are mainly classified into two categories [6]: (i) prob-
abilistic clustering and (ii) deterministic clustering. The main
objective of the probabilistic cluster algorithm is to find the
best routing route by making the network lifetime longer. The
probabilistic clustering algorithms can further be classified
into three categories: (i) dynamic clustering, (ii) bio-inspired
clustering, and (iii) hybrid clustering.

The UAVRouting Protocol (URP) [7] and UAV-based Lin-
ear Sensor Networks (ULSNs) [8] are examples of dynamic
clustering algorithm. The URP and ULSN can effectively
reduce the resource requirements of the network, and also
improve the network lifetime. However, these algorithms are
mainly designed for the Wireless Sensor Networks (WSNs)
with the single UAV. In [9], the authors proposed the Energy-
Aware Link-based Clustering (EALC) algorithm to address
the problems related to the inefficient routing and UAV
flight time. The author used a k-means algorithm to enhance
the network lifetime by finding optimal cluster. Similarly,
in [10] authors presented the Bio-Inspired Mobility Predic-
tion Clustering (BIMPC) algorithm for the cluster formation
and maintenance of large scale UAV networks. However,
in both schemes, the authors did not consider the randomness
and high mobility patterns of the UAVs. Moreover, the bio-
inspired based Ant Colony-Bee Colony (AC-BC) scheme,
Particle Swarm Optimization (PSO), Ant Colony Optimiza-
tion (ACO), and Grey Wolf Optimization (GWO) are also
used to perform the clustering in UAV networks [11], [12].
Nevertheless, these schemes did not consider the coverage
probability and the optimal number of CH UAVs can have
to maximize the coverage area with the minimum transmit
power in the given geographical area.

To solve the issues related to the connectivity, coverage
and energy consumption, the authors in [13] proposed the
Received Signal Strength Indicator (RSSI) based Hybrid and
Energy-Efficient Distributed (rHEED) based on HEED algo-
rithm [6]. The rHEED scheme utilized the RSSI from the
received from UAV, and also consider the residual energy of
the node to elect the CH. This scheme provides the balanced
and stable cluster. However, this scheme is proposed by con-
sidering a single UAV based WSN, and is not suitable for
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the UAV networks. The Ad-hoc On-Demand Distance Vector
(AODV) protocol is also widely used in UAV networks.
However, due to the dynamic link connections, it suffers from
the network overhead and latency issues [14]. In [15], authors
evaluated the performance of the Optimized Link State Rout-
ing (OLSR) protocol in UAV network comprising of ground
stations and two UAVs, and conclude that the OLSR is unre-
liable in UAV networks due to the rapid topology changes.

In the case of the deterministic clustering algorithms,
the CHs are elected based on the information exchanged
by the neighboring UAVs. The common metrics used to
elect the CHs are centrality, proximity, randomness, mobility,
and residual energy. In [16], the authors present the scal-
able multiple target tracking system by applying Density-
based Spatial ClusteringApplications with Noise (DBSCAN)
algorithm. The locations of the mobile target are estimated
by using the extended Kalman filters. The main advantages
of the proposed scheme are the path planner and optimal
sensor manager to get the geolocations of targets within the
cluster. The authors in [17] presented the Mobility Predi-
cation Clustering Algorithm (MPCA) based on the dictio-
nary trie structure prediction algorithm and link expiration
time mobility model. The proposed scheme is very useful
to manage the stability of the network. However, due to the
high mobile environment, the shape of the cluster structure
changes rapidly, and a large amount of packet overhead will
be introduced to maintain the stability of the cluster. The
geographical-based routing protocol is presented in [18], and
the authors considered mobility, direction, and velocity of
UAVs to estimated the UAV link lifetime. Nevertheless, this
work did not consider the coverage probability of UAV in
a given geographical area. The work in [19] investigated
the optimal movement and deployment area of the UAV to
support the downlink wireless communications. However,
the proposed scheme was limited to the single UAV and only
considered for the downlink. In addition, the existing schemes
did not consider the joint impact of the coverage probability
and mobility of UAVs in cluster formation and maintenance
mechanisms.

III. LOCATION AND MOBILITY AWARE
CLUSTERING SCHEME
In this section, we describe the location and mobility aware
clustering mechanism in detail. Firstly, we present the opti-
mal deployment of CHUAVs to maximize the coverage prob-
ability. Thismodel studies the relationship between the size of
the cluster and maximum coverage probability in the network
to find the optimal cluster size to minimize the number of
transmissions. Secondly, we described the proposed distance
based k-means clustering algorithm, and cluster maintenance
scheme based on updated the relative location information by
considering the speed, and transmission range of the UAVs.

A. EFFICIENT DEPLOYMENT OF CH UAVs
In this subsection, we investigate the optimal deployment of
the CHUAVs in order to maximize the coverage area with the

FIGURE 1. The optimal deployment of CH UAVs to maximize the coverage
probability.

minimum transmit power. For the given target geographical
area, the number of CH UAVs are equipped with the single
antenna. The main objective of this scheme is to maximize
the coverage performance by ensuring the coverage fields of
UAVs do not overlap. The deployment model with a circular
geographical area of radius R is shown in Fig. 1, where K
CH UAVs must be deployed to provide the wireless coverage
for the normal UAVs. The UAVs are assumed to have same
transmit power. The CH UAVs’ antenna gain can be approx-
imated as [20]

G =

G3dB,
−θB

2
≤ ϕ ≤

θB

2
,

g(ϕ), otherwise,
(1)

where ϕ is the sector angle, G3dB ≈
29000
θ2B

with θB in degrees
is a main lobe gain, and g(ϕ) is the antenna gain outside of the
main lobe. The common approach for a channel modeling is
to consider the Line-of-Sight (LoS) and Non-Line-of-Sight
(NLoS) links between CH UAVs and normal UAVs. Each
link has a distinct probability of occurrence which depends
on the elevation angle, environment, and relative location of
the CH UAVs and the normal UAVs. The shadowing and
blockage loss for the NLoS links are higher as compared to
the LoS Links. The received signal power at UAVs can be
given as [21]

Pr,j(dB) =

{
Pt + G3dB − LdB − ψLoS, for LoS link,
Pt + G3dB − LdB − ψNLoS, for NLoS link,

(2)

where Pr,j is the received signal power, Pt is the CH UAV’s
transmit power, and G3dB is the antenna gain.

Also, the path loss LdB is expressed as

LdB = 10nlog
(
4π fcdj
c

)
, (3)

where fc is the carrier frequency, c is the speed of light, dj is
the distance between CH UAV and normal UAVs, and n ≥ 2
is the path exponent. Similarly, ψLoS ∼ N (µLoS, σ

2
LoS) and
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ψNLoS ∼ N (µNLoS, σ
2
NLoS) are shadow fading with normal

distribution in dB scale for LoS and NLoS links. The variance
can be given as

σLoS(θj) = k1 exp(−k2θj),

σNLoS(θj) = g1 exp(−g2θj), (4)

where θj = sin−1(h/dj) is the elevation angle between
CH-UAV and normal UAVs, k and g are constants, and
depends on the environment.

Finally, the LoS probability is calculated as

PLoS,j = α
(
180
π
θj − 15

)γ
, (5)

where α and γ are constant values reflecting the environment
impact. Hence, the NLoS probability is given as [22], [23]

PNLoS,j = 1− PLoS,j. (6)

Our main goal is to provide the wireless coverage to the
largest possible number of UAVs with minimum number of
CHUAVs. The number of CHUAVs depends on the expected
coverage in geographical area and the number of available
normal UAVs. In this scenario, the number of normal UAVs
is fixed to N and the number of CH UAVs is K . The main
objective is to determine the optimal number of CH UAVs
to achieve full coverage to N users. Let γij is the signal to
interference plus noise ratio (SINR) between UAVs i and j,
and Iij be an indicator of whether or not UAV i is connected
to UAV j such that [24]:

Iij =

1 if j = argmax
j∈M

γij and γij ≥ γth,

0 if otherwise.
(7)

The problem can then be formulated as:

min
K

∑
j∈K

∑
i∈N

Iij (8)

s.t.
∑
j∈K

Iij = 1, ∀i ∈ N , (9)

∑
i∈N

Iij = N . (10)

The first constraint ensures that every UAV is connected
to only one CH and the second constraint ensures that all the
UAVs are connected to CHs. This model ensures the optimal
number of CH for a given number of UAVs in the field.

B. LOCATION BASED CLUSTER FORMATION
In this subsection, we present the clustering mechanism by
using k-means clustering algorithm. Based on Section III-A
analysis, we calculate the optimal number of a cluster for a
given N number of UAVs in the field. The proposed scheme
has two major steps; (i) elect K CHs from the set of N UAVs
and divide into the K cluster with optimal size of the each
cluster Nk as Nk =

[N
K

]
, and (ii) formulate the backbone

route to connect all the CHs to the sink (i.e., ground station).
The UAV network can be modeled by G = 〈U ,D〉, where U

FIGURE 2. Location and mobility aware clustering in UAV networks. CHs
are responsible to forward the packets to the ground station/sink.

consists of the sink node u0 and N UAVs. If the two UAVs
are in communication range of each other, then there is a
link between them. We assume that the sink/ground station
has the full knowledge of the network topology. The sink
is responsible for formulations of the clusters, elections of
the CH for each cluster, and constructions of the backbone
routing tree. The backbone routing tree connects all CHs and
the sink.

Algorithm 1 Centralized Clustering Algorithm
1: Input: Number of cluster K for all n ∈ N
2: Output: CHs and corresponding cluster members CMi
3: Start
4: Remaining UAVs← All UAVs
5: while Remaining UAVs (RUAVs)! = 0 do
6: Cluster the UAV network based on location using

(11)-(13)
7: CHi ← UAV having minimum distances from other

UAVs
8: CMi← All UAVs in CHi transmission range
9: RUAVs ← RUAVs − CMs

10: end while
11: Return CHi and CMis
12: End

The centralized clustering algorithm is presented in
Algorithm 1. The main objective of the k-means clustering
algorithm is to perform the clustering of given N number of
UAVs to K different clusters/groups. The important factors
for the efficient clustering are to maximize the coverage
probability and to determine the optimal size of the cluster.
The size of the cluster affects the number of transmissions
in the network. If the cluster size is large, the number of
transmissions required to collect the data frommember UAVs
to the CH UAV will be very high and, thereby, affects the
network performance. Similarly, if the cluster size is too
small, the number of clusters will increase, and the data
transmissions from all CH UAVs to the ground station will
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Algorithm 2 Algorithm to Construct the Backbone Tree for
Data Transmission From CHs to Sink
1: Input: Sink node u0, set S of CHs, and distance DCH

between CHs
2: Output: List of edges A in MST to connect all CHs and

the Sink node
3: Initialize: GCH = 〈UCH ,DCH 〉
4: A← ∅
5: for each vertex v ∈ V [UCH ] do
6: MAKE-SET(v)
7: end for
8: Sort the edge nodes of DCH into non decreasing order by

locations
9: for each edge (u, v) ∈ E , taken in non decreasing order

by minimum distance do
10: if FIND-SET(u) 6= FIND-SET(v) then
11: A← A ∪ (u, v)
12: UNION (u, v)
13: end if
14: end for
15: Return A

be very large. This, ultimately, leads to the degradation of
the QoS performance of the network. From the theoretical
analysis in the previous section, we can calculate the optimal
number of CH UAVs for a given number of UAVs distributed
in a field. To form the clusters, the CH UAVs are selected
first, and Euclidian distance is calculated from each member
UAV to all CH UAVs and finally, allocated to the nearest CH
UAV. The main goal is to minimize the Euclidean distance of
each member UAV to the closest CH UAV. The cost function
to find the optimum µj can be defined as [25]

Cn,j =
N∑
n=1

J∑
j=1

rn,j||xn − µj||2, (11)

where rn,j is defined as

rn,j =

1, if j = argmin
i
||xn − µi||2

0, otherwise.
(12)

To minimize the cost function, first we have to take the
derivative with respect to µj and set to zero, which gives

µj =

∑N
n=1 rn,jxn∑N
n=1 rn,j

. (13)

In addition, we also used the Minimum Spanning Tree
(MST) algorithm [26], [27] to formulate the backbone route.
The backbone tree construction mechanism is presented in
Algorithm 2. The backbone route connects the all CHs and
sink/ground station. A set S of CHs is obtained from the
above clustering scheme, and we introduced a graph GCH =
〈UCH ,DCH 〉, where UCH consists of the sink node u0 and
set S of CHs. The distance DCH is the shortest path between
(CHi,CHj) inG. Then, we calculate theMST of theGCH , and

formulate the routing tree between all CHs and sink. In the
auxiliary graph GCH = 〈UCH ,DCH 〉, and each CH UAV in
has an edge v to the each of the UAVs in its neighboring
cluster. The distance of each edge (u, v) in E is taken in
non decreasing order such that the total distance from the
member UAVs in A to their nearest CH UAV is minimized.
The computational complexity for k-means clustering is on
the order of O (K ∗ N ∗ I ∗ D), where K is the number of
clusters, N is the number of UAVs, I is the number of itera-
tion, and D is the dimension or number of the attributes [28].
Similarly, the computational complexity of the MST algo-
rithm is O(ELogv), where E is the number of edges, and v
is the vertices in the graph.

C. DISTRIBUTED UAV NETWORK IMPLEMENTATION
In this subsection, we present the distributed UAV network
implementation of the proposed clustering algorithm scheme.
We assumed that the UAV knows its speed and the geo-
graphical information. The location information and speed
can be obtained from the attached GPS or by implementing
the localization techniques. In addition, the sink knows the
coverage area of the field, but does not know the location of
the deployed UAVs.

The CH broadcasts an advertisement message to the
UAVs in the cluster field to join the specified cluster. The
advertisement message carries the information such as ID
and location of CH, and the number of hop count. After
receiving the advertisement message, the UAV updates the
CH information if the hop count of the message is smaller
than the pre-recorded value from sameCH, and further broad-
casts the message to its neighbor UAVs. After completion of
CH advertisement, each UAV decides to join corresponding
cluster based on the distance and number of hops to each CH.

The backbone route can be constructed in a distributed
manner to connect all CH UAVs and the sink. The CHs
can share their locations information by broadcasting the
advertisement messages. The sink broadcast the central infor-
mation to the UAVs through the respective CH. We used
the distributed method of an approximate MST algorithm to
construct the backbone network. For each CH, it elects the
CH that has minimum number of hops from the set of CHs
as its parent CH in the backbone route. After completing
the backbone tree, each CH can have the information about
neighbor CHs in the backbone tree.

D. CLUSTER MAINTENANCE
The cluster’s stability rapidly degrades in a highly mobile
environment. Hence, the relative speed Sk , defined for each
UAV represents the goodmeasure for the stability of a cluster.
This metric can be evaluated as the average difference in
velocities v between the CH UAV k and all N neighboring
UAVs within its range, i.e. those belonging to the set 8k .
Moreover, the value is normalized to be within the range
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of [0, 1]. The relative mobility can be expressed as [29]

Sk =

∑N
n=1 |vk − vn|
N · max{�k}

, (14)

where the normalizing factor is the maximum value of the
set �k , and can be expressed as

�k = {|vk − vn| |(vk , vn) > 0; ∀n ∈ 8k}. (15)

Another metric which can be used to determine a stable CH
UAV is relative position to its neighbors. A smaller normal-
ized relative mean distance ∂k indicates that the neighboring
UAVs are closer to the potential CH UAV. Consequently,
the mean relative distance ∂k of UAV k is defined as

∂k =

∑N
n=1

√
[1xk,n]2 + [1yk,n]2 + [1zk,n]2

N · max{Zk}
, (16)

where the normalizing factor is the maximum value of the
set Zk , which is composed of all the Euclidean distances
between UAVs.

Similarly, the average distance between the ground sta-
tion/sink and the inter-cluster UAVs can be expressed as

Dk =

∑N
n=1

√
[1xk,0]2 + [1yk,0]2 + [1zk,0]2

N · max{ϕk}
, (17)

where ϕk is composed of all the Euclidean distance between
sink and inter-cluster UAVs.

Finally, the CH selection index is evaluated as the sum
of the normalized values of the mean relative speed and
distances as

ξk = Sk + ∂k +Dk , (18)

which always fall in the range [0, 3]. Upon periodical
exchange of the packets amongst all the UAVs in the cluster,
the kth UAV can record a list of all CH selection indexes ξ
belonging to every nth UAV in its neighbor’s set 8k . The set
of all ξ for every neighbor’s set 8k can be defined as [29]

9k = {ξn|∀n ∈ 8k}. (19)

To make the network stable and reliable, we have to main-
tain the cluster structure. The cluster maintenance and backup
cluster election procedure is presented in Algorithm 3. The
proactive backup cluster head CHbkp scheme is introduced to
fulfill the CH position, if current CH is resigned or away from
the network. The choice of stable CHbkp is assigned based
on the selection index ξ . We also defined a set of all UAVs
belong to the same cluster and CH as ∅i. The CH keeps all
the information of its CMs and knowledge of neighbours set
8k of every kth CM. The UAV k with ID ςk will be elected
CH if the selection index ξk is found to be smaller than ξn and
can be expressed as

CHbkp = {ςk |ξ (ςk ) ≤ min{9k}}. (20)

Algorithm 3 Cluster Maintenance and Backup Cluster Head
Selection
1: for each CHi in ∅i do
2: CHi assigns the CH i

bkp using (20)
3: end for
4: if CHi leaves network then
5: CHbkp← CHi
6: end if
7: if CHi is in the coverage zone of another CHj then
8: if CH i

bkp is not in coverage zone of another CHj then
9: CHbkp← CHi
10: else
11: Merge cluster ∅i and ∅j
12: end if
13: end if
14: if CMi is not in coverage zone of CHi then
15: go to CH election Algorithm 1
16: end if

TABLE 1. Simulation parameters.

IV. PERFORMANCE ANALYSIS
In this section, we analyze and evaluate the performance
of the proposed scheme by using the MATLAB software.
The simulation parameters are presented in Table 1. We use
IEEE 802.11 radio standard [30] operating in the 2.4 GHz
frequency band for wireless communication. First, we deter-
mined the optimal number of CH to enhance the coverage
probability, which also enhances the network performance
by reducing the number of network overheads. Based on the
analytic result, we perform the proposedMLSC scheme in the
network. The deployed UAV network and the network after
proposed clustering algorithm are shown in Fig. 3 and Fig. 4,
respectively.

Figure 5 presents the impact of the CH UAVs on the
coverage performance in various network sizes (i.e., no of
UAVs) in the given deployment scenario. It is clearly shown
that the coverage performance decreases as network size
increases. There is a trade-off in deploying more CH UAVs
to provide the optimal coverage. By increasing the CH UAVs
(or the number of clusters), the coverage can be improved.
However, by increasing the number of clusters, the
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FIGURE 3. UAV node connectivity without clustering (Axis units are
x100 meter). If all the UAVs trying to communicate with each other, then
the network overhead will increase exponentially.

FIGURE 4. UAV network after clustering (Axis units are x100 meter). UAVs
in each cluster transmit the packet to the CH. CHs are responsible to
forward the packets to the ground station/sink.

FIGURE 5. The impacts of a number of CHs on the coverage performance
for various network size (i.e., for UAVs network size of 50 and 100).

aggregated interference increases which reduces the SINR
value. For instance, the optimal number of CH UAVs for
serving 100 UAVs is 6.

FIGURE 6. The impacts of a number of clusters on the data transmission
for UAV networks of size 50 and 100.

Figure 6 represents the impact of the cluster size on the
performance of the proposed scheme. The number of UAV
is set 100 and 50, and the number of clusters K varies from
1 to 15. The main objective of the proposed scheme is to
minimize the number of transmission in the cluster network,
which is sum of the intra cluster transmission and the inter
cluster transmission. From the Fig. 6, we can see that the
number of transmissions decreases as the number of cluster
increases untilNck reaches certain value, afterwards increases
of Nck would lead to increase of transmissions.

FIGURE 7. Performance comparison of the proposed MLSC scheme with
conventional AODV protocol in terms of normalized routing overhead
versus UAV velocity.

Figure 7 depicts the normalized routing overhead for vari-
ous UAV velocities. The mobility of UAV causes high route
request rate and increases the control packet overhead. The
control packet overhead surpasses the data rate, and also
enhances the packet drop and network latency. The nor-
malized routing overhead of proposed MLSC and AODV
increases with increased UAV velocity in both cases. The
routing overhead in AODV is very high as compared to the
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proposed MLSC scheme because a large amount of time is
required to find a path in the high-speed networks. Besides,
the AODV floods a route request (RREQ) messages to find
a valid path to transmit the data. The RREQ flooding causes
unnecessary network overhead that degrades the overall net-
work performance such as packet delivery ratio and network
latency. However, the proposed scheme shows comparatively
lower normalized routing overhead due to the distributed
network formation, where only CH node is involved in the
route discovery procedure.

FIGURE 8. Performance comparison of the MLSC scheme with
conventional ACO and GWO interms of the packet delivery ratio versus
number of UAVs.

Figure 8 presents the performance comparison of the pro-
posed MLSC scheme with conventional ACO and GWO
algorithms in terms of packet delivery ratio (PDR) by varying
the number of UAVs. The PDR is defined as the number of
packets successfully received by the destination/sink node to
the number of packets generated by the source nodes. From
the Fig. 8, it is observed that the PDR in all three cases
increases with the number of UAVs. However, due to the opti-
mal CH selection algorithm and stable root selection method
in the MLSC scheme, the PDR is relatively higher than the
conventional ACO and GWO scheme. The proposed scheme
clearly illustrates the effectiveness by delivering more than
95 percent of the generated packets to the sink. This also
demonstrates that the proposed scheme effectively selects
a stable CH and backup CH to maintain the stable cluster
structure as compared to the other algorithms.

Figure 9 shows the end to end delay comparison of the
MLSC scheme with conventional methods by varying the
number of UAVs. It is observed that the average delay
increases with the number of UAVs. EachUAV in the network
begins to experience packet drops and congestion problems
due to a large number of UAVs. Subsequently, the link con-
nection of routing route disconnects frequently due to the
mobility of UAVs. Moreover, due to the employed optimal
CH and route selection scheme, the average end to end delay
of the proposed MLSC scheme is lowest as compared to
the conventional ACO and GWO scheme. In the proposed

FIGURE 9. Performance comparison of the MLSC scheme with
conventional ACO and GWO in terms of average end to end delay versus
number of UAVs.

scheme, UAVs transmit the data to their CH, which is located
in the optimal position. The packets are collected to CHs by
the shortest path routing. Afterwards, the collected packets
are forwarded to the sink using a stable backbone tree.

V. CONCLUSIONS
Due to the dynamic topology and high mobility of the UAVs,
the conventional protocols which are designed for the sta-
ble network are not suitable for UAV networks. The con-
ventional methods will lead to network instability and also
increase the network overhead. In this paper, we proposed
a location-based distributed clustering algorithm to enhance
the performance and reliability of the UAV networks within
resource constraints. The number of UAVs are organized into
the clusters. Within the cluster, the data are collected to the
CH, and forwarded to the sink/ground station following the
backbone tree. We first present an analytical model to find
the coverage probability of CH and the optimal number of
CHs that enhances the network coverage and minimizes the
number of transmissions. Then, we propose the clustering
algorithm based on the results from the analytical model.
With the help of the simulation results, it has been shown
that the proposed scheme substantially improves the network
overhead in comparison to the conventional AODV. More-
over, the significant performance is achieved in terms of PDR
and average end to end delay as compared to the conventional
ACO and GWO schemes.
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