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ABSTRACT This paper proposes a new calibration method for enhancing robot positional accuracy of the
industrial manipulators. By combining the joint deflection model with the conventional kinematic model
of a manipulator, the geometric errors and joint deflection errors can be considered together to increase
its positional accuracy. Then, a neural network is designed to additionally compensate the unmodeled
errors, specially, non-geometric errors. The teaching-learning-based optimization method is employed to
optimize weights and bias of the neural network. In order to demonstrate the effectiveness of the proposed
method, real experimental studies are carried out on HH 800 manipulator. The enhanced position accuracy
of the manipulator after the calibration confirms the feasibility and more positional accuracy over the other
calibration methods.

INDEX TERMS Neural network, robot accuracy, robot calibration, teaching-learning-based optimization.

I. INTRODUCTION
Robot manipulators are broadly employed in industry to
attain many duties such as welding, painting, pick and place
task, etc. The construction of robot manipulators is charac-
terized using their kinematic model parameters. However,
in producing and assembly, many errors arise that could not
be taken into accounts by the nominal geometric model. For
that reason, there is a demand to create model-based robotic
calibrations that depend on an errormodel that symbolizes the
connection between the errors of geometric parameters and
the arm’s tip positioning errors. There are many researchers
work on this approach [1], [2]. Numerous studies have been
carried out to investigate the suitable geometric model for
the robot calibration. Denavit, Hartenberg at el. suggested
the DH model that is one of the most fundamental geometric
calibration methods. The model has been extensively adopted
by researchers [3]–[5]. Gupta proposed another model using
the zero-reference position model [6]. This model has been
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used by some authors [38], [39]. Besides, researchers also
proposed many others approaches. Zhuang et al. proposed a
complete model for completely expressing the geometric and
movement of the robotic manipulator of the robot (CPC) by
using the singularity-free line representation [7], [8]. Another
approach that has been widely examined is the product
of exponentials model (POE). The method based on skew
theory that allows a global description of robotic motion
[9], [10], [11], [40]. There have been some attempts to replace
the least square estimation with the Kalman filter, particle
filter, etc. [42], [43], [45]–[48] However, the effectiveness of
those attempt does not seem to be much. The model-based
access has many benefits. It is potential to find out the model
parameters precisely in considering that error sources are
suitability described by the error model. By using this access,
geometric errors can be formed accurately. For instance,
the kinematic model and the joint stiffness of the robot are
modeled efficiently by many researchers [12], [13], [14].
Geometric error calibration methods have abundant abilities:
reducing the calibration time, easy to covert, contributing
exactly the information of error’s sources. However, they
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also have some drawbacks. Practically, it is difficult to create
kinematic identification models that consider all the causes
engendering the end effecter error.

The kinematic calibration has been researched for decades
and gradually mature. For further accuracy, non-geometric
calibration methods have been recently developed, [15]–[25].
Using the non-geometric error approach, some authors
employ optimization methods to optimize the robot param-
eters [15]–[22]. Some studies take the radial basis function
[23], [24] or artificial neural network (NN) [25] to generate
a connection between the arm’s tip position errors and the
matching joint angle configurations [25], [27]–[29]. Among
them, the back propagation neural network (BPNN) [36] has
been widely used due to its capabilities such as learning,
adaptation, and approximating any nonlinear function with
arbitrary precision [26]. However, the conventional BPNN
has a problem in which the performance relies heavily on
the input data and hardly finding the overall minima [30].
Numerous methods are suggested to overcome these draw-
backs of the BPNN. Heuristic optimization methods are car-
ried on optimizing the structure of the NN. Some of them
are particle swam optimization, genetic algorithm, teaching
learning optimization, firefly optimization [31]–[34].

In 2011, Rao et al. proposed the teaching-learning-based
optimization (TLBO) [35]. Overall, the TLBO method repli-
cates the teaching and learning of human. It has two main
phases: (1) select the nominate with the best performance
to be the teacher of the class to activate the teacher learning
step (2). The other nominates are students. They learn from
each other and from the teacher. In every interaction, the best
solution will become the teacher and the students will change
itself base on the teacher and the other students. The TLBO
approach is described as a feasible and strong method. It sup-
plies the fast convergence time and easy to get the overall
minima.

In this study, the kinematic parameters and joint compli-
ance parameters of the robot are simultaneously identified
first by our model-based calibration [12]. However, there are
still some unmodeled errors such as friction, thermal variety,
gear errors. Then, a proposed neural network with TLBO
is applied to compensate the remain errors. For better com-
pensation, the teaching-learning-based-optimization(TLBO)
is employed to optimize the weight and bias of the neural
network. Finally, the proposed algorithm is implemented for
the experimental studies on a HH800 robot. The enhanced
position accuracy of the manipulator after the calibration
confirms the feasibility and more positional accuracy over
the other calibration methods. The proposed method is a
combination of model-based and ANN methods which is
used the TLBO technique to determine the weight and bias.
By using TLBO neural network, the proposed calibration
method seems to quite easily reach the global minima. There-
fore, the TLBO neural network can be said to have better
convergence capability than the traditional backpropagation
NN. Furthermore, most of ANN-based technique is applied
after the kinematic calibration. Our calibration method

simultaneously calibrates both the kinematic errors and joint
compliances. The model-based compensation part is the
extension to the closed-chain manipulator of our previous
work for simple serial robot [12]. After the simultaneous cal-
ibration, the TLBO-NN based compensation is accomplished
for the un-modelled non-geometric errors. The combination
of simultaneous hybrid calibration with a TLBO based neural
network is shown to lead to the better capability of reducing
the errors of the robot than other calibrationmethods. Further-
more, the proposed calibrationmethod utilizes the advantages
of the TLBO neural network over the conventional back
propagation neural network such as better error reducing
capability and better global minimum reaching capability.

II. KINEMATIC STRUCTURE OF THE HH800 ROBOT
HH800 is a 6 DOF robot that has a single closed-chain
mechanism (2 DOF) [12], [15], [25]. Its sketch and nominal
parameters are shown in Fig. 1 and Table 1, respectively.

FIGURE 1. Sketch of the HH800 robot.

TABLE 1. Nominal D-H parameters of the Hyundai robot HH800.

The transformation matrix between the base frame and the
tip frame of the robot is expressed:
0
ET =

0
1T (θ 1)

1
2T (θ2)

2
3pT (θ3p)

3p
4 T (θ4)

4
5T (θ5)

5
6T (θ6)

6
ET (1)

The transformation matrix between the end effector frame
and frame 6:

(6T )T = TrX (a6)TrY (b6)TrZ (d7) (2)

105448 VOLUME 8, 2020



P.-N. Le, H.-J. Kang: Robot Manipulator Calibration Using a Model Based Identification Technique

The closed loop PQRS could be assumed as a parallel planar
mechanism. The passive joint position θ3p is calculated as
follow [25]:

θ3p = θ3 − θ2 − 90 (3)

III. SIMULTANEOUS IDENTIFICATION JOINT
COMPLIANCE AND KINEMATIC PARAMETERS
In a robot static configuration, a robot joint torque causes a
twist deformation about a rotation shaft (which represents the
entire drive train from the motor to the associated robot link).
Therefore, the shaft can be considered as a torsional spring in
the compliance modeling. This study investigates character-
istics of a torsion spring because they are related to modeling
of rotational joint compliance. The characteristics of torsion
springs are basically presented by non-linear functions, for
example, T = k1∗δθ+k2∗(δθ )3, where T is the spring torque,
1Pextra is the spring rotational deformation. When the robot
joint deformation is small, the linear part becomes dominant.
Now, we can assume that the functional relationship between
the joint torque and its deformation is linear in this calibration
process.

Accepting the manipulator joint can be demonstrated as a
linear torsional spring, the joint stiffness value of the ith joint
is symbolized by a constant value ki. Considering the manip-
ulator joint is much bender than the relative link. Hence, the
most elastic errors are result of the elasticity of manipulator
joints under the effect of the links’ weight themselves and
external payload. The shifting of the ith joint can be expressed
by the effective torques [44]:

1θci =
τi

ki
= τici (4)

The end effector position errors due to the elastic of the
joints can be calculated as:

1Pc = Jθ1θc = (Jθτ)C (5)

where C = [c1c2 · · · cn]T is the joint compliance vector,
1θc = [1θc11θc2 · · · 1θcn ]

T is the joint deflection vector,
and τ = diag(τ1, τ2, · · · , τn) is the effective torque in the
robot joints at the balance position. Jθ the sub-matrices com-
puted by the method presented in [41]The arm’s tip position
vector can be formed:

Preal = Pkin +1Pkin +1Pc +1Pextra (6)

where Pkin is the result of forward kinematics based on the
current kinematic parameters. 1Pkin,1Pc,1Pextra are the
position errors due to the kinematic parameter error, joint
elastic, and the residual errors due to the unmodeled sources,
respectively. A study that can be utilized for simultaneous
recognition joint compliance and kinematic parameters has
been proposed by Zhou et al. [12]. The combined error model
can be showed as:

1X = 1Pkin +1Pc
= J1φ + Jθ1θc
= J1φ + JθCτ

= [J Jθτ ]
[
1φ

C

]
= J818 (7)

where 1X is a (3 × 1) vector of three position errors of
the robot end-effector. J is a (3 × p) matrix that relates the
column vectors1X and1Pkin.( p= 27 is the total number of
kinematic parameters). By using the least-square method, the
kinematic and joint compliance parameter can be computed
at the same time.

IV. ERROR COMPENSATION WITH TLBO BASED NN
The calibration process that is shown in the previous part is
effective. However, it does not have any capability to decrease
the position errors1Pextra that cannot be negligible. This hap-
pens due to unmodeled errors such as friction, thermal vari-
ety, gear errors. To lower the residual errors, the additional
error compensation technique should be devised such as a
neural network, a special function network. In here, a TLBO
based neural network is employed to reduce the residual
errors. The TLBO algorithm is used to optimize the weight
and bias of the neural network and shows the better per-
formance over the conventional back propagation algorithm
in this calibration process. The details of this are shown as
follows.

First, the robot geometry and joint compliance are simul-
taneously identified by the Equation 7. By using the least
square method, the geometric errors 1φ and the compliance
parameters C are identified. 1P is a (3 × 1) total position
error vector, expressed as:

1P = 1Pkin +1Pc +1Pextra (8)

1Pkin,1Pc is calculated by compensation for link geom-
etry and joint compliance errors. The residual position error
is 1Pr .

1Pr = Pm − Pkin −1Pkin −1Pc (9)

In this study, the NN optimized by TLBO is used to
compensate this residual error. It concludes six inputs repre-
senting the joint configurations θn = [θ1, θ2, . . . , θ6], three
outputs representing the residual position errors after the
robot geometric and joint angle deflection adjustment. There
are 5 nodes in the hidden layer.

When an input pattern p is applied to the NN, the output of
each unit j is described by:

opj =
N∑
i=1

f (wjix + bj) (10)

where opj is the output of unit j as a result of the application
of input x, wji is the weight of the node, and bj is the bias of
the unit j. The function f is the activation function, such as a
sigmoid, tan-sigmoid, or linear function.

The error in the output layer is given as follows:

e = 1Pr − Pnn (11)
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where 1Pr and Pnn are the desired and actual output of the
neural network. The total mean square error in the output
layer is given as follows:

E =
1
m

m∑
k=1

e2k (12)

where m = 3 is the number of nodes in the output layer.
The TLBO is adopted in the error compensation algo-

rithm for the better optimized weights and biases of the
neural network. The TLBO method [34], [35], [37] is a
recently reported heuristic optimizing method that replicates
the teaching and learning of human and is said to be better
performance than the conventional back propagation method.
The TLBO has two main phases: the teacher phase and the
learner phase. In the teacher phase, the candidate with the
best performance is selected to be the teacher of the class
to activate the teacher learning step. The teacher shares its
knowledge to all the learner and increase their performance.
In the student phase, the students learn from each other and
from the teacher. In every interaction, the best solution will
become the teacher and the students will change itself based
on the teacher and the other students. The details of this
method are fully described by Nayak et al. [34]. In this study,
the TLBO is applied to optimize the weight and bias of the
NN. The process is briefly described as following:

A. TEACHER PHASE
In the teacher phase, the candidate with the best performance
is selected to be the teacher applying the mean squared error
cost function in Eq. (12). Assume Xi =

{
xi1 , xi2 , . . . , xin

}
is the position of the i-th learner that represents the set i
of weights and biases of the NN. The mean position of the
current class is called Xmean and the best position of the
current teacher is noted as Xteacher . The teacher phase is
expressed as the following equation:

Xnew,i = Xold,i + rand ∗ (Xteacher − TF ∗ Xmean) (13)

where Xnew,i and Xold,i are the new and old positions of the
ith learner. Xteacher is the position of the current teacher and
rand is a random number within the range [0, 1]. TF is the
teaching factor. It is set to 1 or 2 randomly. All the learners
should be re-evaluated in this phase. If Xnew,i has a higher
performance than Xold,i then Xnew,i will be chosen and will
replace Xold,i, otherwise Xold,i is not changed.

B. LEARNER PHASE
For each ith learner in this phase, another learner kth (i 6= k)
is randomly selected from the class. The learning process is
shown by the following equation:

Xnew,i =

{
Xold,i + rand() ∗ (Xold,i − Xold,k )∗
Xold,i + rand() ∗ (Xold,k − Xold,i) ∗ ∗

∗ : Iff (Xold,i) < f (Xold,k )

∗∗ : otherwise (14)

FIGURE 2. Structure of the TLBO-BPNN.

If Xnew,i has a higher performance than Xold,i then Xnew,i
will be selected and Xold,i will be get rid of, otherwise Xold,i
is not changed.

In the following step, the stop conditions are checked.
If they are satisfied, then the process is stopped. The weights
and biases of the NN are set following the Xteacher . The
process of optimizing the NN using the TLBO is shown
in Fig. 3

Overall, the proposed method is shown by the flowchart in
the Figure 4:

V. EXPERIMENT AND VALIDATION RESULTS
To clarify the feasibility and efficiency of the proposed
method, the proposed calibration method is employed to cali-
brate a HH800 robot. In addition to verify the effectiveness of
the method, results of the calibration process are validated by
another set of configurations that is not used for calibration
working. Moreover, the proposed technique is compared with
other calibration methods to show its capability. The conven-
tional kinematic calibration method (KM), the simultaneous
identification of joint compliance and kinematic parameters
method (SKCM)[12], and the combination of NN compen-
sator and SKCM method (NN-SKCM) [25] are used to com-
pare with the proposed method (TLBO-NN-SKCM) in both
calibration and validation process.

A. EXPERIMENTAL CALIBRATION RESULTS
In the calibration process, the HH800 robot with a heavy load
(745 kg), an API laser tracker and an accompanying laser
reflector are used to perform the calibration process. The API
laser tracker has the accuracy of 0.01 mm/m, repeatability of
±0.006 mm/m. The reflector is fixed at a particular location
of the robot end-effector. In order to acquire suitablemeasure-
ment data for robot parameter identification and weights and
bias of the NN determining, the robot moves its end-effector
to positions that entirely cover the workspace. The 3D coor-
dinates of the end effector are measured by the Laser Tracker
and saved in a computer. At the same time, the associated
robot joint readings are also recorded. These measurements
will be randomly grouped in three sets. A set of 40 robot
configurations (Q1) is used in parameter identification.
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FIGURE 3. Algorithm flow chart of the TLBO to optimize weights and bias of the NN.

FIGURE 4. Flow chart of the proposed calibration algorithm.

By utilizing the SKCM method, the kinematic and joint
compliance parameters are identified. These parameters are
presented in Table 2 and Table 3 including 4 joint compliance

TABLE 2. Stiffness identification (without measurement noise).

TABLE 3. Nominal D-H parameters of the Hyundai robot HH800.

parameters and 29 kinematic parameters. Another set (Q2)
of 50 robot configurations is also randomly selected to deter-
mine the weights and biases of the neural network that has
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FIGURE 5. Calibration setup of the Hyundai HH800 robot.

5 hidden nodes, 6 inputs and 3 outputs. The reason why we
use the different set (Q2) from the set(Q1) is that the neural
network compensator has more general error compensation
capability over the entire robot workspace. Then, the TLBO
is employed to generate the optimized weights and biases of
the neural network. The system is arranged as shown in Fig. 5.
This offline optimizing process is clearly described in the
section IV and also described by the Fig. 3.

The calibration processes of the robot are performed with
the 4 different calibration methods such as KM [3]–[5],
SKCM [12], and NN-SKCM [25] and the proposed TLBO-
NN-SKCM. Their results are shown in the Table 4.

TABLE 4. Absolute position accuracy of the HH800 robot (calibration).

FIGURE 6. Absolute position error of the HH800 robot after calibration.

The results in Table 4 and Fig. 6 show that the proposed
method achieve the best performance over other methods.

The Figure 6 provides a visual result of the absolute position
errors of each calibration pose using 4 calibration methods.
It shows that the position errors generated by the proposed
method is the lowest and better converging in compare with
the other methods. The mean of position errors generated
by the proposed method is more precise by 56.53% than the
errors by KM method (from 0.9076 mm to 0.3945 mm), by
52.87% than the errors by SKCM method(from 0.8370 mm
to 0.3945 mm), and by 15.16% than the errors by NN-SKCM
method (from 0.4650 mm to 0.3945 mm). The proposed
technique also has the lowest maximum position error as well
as the best standard deviation.

B. EXPERIMENTAL VALIDATION RESULTS
From Table 4 and Fig. 6, the proposed method shows its
error compensation capability with the positions used in this
calibration process. In order to show the general capability
over the entire robot workspace, it should be validated with
the other data set. The other set of 50 robot configurations
(Q3) is randomly selected and the calibration processes are
carried out for 4 different methods.

FIGURE 7. Absolute position error of the HH800 robot after validation.

The calibration results with Q3 data set are shown
in Table 5 and Fig. 7. The Figure 7 shows the residual error
of each poses using 4 methods in the validation process. It is
clearly to see from the figure that the proposed method is the
best over both the positions used in the calibration process
and the general position in overall workspace.

The mean of position errors generated by the proposed
method is more precise by 56.03% than the errors by KM
method (from 0.9227 mm to 0.4057 mm), by 49.85% than the
errors by SKCM method (from 0.8009 mm to 0.4057 mm),
and by 13.90% than the errors by NN-SKCM method (from
0.4712 mm to 0.4057 mm). The proposed technique also
has the lowest maximum position error as well as the best
standard deviation.

C. BETTER CONVERGENCE OF TLBO NEURAL NETWORK
In this calibration process, several data sets of robot configu-
rations are applied to the back propagation neural network
and the TLBO neural network. From this implementation
experience, while the back propagation neural network seems
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TABLE 5. Absolute position accuracy of the HH800 robot (Validation).

TABLE 6. List of notations used in the paper.

to be easily got into the local minima and to need reit-
eration by randomly resetting the weights and biases to
reach the global minima, the TLBO neural network seems to
quite easily reach the global minima. Therefore, the TLBO
neural network can be said to have better convergence
capability.

VI. CONCLUSIONS
In this study, a new calibration method with an error
compensating TLBO neural network is proposed for enhanc-
ing robot positional accuracy of the industrial manipulators.
By combining the joint deflection model with the
conventional kinematic model of a manipulator, the geomet-
ric errors and joint deflection errors can be simultaneously
considered to increase its positional accuracy. Then, a neural
network is designed to additionally compensate the unmod-
eled errors, specially, non-geometric errors. The teaching-
learning-based optimization(TLBO) method is employed to
optimize weights and biases of the neural network. In order
to demonstrate the effectiveness of the proposed method, real
experimental studies are carried out on the HH 800manipula-
tor. The enhanced position accuracy of the manipulator after
the calibration confirms the feasibility and more positional
accuracy over the other calibration methods. Additionally,
the adopted TLBO neural network can be said to have better
convergence capability than the back propagation neural
network in this calibration process. This advantage allows
that the proposed method is more feasible in real offline
programming environment.
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