
Received May 26, 2020, accepted May 31, 2020, date of publication June 4, 2020, date of current version June 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000111

Classification of Lung Sounds With CNN Model
Using Parallel Pooling Structure
FATIH DEMIR 1, ARAS MASOOD ISMAEL 2, AND ABDULKADIR SENGUR 1
1Electrical-Electronics Engineering Department, Technology Faculty, Firat University, 23119 Elazig, Turkey
2Information Technology Department, Technical College of Informatic, Sulaimani Polytechnic University, Sulaimani, Iraq

Corresponding author: Aras Masood Ismael (aras.masood@spu.edu.iq)

ABSTRACT The recognition of various lung sounds recorded using electronic stethoscopes plays a signif-
icant role in the early diagnoses of respiratory diseases. To increase the accuracy of specialist evaluations,
machine learning techniques have been intensely employed during the past 30 years. In the current study,
a new pretrained Convolutional Neural Network (CNN)model is proposed for the extraction of deep features.
In the CNN architecture, an average-pooling layer and a max-pooling layer are connected in parallel in order
to boost classification performance. The deep features are utilized as the input of the Linear Discriminant
Analysis (LDA) classifier using the Random Subspace Ensembles (RSE) method. The proposed method
was evaluated against a challenge dataset known as ICBHI 2017. The deep features and the LDA with RSE
method provided the best accuracy score when compared to other existing methods using the same dataset,
improving the classification accuracy by 5.75%.

INDEX TERMS Lung sound, CNN model, parallel pooling, deep features, RSE method.

I. INTRODUCTION
Lung disease ranks third among fatality causes worldwide.
According to the World Health Organization (WHO), more
than 3 million people die each year due to respiratory dis-
eases [1]. Lung sound attributes and their diagnosis play a
significant role in the pulmonary pathology.

Lung sounds can generally be grouped as ‘‘normal lung
sounds’’ or ‘‘abnormal lung sounds.’’ Normal lung sounds
are when no pulmonary disease exists, whilst abnormal lung
sounds are heard when a pulmonary disease is present [2], [3].
An abnormal lung sound is a supplementary respiratory
sound that is heard in addition to the normal lung sound.
Abnormal lung sounds are known as continuous if they con-
tain wheezes, and discontinuous if they contain crackles. The
presence of such sounds mostly indicates the presence of a
lung disease [4].

Auscultation is a method by which doctors evaluate and
diagnose lung diseases using a stethoscope. It is known as a
low-cost, easy to apply, and reliable test that requires minimal
diagnosis duration [5]. The test is able to provide considerable
information about lung diseases and their symptoms [6]; how-
ever, the classical auscultation process using a stethoscope is
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not infallible as it depends on the skill of the physician and
their hearing sensitivity.

Because of the inclusion of non-stationary signals, lung
sounds can be difficult to analyze and separate using conven-
tional auscultation techniques. Hence, the use of an electronic
stethoscope combined with an artificial intelligence system
can be used as a means to overcoming the limitations of con-
ventional auscultation, and thereby providing a more reliable
and efficient method through automated diagnosis [7].

From the outset of machine learning and pattern recog-
nition, numerous studies have put forwards proposed meth-
ods for the automatic classification of lung sounds. In the
literature, conventional methods have generally been used,
consisting of classifiers and hand-crafted features for the cat-
egorization of lung sounds. In [6], features are extracted with
the frequency ratio of Power Spectral Density (PSD) values
and the Hilbert-Huang Transform (HHT) method, and then
evaluated using Support Vector Machine (SVM) algorithm.
In [8], the features extracted from time-frequency and time-
scale analysis methods are utilized for the detection of normal
lung sounds and crackles, with k-Nearest Neighbors (k-NN),
Multilayer Perceptron (MLP) and SVM used for the classifi-
cation stage. The best accuracy was achieved with the SVM.
In [9], the feature set is constituted by instantaneous kurto-
sis, discriminating function, and entropy in order to classify
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FIGURE 1. Framework of the proposed method.

normal lung sounds and abnormal lung sounds, which consist
of wheezes, stridor, and rhonchi. The best classification accu-
racy was achieved with the SVM classifier. In [10], the Mel-
Frequency Cepstral Coefficients (MFCCs) was used in order
to extract features from respiratory signals, and the proposed
approach was evaluated using the Gaussian Mixture Model
(GMM). In [7], Higher Order Statistics (HOS) were used
for feature extraction, with genetic algorithms and Fisher’s
discriminant ratio applied to the feature set for the purposes of
feature reduction. For classifying lung sounds, which include
normal, coarse crackle, fine crackle, as well as monophonic
and polyphonic wheezes, k-NN and Naive Bayes classi-
fiers were employed. In [11], the feature set was constituted
of autoregressive model coefficients, wavelet coefficients
and some parameters of crackles, with k-NN and Artifi-
cial Neural Network (ANN) employed in the classification
stage.

Recently, deep learning-based models have been used for
sound classification, since these models mostly provide a
better level of performance over conventional methods [12].
In [13], CNNs were proposed for environmental sound clas-
sification using spectrogram images conveyed as input to the
CNN. In [14], a CNNmodel was employed for the classifica-
tion of lung sounds, with the CNN shown to perform superior
to MFCC features in the SVM. In [15], three methods were
proposed for the categorization of respiratory sounds. First,
MFCC features were used in the GMM, SVM, and k-NN
classifiers. In the second method, Local Binary Pattern (LBP)
features were used in the GMM, SVM, and k-NN classifiers,
whilst for the third method, the CNN model was used in both
the training and testing stages. Overall, the best classification
accuracy was achieved using the CNN model of the third
method.

In the method proposed in the current study, a hybrid
approach was applied in order to increase the classification
performance in the identification of lung sounds. Lung sound

FIGURE 2. Illustration of the proposed CNN using parallel pooling
structure.

classes consist of normal, wheezes, crackles, and crack-
les plus wheezes. A pretrained CNN model, which utilizes
spectrogram images as input, was used for deep-feature
extraction. In the classification stage, Linear Discriminant
Analysis (LDA) classifier was employed together with the
Random Subspace Ensembles (RSE) method.

The remaining sections of this paper are organized as
follows: withMethodology in Section 2, ExperimentalWorks
in Section 3, and Conclusions in Section 4. TheMethodology
section provides information about both the framework of
the proposed method and the spectrogram image, CNNs,
LDA, and RSE methods. In the Experimental Works section,
the proposed method is evaluated using a robust dataset,
with experimental results shown in tabular format. In the
Conclusions section, the experimental results are interpreted
according to performance criteria and othermethods that have
used the same dataset.
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FIGURE 3. Reresentation of random space ensemble with LDA.

II. THE METHODOLOGY
The framework of the proposed method is illustrated
in Fig. 1. In the preprocessing stage, spectrogram images are
constituted using the lung sounds. Because of the varying
frequencies of the sample lung sounds, the window size
and overlap of the spectrograms is selected according to
sampling frequency values. The spectrogram data is then
transformed to image format using Viridis Color Map. In this
way, spectrogram images are created and saved in the folders.
The pretrained CNN model, which is illustrated in Fig. 2, is
constituted by training with a particular part of the spectro-
gram images. The deep features are extracted from the fully-
connected layer of the pre-trained CNN model. To increase
classification performance, while doing the down-sampling
process by the pooling layers, it is planned that the average
pooling process of the characteristic information, which is
eliminated by the max-pooling process, would be captured.
As a reason, the pooling structure used in the pre-trained
CNN model is parallel-connected the max-pooling layer to
the average pooling layer. In order to test the classification
performance of the proposed method, the deep features are
conveyed to the LDA classifier. To further increase the classi-
fication performance, the RSE method is applied to the LDA
classifier.

A. SPECTROGRAM IMAGES
A spectrogram is a visual process that illustrates the power,
or loudness, of a signal over time at different frequencies
within a certain waveform. The spectrogram also shows how
energy levels vary over time. The Short-Time Fourier Trans-
form (STFT) formulation is as shown in Equation 1:

F (n, ω) =
∑∞

i=−∞
x (i) ω (n− i) e−jwn (1)

where x(i) is input, and ω(i) is a window function (e.g.,
hamming window and rectangular window) that is generally
centered at time n. A spectrogram can be expressed as the
squared magnitude of the STFT. The spectrogram images are
constituted with Viridis Color Map, which is a homogeneous
mapping that utilizes colors changing from blue to green to
yellow [16], [17].

B. CNNs
Themain CNNprocesses consists of the forward-propagation
and back-propagation. The learning parameters of the

forward-propagation are optimized by way of the back-
propagation techniques [18]. The forward-propagation con-
sists of numerous convolutional layers, plus one or more
fully-connected layers. The aim of the convolutional layers
is to extract apparent attributes from the input signal as it
is conveyed through the layers. In general, the low-level
features are extracted by the first convolutional layer, whilst
themore complicated features are extracted by the subsequent
convolutional layers. The training process of the CNNs is as
follows.

The convolutional, batch normalization, activation, pool-
ing and softmax layers form the forward-propagation stage.

The basic aim in the convolution stage is to assign local
connections of features from the prior layers and map their
data to the feature maps. The convolution operation of the
2D data is shown in Equation 2:

yni =
∑

i
yn−1i ∗ ωnij + b

n
i (2)

where yn−1i is the input data or the previous convolutional
output, ωnij is n-th weight matrix, and bni is n-th bias vector.
Before conveying the data in the convolutional layer to

a nonlinear function, the data is prepared not to show an
abnormal distribution with Batch Normalization (BN) layer,
which prevents gradient vanishing during the training stage.
Thus, the learning parameters are optimized in order to speed
up convergence by protecting a state of greater gradient at all
times. Besides, the BN layer is employed to decrease the level
of noise [19]. The operation of the BN layer is expressed as
shown in Equations 3-6:

mb =
1

k

∑k

i=1
xi (3)

vb =
1

k

∑k

i=1
(xi −mb)

2 (4)

x̂i =
xi −mb√
v2b + ε

(5)

yni = cx̂i + d (6)

where xi is the input, mb is the mini-batch mean, vb is the
mini-batch variance, k is the input size, and ε is the small
constant. Scale and shift factors are represented as c and d,
respectively. These factors are learnable parameters adjusted
to the most convenient values during the training process.
The value yni is the i-th output of n-th BN layer.
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The Rectified Linear Unit (ReLU), which is the most
used activation in the CNNs, prevents gradient explosion and
gradient disappearance problems within the sigmoid activa-
tion function. The ReLU activation function is as shown in
Equation 7:

rni = max
(
0,yni

)
(7)

where rni is the i-th output of n-th ReLU layer. The
down-sampling operation, which decreases the matrix size,
is applied by the pooling layer, which in turn reduces the
computation cost and prevents over-fitting [20]. The most
common pooling layers are maximum and average pooling
layers. The calculation of the pooling operation is expressed
as shown in Equation 8:

pni = average or maximum operation
{
rni
}

(8)

In the first fully-connected layer, the matrices conveyed
from the previous layers are flattened and connected to other
fully-connected layers. The CNNs structure from the fully-
connected layer to the classification layer is the same as for
multilayer perceptron (MLP).

The values from the previous fully-connected layer are
used as the input to the softmax layer. The softmax oper-
ation can be defined as a learning method used to adjust
classification scores. The softmax is the only operation that
transforms the output of the neural network via probability
distribution, giving the possibility of different classes. The
softmax operation is as shown in Equation 9:

yni = σ (xi) =
ef i∑K
j=1 e

xj
(9)

where fi is the i-th output of the previous fully-connected
layer, yni symbolizes the i-th predicted score of the CNNs,
and K is the number of predicted scores of the CNNs.

In the back-propagation stage, the cross-entropy function is
used for the CNNs. This provides information about the dis-
tance between the predicted values dispersion and the ground
truth dispersion. Calculation of the cross-entropy function
can be expressed as Equation 10:

H
(
yti,y

n
i
)
= −

∑K

j=1
yti logy

n
i (10)

where yti symbolizes the ground truth values, and yni symbol-
izes the predicted values. With the L2 regularization factor,
the cross entropy is rearranged as in Equation 11:

L(ω, b) = H
(
yti,y

n
i
)
+ α

∑
ω
ω2 (11)

where α is the L2 regularization coefficient, b is the bias val-
ues and L (ω, b) is the loss function. All learning parameters
of the CNNs are updated through the optimization methods,
such as the Stochastic Gradient DescentMomentum (SGDM)
and the Adam. Optimization of the learning parameters can
be expressed as shown in Equation 12:

ωnij = ω
n−1
ij + δ

∂

∂ωnij
L (ω, b) (12)

where ωnij is the updated learning parameter, ωn−1
ij is the

previous learning parameter, and δ is the learning rate.

C. LINEAR DISCRİMİNANT ANALYSİS
Given an X matrix (s×t), which is processed as c column
vectors x1, x2,. . . , xs (x ε<t), each column represents a data
point and each row represents a certain feature [21]. With the
linear transformation matrix Bε<s×u, the feature set (y ε<l)
can be calculated as shown in Equation 13:

B : x ∈ <s→ y= BT x ∈ <u (13)

The outcomematrix (Y ε<u×n) includes u rowswhich leads
to the u-dimensional decreased space, and each data point
consist of u features.

Given the within-classes scatter matrix Sm, the between-
classes scatter matrix Sn, and the scatter matrices S, SLm
and SLn correspond to the between-classes scatter matrix and
within-classes scatter matrix in the lower-dimensional space.
SLm, S

L
n and the scatteringmatrix criterion (J (B)) is calculated

by the linear transformation B using Equations 14-16:

SLm = BTSmB (14)

SLn = BTSnB (15)

J (B) =
SLm
SLn
=
BTSmB

BTSnB
(16)

To optimize B in the scattering matrix criterion, SLm should
be maximized while SLn should be minimized. The optimal B
in the LDA classifier is computed as shown in Equation 17:

B = argmax
B

[
(BTSmB)

−1BTSnB
]

(17)

For each Gaussian class using the same covariance matrix,
the LDA is similar to the Bayesian classifier, with only a
variation in its threshold value.

D. RANDOM SUBSPACE ENSEMBLES
The RSE is a method used to boost the performance of classi-
fiers. The method is grounded on a stochastic operation that
randomly chooses a number of components of the learning
model in creating each classifier [22]. In the RSE method,
the training data is split into random subspaces. The most
convenient subspace class membership is assigned by the
learner algorithm of the classifiers. Then, class memberships
conveyed from each subspace learner is assembled in a class
vector. The predicted scores are stated by the highest average
score of the class vector. For the LDA classifier, the RSE
method is applied as follows:
• Item 1: Choose without changing random data of the K-
size from training data (K < N).

• Item 2: Train an LDA learner using only the predictors.
• Item 3: Apply Item 1 and Item 2 until there are M LDA
learners.

• Item 4: Assemble prediction values of the LDA learners.
• Item 5: Classify the test dataset with the highest average
value.
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TABLE 1. Cycle info for a sound file.

TABLE 2. Cycle breakdown of ICBHI 2017 challenge dataset.

The representation of the RSE, which employs the LDA
classifier, is shown in Fig. 3, where K is the dimension of
subspaces, d is the training samples selected as random, and
M is the number of LDA learners.

III. EXPERIMENTAL WORKS
A. DATASETS
The proposed method was evaluated against the ICBHI
2017 Challenge dataset, which consists of 920 lung sounds.
The lung sounds were recorded using three different dig-
ital stethoscopes, with sampling frequencies of 4 KHz,
10 KHz, and 44.1 KHz, respectively. The classes of the
ICBHI 2017 Challenge dataset consist of crackles, wheezes,
normal, and wheezes plus crackles. A 20-second sound file
may include one or more class tag since the sound files are
separated into cycles. The cycle breakdown for a sound file
is presented in Table 1, with columns shown as cycle index,
start time, end time, and values for both crackles andwheezes.
Thewheeze and crackle values for crackles, wheezes, normal,
and wheezes plus crackles tags are 1-0, 0-1, 0-0, and 1-1,
respectively. According to the class tags, the total number of
the cycles is given in Table 2.

B. EVALUATION METHOD AND CRITERIA
In the ICBHI 2017 Challenge dataset, 90% of the data were
separated for the purposes of training and validating the
proposed CNN. The remaining 10% of the dataset was used
for the LDA classifier combined with the RSE method in
the classification stage. Classification performance was eval-
uated with 10-fold cross-validation. The performance criteria

TABLE 3. Layer parameters of proposed CNN.

were selected as accuracy, specificity, sensitivity, precision,
and F-score. Each of these criteria, along with the confusion
matrix, are shown in Equations 18-22:

Accuracy =
TP + TN

TP + FP + TN + FN
(18)

Specificity =
TN

TN + FP
(19)

Sensitivitiy =
TP

TP + FN
(20)

Precision =
TP

TP + FP
(21)

F− score = 2x
PrecisionxSensitivity
Precision+ Sensitivity

(22)

C. EXPERİMENTAL SETUP AND RESULTS
The experimental works were applied using MATLAB
(R2019a) software installed on a computer with an Intel(R)
Core(TM) i7-5500 CPU @2.4 GHz with 4 core, NVİDİA
GeForce 840M GPU, and 8 GB RAM.

In the proposed method, the spectrogram operation was
applied to the lung sound data. Window size and overlap,
which are spectrogram parameters, were adjusted to the sam-
pling frequencies. According to the 4 KHz, 10KHz, and
44.1 KHz sample frequencies, window size and overlap were
selected as 64-8, 128-16, and 524-64, respectively. In these
selections, the resolution of the spectrogram images is the
most significant factor, as the spectrogram images are used
for the input for training the proposed CNN. The layer param-
eters of the proposed CNN shown in Fig. 2 are presented
in Table 3.

The initial learning rate, max-epochs and validation fre-
quency, which are the training option parameters, were
selected as 0.005, 12, and 30, respectively. The Adam opti-
mizer is employed for the training process. According to the
iterations, the training and validation accuracy and the loss
deviation of the proposed CNN is illustrated in Fig. 3. At the
end of 519 iterations, while the training accuracy was around
60%, the validation accuracy was found to be 49.78%.

The first fully-connected layer (fc1) of the proposed CNN
was used to extract 350 deep features, which were then eval-
uated using the LDA classifier and the RSE method with the
subspace dimension adjusted to 64.
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FIGURE 4. Training, validation and loss deviation against iterations.

FIGURE 5. Confusion matrix for the proposed method.

TABLE 4. Results of other performance criteria.

The classification results with 10-fold cross-validation are
presented in the confusion matrix shown as Fig. 5. The best
accuracy score achieved was 83.2% with the normal class,
whilst the worst accuracy score achieved was 40.4% with the
wheezes class. The average accuracy score was 71.15%.

TABLE 5. Accuracy scores for other classifiers.

TABLE 6. Accuracy results for CNN models.

The results of the other performance criteria, specificity,
sensitivity, precision, and F-score, are presented in Table 4,
with the best score for each class shown as bold typeface.

The best specificity and precision values were achieved
with the wheezes class, and the best sensitivity and F-score
values were achieved with the normal class. For the proposed
method, the classifier was selected by using the classification
accuracy criterion. In Table 5, the classification results are
shown for different classifiers, with the best classification
accuracy achieved with the LDA classifier using the RSE
method. In Table 6, the classification performance of the
proposed CNN is compared with the other popular pretrained
CNN models, and the CNN structures obtained when there is
only one parallel connection branch, as shown in Fig. 2.

For deep features extracted from CNN models, classifiers
that give the best performance are used, and among the pop-
ular pretrained CNN models, the VGG16 model yields the
best level of accuracy at 65.4%. While the proposed CNN
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TABLE 7. Accuracy results for other methods using same dataset.

model only has max-pooling and average-pooling branches,
the accuracy results of the proposed method were shown
to be 67.2% and 68.6%, respectively. With the parallel-
pooling structure in the proposed CNN, the best accuracy
level achieved was 71.15%.

In Table 7, the proposed method is compared with other
methods using the same dataset based on their accuracy score.

In [23], features were extracted using MFCC, and evalu-
ated with the Hidden Markov Model classifier, and achieved
a best accuracy level of 39.56%. In [24], low-level features
were used for the feature extraction, and the features then
conveyed to the Decision Tree classifier, and lung sounds
were classified to an accuracy of 49.62%. In [25], the wavelet
decomposition and STFT were combined as a feature set,
producing a best accuracy level of 57.88% using the SVM
classifier. In [26], two methods were proposed for lung sound
classification. First, lung sounds were classified with the
transfer learning technique, trained by applying fine-tuning to
the pretrained VGG16 model, and achieved a best accuracy
level of 63.09%. In the second method, deep features were
extracted from the fully-connected layers of the pretrained
VGG16model, realizing a best accuracy level of 65.50%with
the SVM classifier.

IV. CONCLUSION
In this paper, lung sounds are used to classify pulmonary
disorders. In the literature, traditional machine learning tech-
niques are generally used for lung sound classification,
although more recently, techniques based on deep learning
have started to be used for classification performance. Pop-
ular pretrained CNN models such as VGG16 and AlexNet,
havemostly given good results for image recognition and also
for some sound classification applications; however, sound
characteristics are not fully represented since these CNN
models have not been trained on sound datasets. Hence, the
proposed CNN model was trained with spectrogram images
based on lung sounds. In addition, the parallel-pooling struc-
ture was employed in order to boost classification perfor-
mance in the proposed CNN architecture. Then, deep features
were extracted from the first fully-connected layer of the

proposed CNN. The deep features are employed by using
different classification algorithms, with the best obtained
result being 71.15% with the LDA-RSE classifier. Perfor-
mance of the proposed CNN model was compared with the
other popular pretrained CNN models, and the best classi-
fication accuracy was achieved by using the proposed CNN
model. In addition, the accuracy score of the proposedmethod
resulted in an improvement increase of 5.75%, when com-
pared to the other best result methods using the same dataset.
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