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ABSTRACT An emotion recognition method based on multispectral imaging technology and tissue oxygen
saturation (StO2) is proposed in this study. This method is called spatial–spectral–temporal adjustment
convolutional neural network (SACNN). First, we use the algorithm to extract the StO2 content of an
emotionally sensitive nose area through real-time multispectral imaging technology. Compared with facial
expression data, StO2 data are more objective and cannot be controlled and changed artificially. Second,
we construct a clustering algorithm based on the emotional state by extracting the spectral, StO2, and spatial
features of the nose image to obtain accurate signals of emotionally sensitive areas. To utilize the correlation
between spectral and spatial signals, we propose an adjustment-based CNN module, which reorganizes the
relationship between all previous layers of the feature map, thereby making the relationship among layers
close and highly quantitative. The features extracted through this method are consistent with spatial–spectral
features. Third, we incorporate the extracted temporal feature signal into the long short-termmemorymodule
and finally complete the correlation between the spatial–spectral–temporal features. Experimental results
show that the accuracy of the SACNN algorithm in emotional recognition reaches 90%, and the proposed
method is more competitive than state-of-the-art approaches. To the best of our knowledge, this study is the
first to use time-series StO2 signals for emotion recognition.

INDEX TERMS Multispectral imaging, oxygen saturation, spatial–spectral–temporal adjustment convolu-
tional neural network.

I. INTRODUCTION
As the basis of human–computer interaction (HCI), emotion
recognition affects the continuous development of machine
intelligence. Many mental diseases are relevant to emo-
tions [1], [2]. Therefore, research on emotion recognition
technology has a great development prospect and academic
value. Emotional recognition is essentially pattern recogni-
tion, and increased focus has been devoted to developing
emotional artificial intelligence in HCI.

Themethods of emotion recognition have achieved notable
performance, but improvements are still necessary.

(1) Researchers have attempted to use spectral signals to
construct a model for single emotion assessment, such as
stress. However, using spectral imaging technology to recog-
nize multiple emotions remains to be an undeveloped area.
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(2) Features of emotion (e.g., facial expression and breath
rate) are easily controlled by humans. Hence, data objectivity
is affected.

(3) Deep learning algorithms have been applied in learning
MSI-based psychological feature. However, the deep learn-
ing algorithm is still unable to implement the corresponding
process to consider the spectral and spatial characteristics of
emotional features.

To address these problems, we developed an emotion
recognition algorithm called spatial–spectral–temporal adj-
ustment convolutional neural network (SACNN) based on
nose tissue oxygen saturation (StO2) information and multi-
spectral signals. We applied MSI to determine the stress state
in the past few years and discovered that StO2 is a sensi-
tive and important parameter for stress assessment [47]–[52].
We believe that multiple emotion recognition features can be
identified through spectral vision and StO2 signals. There-
fore, the proposed algorithm obtains a multiband face image
via MSI technology and extracts the StO2 signal at the
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nose through multiband information. To obtain emotionally
sensitive signals accurately, we perform clustering on the
StO2 and spectral signals to initialize the zones with the same
emotional properties or spectral signal base in the same data
cube for the next step. Such a base can lay a foundation for
the subsequent feature extraction. We discard the original
clustering method that relies solely on calculating ‘‘distance’’
and use the correlation mechanism of the target node and
background context instead to construct an inter-band corre-
lation between node and intervals. Accordingly, the correla-
tion between different bands is re-clustered, and a model is
established through the strength of correlation to achieve a
clustering method for inter-band cross-time domains. Then,
we use StO2 and the spectral signal cube after clustering as
input signals for the next deep learning investigation.

The proposed SACNN model fully uses the correla-
tion between spectral and spatial information. CNNs are
well-established techniques for image processing applica-
tions [53]–[61]. Although CNNs have been popular for many
years already, their actual application has become success-
ful only in recent years. DenseNet, which was proposed in
CVPR2017, reduces the possibility of gradient disappear-
ance by linking the feature in the current layer to those
of all previous ones in the training process [61]. However,
no training learning model, especially for the characteris-
tics of multispectral data among current deep learning algo-
rithms, is available for emotion recognition. The SACNN
algorithm module uses spectral and spatial correlations to
make the relationship between convolution layers close and
quantitative. Our algorithmmodule highlights the connection
and interaction between layers and the multispectral data
cube, particularly for the feature training set, thereby making
feature extraction targeted. In our applications, we aim to
determine the differences among various emotions by using
StO2 and spectral signals and enable these differences to be
reflected in the layers of image learning. We believe that
from the relationship and variance between layers, hints can
be obtained regarding the correlation and difference between
spectral bands and StO2 signals. The main contributions of
this study are as follows:

(1) StO2 signals (i.e., at the human nose) and MSI technol-
ogy are used for the first time as the signal source andmultiple
emotion recognition tool, respectively. Our method is objec-
tive because the human body’s StO2 constitutes information
that cannot be changed artificially.

(2) A clustering algorithm based on the spectral domain
and relationships is proposed, and StO2 and spectral signals
are used to achieve target area clustering based on the corre-
lation between spectral and spatial information.

(3) The SACNN algorithm framework is proposed for
multispectral signals and StO2 characteristics. This algorithm
further excavates the spatial–spectral correlation and differ-
ence through an adjustment method. The technique also helps
us reconstruct the relations and weights between all feature
maps (FMs), thereby making the feature extraction process
targeted and accurate.

The rest of this paper is organized as follows. Section II
gives literature review, and section III comprehensively
describes the proposed SACNN method for emotion recog-
nition. Section IV presents the details of experiment and
discusses the experimental results to evaluate the proposed
method. Section V provides the conclusions of this study.

II. LITERATURE REVIEW
Current methods of emotion recognition mainly involve
facial expression recognition [3]–[6], speech emotion recog-
nition [7]–[9], gesture expression recognition [10], text
recognition [11], physiological pattern recognition, and
multimodal emotion recognition [12]–[15]. In practical appli-
cations, the non-contact method of extracting physiological
parameters for face imaging has attracted special attention.
This method typically extracts physiological features from
an image through face imaging, and the correlation between
features and the ground truth are jointly modeled, thereby
allowing a computer to ‘‘read’’ the human emotional state.

Many studies in the past 20 years have used infrared
thermal imaging to recognize fear and anxiety among emo-
tions [16]–[24]. Face imaging signals have likewise been
applied to extract relevant physiological information, and
these signals also play an important role in emotion recog-
nition. When the human body is in a special emotional state,
a series of physiological reactions occur on their own, and
corresponding recognition models can be constructed using
physiological parameters. For example, effective extraction
and extensive research have been conducted on the physiolog-
ical parameters of the human body (e.g., sweating [25]–[27],
blood flow velocity [20], [22], heart rate [21], [28], and
breathing [25]). Emotion-sensitive facial muscles and regions
(e.g., supraorbital, cheek, and perinasal areas) have also
been extracted and studied [28]–[34]. Subtle changes that
occur in the face, such as head motion (shaking), head pose,
yawning, eye blink rate, and eye closure duration, have
been utilized to detect emotions and fatigue [35]–[41]. Deep
learning algorithms have also been widely applied in emotion
recognition [42], [43].

In addition to RGB and infrared thermal imaging, spec-
tral vision technology has received increased attention in
the field of biomedical information in recent years. This
technology combines traditional imaging and spectral tech-
nology and simultaneously acquires the spatial and spec-
tral information of an object to determine its material
characteristics [43]–[46]. Our research is the first to apply
multispectral imaging (MSI) technology to assess the stress
state [47]–[52]. We realize that the StO2 is a sensitive and
important information in stress recognition [48]–[50].

III. SACNN MODEL FOR EMOTION RECOGNITION
Previous studies have shown that the nose is a sensitive
and important position in emotion recognition [23], [48],
[49], [67]. In this work, we take the nose as our region of inter-
est (ROI).We extract the StO2 signal at the nose throughmul-
tispectral data. To process emotion data specifically, we adopt
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FIGURE 1. SACNN flowchart.

the spectral–spectral correlation between the StO2 signal and
the multispectral data for clustering the nose signals. We call
these clustered data cubes (i.e., four spectral wavelength
layers and one StO2 data layer) an emotion-induced data
cube (EIDC). Each data block we obtained involves 5D data
after clustering. A data block also contains temporal data
because these data are image sequences. Thus, we face a
complex training object, that is, we need to extract features
from the spectral–spatial–temporal signals. To extract the
features of different emotional states, we propose the SACNN
model by fully using the data feature. We add the adjustment
model to the algorithm, and the adjustment is processed in
accordance with the spectral and spatial correlation. The
signal after the adjustment is processed as the input of the
next layer. All front layer features are pretreated to ensure that
the features of the current layer input can be optimized. The
spectral and spatial characteristics are further integrated into
the deep learning model. We expect that the adjustment can
re-arrange the relevance and importance of all the features
of the previous layer and influence the subsequent training;
hence, our algorithm model is targeted and can fully use
spectral–spatial characteristics. Afterward, the trained fea-
tures are combined with the long short-termmemory (LSTM)
temporal treatment specialty to complete the emotion recog-
nition. Figure 1 presents a flowchart of the algorithm model
to describe the proposed SACNN model clearly.

A. StO2 SIGNAL EXTRACTION
The algorithm for extracting StO2 using MSI technol-
ogy is based on the effect of light absorption on the
human skin. The four main chromophores of the absorption
spectrum of the human skin are deoxyhemoglobin (Hb),
oxyhemoglobin (HbO2), scattering effect, and melanin.
StO2 extraction is based on the Beer–Lambert (BL)

model [64]–[66]. The BL model describes the relationship
between light absorption and the thickness of the absorbing
medium. The formula is expressed as follows:

A=εHbO2CeffHbO2+εHbCeffHb+εmelaninCeffmelanin+G
′ (1)

where ε is the molar absorptivity of HbO2, Hb, and melanin;
c is the effective concentration; and G’ represents all param-
eters (e.g., skin mirror reflection and regression error) that
are unrelated to the absorption rate of tissues. The effec-
tive concentrations of Hb, HbO2, and StO2 can be obtained
through simultaneous decomposition of the selected spec-
tral band data equations. In terms of wavelength selection,
we fully consider the connection of the extinction coefficient
of Hb, HbO2, and melanin in the human skin. The extinction
coefficient of melanin declines rapidly with the increase in
wavelengths. The weight of light absorption is low when the
light infrared range is near. The algorithm does not use the
ultraviolet band in reducing the weight of melanin, although
Hb and HbO2 have several absorption peaks in the ultraviolet
range. The extinction coefficient of Hb and HbO2 has a steep
drop at 600 nm, a value that is nearly at the same order of
magnitude as that for melanin. Therefore, this study obtains
the corresponding real-time StO2 data from the four-band
MSI data in the 500–600 nm interval.

B. CLUSTERING METHOD FOR THE REGION OF INTEREST
In this work, we take the nose as our ROI. However, directly
using the nose as a signal source would result in a signal
that is too rough. The pattern presented by different persons’
StO2 images is inconsistent under different emotional states.
To investigate the characteristics of the nose signal further
and initialize the region with the same emotional attributes
or the same spectral signal basis, we propose a clustering
model based on spectral characteristics and StO2 signals to
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FIGURE 2. (a) Case with a spatial relationship between the cluster center
{

CP1
1

}
in the first band and the

neighbor scan point under the T1 to T2 time series. (b) Case with the trend of the spectral signals in the first
wavelength of the first cluster center and the three neighbor scanning points under different time series. We must
identify the correlation between the time-series data at the cluster central point and all points of the neighbor
scanning area in different wavelength spaces.

provide a foundation for feature extraction in the same data
cube. We divide the signal region with spectral similarity into
a cluster by using the clustering model. We use the data after
clustering as the input of the next training and learning. This
technique provides a recognizable signal basis for emotion
recognition.

The most commonly used clustering method calculates the
‘‘distance’’ between spatial data [68]–[70]. The structure of
the proposed clustering model uses the correlation structure
between the spectral and StO2 signals. Our data are time-
domain data. Thus, we must consider the current image cube
and the data correlation in the entire time.

In accordance with the number of cluster sets, the initial
cluster center is evenly distributed in the image. Given our
time-series data, we expect that the spectral characteristics
in the time domain will be considered together to obtain
clustering relevance. Accordingly, we use a neighbor corre-
lation structure to calculate the spectral correlation between
StO2 and the spectral data of four wavelengths. We consider
the relevance of the neighbor field and find that we only need
to compute the linkage likelihood between a cluster central
point (CP) and its k nearest neighbors. This approach can
produce clustering results. At T1, we define the clustering

center of the StO2 layer
{
CPjStO2

}T1
and the CP of the four

wavelength cluster centers at the same spatial position as{
CPji

}T1
(Figure 2). Here, i stands for the wavelength, and

j stands for the Nth cluster centers. The scanning object of the

neighbor target is defined as
{
PixeljStO2

}T1
and

{
Pixelji

}T1
,

where i stands for the wavelength and j stands for the Nth
point. The initialization is based on StO2 images, and the
clustering center and scanning point are consistent in the four
wavelengths. From Figure 2, we need to identify the correla-
tion between CP and scanning points. Figure 2(a) illustrates

the spatial relationship between a cluster center
{
CP11

}
in

the first wavelength and the neighbor scanning point from
T1 to T2 time series. Figure 2(b) plots the trend of the CP
spectral signals and the trend of spectral signals for the three
scanning points at the different emotional states and time
series. The changes in the spectral signals in the emotional
state are evident, but no obvious fixed law can be observed,
that is, the change is nonlinear. Thus, directly and linearly
correlating the emotion ground truth with the image signals
is difficult. Therefore, we need the correlation between the
clustering CP and the spectral signal of all the scanned points.
For this spatial domain, we propose a spectral template (ST)
to calculate the spectral correlation.

We introduce the time domain into the algorithm and define
the correlation matrix CM (t) under the same time series.
We start from the first cluster CP of the StO2 layer and define
signal Sk between the scanning point and the cluster center
(CP and Pixel). K represents the number of all the time-series
signals, where we have four wavelengths and StO2 layers.
K is set to 5. The normalized spectral and spatial signal is
expressed as follows:

−−→
Sk (t) = (Sk (t)+ Sk (t)/σ (t) (2)

where σ (t) is the standard deviation and Sk (t) is the mean.
Subsequently, we use the Pearson correlation coefficient to
analyze the parameters. The correlation matrix is defined as
follows:

CMmn (t) =
1
T

∑T

t=1

−−→
Sm(t)

−−→
Sn(t) = 〈

−−→
Sm(t)

−−→
Sn(t)〉t (3)

where m and n stand for the number of time-series signals.
The correlation in the structure of CP and the scanning
object is included in the bivariate measures. The independent
coefficient matrix CM (t) can explain the cross correlation

104306 VOLUME 8, 2020



K. Hong: Spatial–Spectral–Temporal Framework for Emotion Recognition

FIGURE 3. ST structure. We draw 1- and 2-hop neighbors of several CPs in StO2 in (a), and (b) presents the 1-hop
correlation of the λ1 and λ2 wavelengths and the 2-hop correlation of the λ3 and λ4 wavelengths in (c) at the
same spatial position. Thus, we can fully connect the correlation of all wavelengths. The blue line connection is
the 1-hop connection, and the red line is the 2-hop connection.

between the clustering center and all other target points in
the searching range.

The next step determines the relevant points by consider-
ing the relationship between different wavelengths. We must
subdivide our scanning points further through these rela-
tionships. Accordingly, we define a multidimensional spatial
relationship map ST. In ST, we define the StO2 layer as
the top layer, and the four-wavelength signals are defined as
two, three, four, and five layers. Then, we set the proximity
point based on the cluster center KNNs in ST, and we use its
high-order neighbors as the scanning point for ST. We thus
define the high orders up to 2-hop of CP, and we set the
2-hop neighbor on the StO2 layer. We define the 1-hop node
neighbor as 6 and the 2-hop neighbor as 2. Figure 3 shows
our spectral feature structure. The CP neighbors provide us
additional StO2 infrastructure and spectral structure data.
Figure 3(a) plots the 1- and 2-hop neighbor points of several
CPs in the StO2 layer. The blue line represents the 1-hop
connection, and the red line signifies the 2-hop connection.
Figure 3(b) depicts the 1-hop correlation in the λ1 and λ2
wavelengths, and Figure 3(c) demonstrates the 2-hop cor-
relation in the λ3 and λ4 wavelengths at the same spatial
position. When we use the neighbor point for seeking rele-
vance, we are not completely placed on the StO2 layer but
evenly reset on the four other wavelengths. This feature is
important because we must fully connect the relevance of
all wavelengths. Therefore, the 1-hop correlation in λ1 and
λ2 and the 2-hop correlation in λ3 and λ4 will construct the
‘‘distance’’ equation for us.

We then calculate the correlation ‘‘distance’’ equation of
the search point and CP and indirectly reflect the correlation
of the four wavelengths on the 1- and 2-hop neighbor points.
The target equation of correlation matrix of

−→
CM can be writ-

ten as follows:

min
∥∥1− aCM1−hop − bCM2−hop − CMStO2

∥∥2 (4)

Here, we set integers a and b as ambiguous. We ignore
the integer constraint of fuzziness a. Solving the minimum
value can be regarded as a standard least-squares estimation
problem. This solution is frequently referred to as the floating
solution, and its estimated value â and the related covariance

matrix can be expressed as[
â
b̂

] [
Q̂aQ̂âb
Qb̂̂aQb̂

]
(5)

The fuzziness floating solution and its covariance matrix are
used to calculate the fuzziness integer solution á as follows:

min
a
(̂a−a)T Q−1â (̂a−a) (6)

Conversely, using the integer properties of fuzziness further
improves the accuracy of the equation estimate.

b́ = b̂− Qb̂̂aQ
−1
â (̂a− á) (7)

Qb́ = Qb̂ − Qb̂̂aQ
−1
â Q̂âb (8)

where b́ is the estimated target fixed solution. The accuracy of
the fixed solution and floating solution of the target equation
is improved, and á is the fixed solution of integer ambiguity.
Constant iteration of these steps involves seeking the mini-
mum solution to the target equation, that is, the optimization
process in which we find the maximum correlation. The
optimal correlation point obtained using this equation is the
basis of clustering, and we finally obtain the clustering signal
space we require. Here, we complete the pretreatment of the
data, and the data cube (including four spectral bands and one
StO2 layer) after clustering is called EIDC.

C. SPECTRAL–SPATIAL FEATURE EXTRACTION
In this study, we aim to learn joint spectral–spatial fea-
tures in the nose by using the proposed SACNN model for
emotion detection. This algorithm is a combination of a
CNN (DenseNet) and an adjustment model. Previous studies
have revealed that the nose is sensitive to emotional states,
and we must find the corresponding recognition feature.
After completing the image clustering, we input all EIDCs
into the training model. We identify the change features in
nose StO2 and spectral signals between different emotional
states and the differences among these changes. Our applica-
tion aims to determine the pre- and post-difference between
StO2 and spectral signals, and we expect the difference in
performance to be reflected in the layers of image train-
ing and learning. We use DenseNet as our basic framework
for training and learning. In the dense block of DenseNet,
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FIGURE 4. Structure diagram of the learning process in SACNN. The dotted and solid lines are the input
and output features, respectively. In Block 1, the adjustment structure is described in detail. In Block 2,
the adjustment process is repeated. The input of adjustment3 involves all FMs in the previous layer,
and the output after adjustment is used as the input of the current layer. FM1–5 refers to the input FM
from the first layer to the fifth layer. The other FMs are analogized similarly.

the current layer is directly linked to the FM of all previ-
ous ones, thus improving gradient elimination well. How-
ever, we believe that considering the layers’ relationship and
differences will generate additional possibilities for learn-
ing various features. We can obtain several hints from the
correlation and difference between the spectral wavelength
and StO2 signals. Therefore, in addition to the clustering
operation that we completed using the correlation of the
multispectral information outside deep learning, we begin by
deep learning the interlayers to explore the relevance and
difference of the spatial–spectral signals, with the connection
of layers as the cutting point.

The adjustment model has been widely used in data
processing and error analyses [71]–[73]. In data process-
ing, adjustment utilizes excess observation data to eliminate
contradictions and errors of observation. The correction or
weight structure given in this process is used to reconstruct
the relationship and weight of all previous FMs (that is,
the input of the current layer). We expect to further exca-
vate the spatial–spectral relevance and difference by using
this method. Moreover, the degree of relevance between the
current and previous layers is considered by SACNN.

In our model, the weight of the current layer when it
is linked with all previous ones is distributed and handled
properly with regard to the relevance of all previous layers.
Thus, our algorithm structure can obtain the new weight of
an FM when the current layer is linked with all previous
ones. Such a structure is conducive to the close connection of
spectral–spatial features between layers. The DenseNet struc-
ture takes all of the output of the previous layers as the input
to maintain the continuity of the feature and prevent gradient
disappearance. However, we address all FMs of the previous
layers through adjustment to ensure a thorough excavation of
the spectral–spatial feature. Subsequently, the data features
change after each convolution, and this change may influence

the current spectral features. We directly take the input of all
the previous layers’ features as the input of the current layer,
which cannot highlight the correlation and characteristics of
the spectra. The best way to improve this is to pretreat the
features of all the previous layers to guarantee that the input
features of the current layer can be optimized. We use the
adjustment method to complete this process. Adjustment is
a theoretical and computational method for handling various
observation results. Its purpose is to eliminate contradictions
between observations, obtain the most reliable results, and
improve the accuracy of the evaluated results. The adjust-
ment in our case encounters the FMs of the previous layers.
Through the adjustment, the spectral and spatial correlation
and the importance of the features of all previous layers can
be rearranged and can influence the subsequent training.

Figure 4 displays the learning process in the SACNN
algorithm. We still use DenseNet’s block basic framework
and utilize Block 1 as an example. The dotted and solid
lines represent the output and input features, respectively. The
block has five layers, and three adjustments are performed.
The output of Block 1 continues to complete the convolution
and pooling processes. In the next block, the adjustment
process is also conducted. Each block has three adjustment
processes because a block has five layers, and all the previous
layers are used as the input for three times (Block 1, Figure 4).
Inputting from the previous layers to the current layers occurs
four times in Block 1. However, only the first layer’s features
are inputted for the second layer. Thus, this process does not
require adjustment. Figure 4 illustrates the specific structure
of adjustment3 in Block 1. The input of adjustment3 involves
all FMs of the previous layers. Moreover, all the FMs’ output
after processing by adjustment3 are used as the input of the
current layer (the fifth layer).

We take adjustment3 in Block 1 as an example (Figure 4)
to explain our model. We employ Helmut’s estimation
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FIGURE 5. Adjustment structure in the dense block for adjustment3.
Similar to the DenseNet structure, the FMs of all the previous layers are
used as the input for adjustment3, and the FM after the adjustment is
used as the input for the fifth layer.

formula [73] as the basis for our adjustment model. As the
input of the fifth layer, FMs are generated from all previous
layers to the fifth layer. We make adjustments for these FMS.
The principle of adjustment is to allow reasonable modifi-
cations to the calculation results (adding corrected values or
adjusting weights to reduce the error), thereby improving the
data accuracy. The properties of the characteristic features
are adjusted and extracted during FM adjustment because the
adjustment itself is reconstructed through the characteristics
of the features. In this manner, the following FM is obtained
(Figure 5).

Layer1 → Layer5→ FeatureMap1−5 (FM1−5) (9)

. . . . . .

Layer4 → Layer5→ FeatureMap4−5 (FM4−5) (10)

FM1−5, FM2−5, FM3−5, and FM4−5 are then acquired. With
regard to the last layer FM, the four FMs are assumed to be
independently obtained for an improved distribution of the
weight and adjustment. Then, adjustment disposal is executed
for the four obtained FMs in order for such disposal to be
beneficial in optimizing the spatial–spectral structure. The
initial weight value is set up in accordance with distance.
Figure 5 illustrates the adjustment structure in the dense block
for adjustment3. An FM is linked with Level 5 in each layer.
Relevant adjustment disposal is performed for every link to
reach the optimum state.

In this step, adjustment disposal is conducted for FMs
generated in the four routes, and the output is the result of the
adjustment disposal of FM1−5, FM2−5, FM3−5, and FM4−5.

FM1−5 + v1−5 = X̂1 (11)

FM2−5 + v2−5 = X̂2 (12)

FM3−5 + v3−5 = X̂3 (13)

FM4−5 + v4−5 = X̂4 (14)

f (FM1−5,FM2−5,FM3−5,FM4−5) = FM5 (15)

where X̂ is the theoretical value after adjustment, v is the
correction error value, and FM is defined as L for the subject

of adjustment. L is obtained as follows:

L1−5 = X̂1 − v1−5 (16)

L2−5 = X̂2 − v2−5 (17)

L3−5 = X̂3 − v3−5 (18)

L4−5 = X̂4 − v4−5 (19)

L5 = f (FM1−5,FM2−5,FM3−5,FM4−5)− v5 (20)

Many choices are available for obtaining L5. If we only use
FM3−5 and FM4−5 for calculation and the weight parame-
ters for the other FMs are set to 0, then we will obtain a
typical ResNet structure. If all FMs are set to the non-zero
weight parameters, then they will comply with the DenseNet
framework. Different weight configurations inevitably gen-
erate different calculation results, which are called redundant
observations in the adjustment. The error equation is obtained
as

V = BX̂−L (21)

where B is the coefficient matrix and V is the corrected
positive matrix. To re-optimize the FMs, our goal is to expect∑
v2i = min and V TPV = min. Here, P is the weight.

Adjustment disposal is then performed by using the Helmut
variance estimation method. We expect that

E (L) = BX̃ , E (1) = 0 (22)

D (L) = σ 2
0P
−1, D (1) = D (L) = σ 2

0P
−1 (23)

where D represents variance, P is the weight, σ 2
0 is the

standard deviation, and 1 is the error. The error equations
are expressed as follows:

V = BX̂ − L (24)

N = BTPB, W = BTPL (25)

NX̂ = W, X̂ = N−1W (26)

where P is the weight. The following process is Helmut’s
estimation formula [73] for our SACNN model. We suppose
that the two categories of observed values, L1

n1×1
and L2

n2×1
in

L, are present; the weight matrices of the two categories are
P1 and P2, respectively, and P12 = 0. Then, we obtain

V1 = B1X̂ − L1 (27)

V2 = B2X̂ − L2 (28)

We set

L =
[
L1
L2

]
, V =

[
V1
V2

]
, B=

[
B1
B2

]
, P=

[
P1 0
0 P2

]
(29)

N = N1 + N2 (30)

W = W1 +W2 (31)

We correct the expectation of positive number V as 0, such
that

E (V1) = 0 (32)

E
(
V T
1 P1V1

)
= tr(P1D(V1)) (33)
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FIGURE 6. Iterative computation steps for the estimation of the variance component.

The mathematical expectation symbols are selected and
changed to be the calculated values V T

1 P1V1 and V T
2 P2V2

obtained by adjustment. Subsequently, the matrix form is
obtained as (34), (35), (36), and (37) shown at the bottom of
this page.
The abovementioned equation is Helmut’s estimation for-
mula [73] for our SACNN model. The method of estimating
various types of pre-test observation by adopting the correc-
tion value of pre-adjustments was first proposed by Helmut.
A variety of computational quantity is independent of each
other, that is, the variance matrix of the calculation quantity
is a quasi-diagonal matrix, which is the variance estimate or
the variance volume estimate. The formula solution for the
estimated parameters is defined as follows:

θ̂ = S−1Wθ (38)

Accordingly, we can obtain the estimation formula with m
types of data. Thus, the number of estimated parameters
is m [73]. If the abovementioned formula is changed into the
matrix type, then an estimation equation with m types of data
can be obtained as

Sm×mθ̂m×1 = Wθm×1 (39)

θ̂ = [̂σ 2
01 σ̂

2
02 . . . . . . σ̂

2
0m ]

T
(40)

Wθ = [V T
1 P1V1 V

T
2 P2V2...... V

T
mPmVm]

T (41)

θ̂ = S−1Wθ (42)

In our situation,m is set to 5.We summarize the iterative com-
putation steps for the estimation of the variance component
in Figure 6.

After completing the adjustment process, all FMs from the
previous layer to the current layer are re-planned and recon-
structed to comply with the adjustment principle for the emo-
tion data. The algorithm further excavates the spatial–spectral
relevance and difference and is conducive to a close connec-
tion of the spectral–spatial features between layers. More-
over, the degree of relevance between the current and
previous layers is considered through SACNN. After extract-
ing the feature of StO2 and spectral signals through SACNN
(Figure 1), we place the features obtained from each time
point in the timing process into the LSTMmodel and generate
an output prediction for all the features as a whole. Therefore,
we can obtain the complete SACNN emotion recognition
structure.

IV. EXPERIMENTS
A visible and near-infrared MSI system that covered spectral
wavelengths of 450–800 nm and a homemade tunable snap-
shot MSI system were used. The imaging system consisted
of a Tamron lens, an acoustic optic tunable filter imaging
spectrograph, and a computer. The area CCD array detector of
the camera contained 1392 (h)× 1040 (v) active pixels with a
spectral resolution of 2 nm. The frame rate of the MSI system
was set to 30 Hz. The participants were recruited by posting
an advertisement in a newspaper. A total of 250 healthy
volunteers of both genders (52% male and 48% female)
participated in the experimental trials. The participants were
aged 20–60 years, with a mean age of 34.5 years and a
standard deviation of 16.7.

S θ̂ = Wθ (34)

S =
[
n1 − 2tr

(
N−1N1

)
+ (tr

(
N−1N1)2

)
tr(N−1N1N−1N2)

tr(N−1N1N−1N2) n2 − 2tr(N−1N2)+ tr(N−1N2)2

]
(35)

θ̂ = [̂σ 2
01 , σ̂

2
02 ]

T (36)

Wθ = [V T
1 P1V1,V

T
2 P2V2]

T (37)
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FIGURE 7. Trial environment. Experimental condition of the participants (left) and our MSI system
(right).

Various kinds of stimuli have been used in emotion
research. Existing studies have evaluated the reliability and
efficiency of film clips in eliciting emotions [62], [63]. Emo-
tional films contain scenes and audio and can expose sub-
jects to real-life scenarios and elicit strong subjective and
physiological changes. Each emotional film lasts for about
25 minutes. Our experiment involved five categories of emo-
tions of the 250 subjects, and such emotions were elicited by
showing emotional film clips to the participants. The captured
MSI data cube included 6000 image sequences with five
emotion labels, namely, anger, fear, happiness, sadness, and
surprise. In this database, each sequence starts with a neutral
emotion, followed by the peak of the emotion, and ends with
a baseline.

The experiments were conducted through the following
steps. The participants were asked to wear a heart rate
monitor (Garmin) and led to a well-lit room where they
comfortably sat down. A resting period of approximately
5 min was provided to allow the participants to settle in
their environment. The participants were then asked to watch
a film to elicit emotions. The MSI images of the partici-
pants were simultaneously recorded using an imaging system.
Figure 7 illustrates the experimental environment. Seventy
percent of the image sequence in data collection was used
for training, and the remaining 30% was used for testing.

The data for the training and testing were randomly
obtained from the data collections. For our SACNN model,
we first used a clustering method to obtain the EIDC dataset.
In a later study, we still used the block framework (Figure 5).
Each block maintains a five-layer structure, and the growth
rate (GR) of the FM was set to 24 and 32. The depths were
set to 40, 100, 190, and 250. For convolutional layers with a
kernel size of 3 × 3, each side of the input was zero-padded
by one pixel to fix the feature map size.

The experimental results were compared in many ways.
First, as shown in Table 1, we divided the input features of
our emotion recognition model into the following situations:
MSI, MSI + StO2, and MSI + StO2 + Clustering. This
setting was designed to demonstrate the influence of the input
feature on the results of our algorithm. We placed different

TABLE 1. Comparison of the average accuracy of different input features
calculated using the SACNN model.

input features into our SACNN model for emotion recogni-
tion calculation (Table 1). The sole input MSI feature can
obtain a correct rate of only 69.3%, but when the emotionally
sensitive StO2 was introduced, the rate increased to 84.7%.
The EIDC achieved the highest accuracy rate of 90.04%. Our
data preprocessing model showed a positive response to the
experimental results.

These experiments reveal the positive effect of the pre-
treatment steps in our SACNN structure on the experimental
results. Our model is an improvement based on DenseNet.
To determine the effect of our model, we provided both
models with the same input and parameter setting to test
the correction rate. We then evaluated our model with dif-
ferent depths and growth rates on the emotion recognition
task and compared it with state-of-the-art DenseNet archi-
tectures. We experimented on the SACNN structure with
different depths and GR. SACNN and DenseNet were trained
through stochastic gradient descent. The EIDC signal was
used as the input for the DenseNet and SACNN models.
Tables 2 and 3 summarize the experimental results. In com-
parison with DenseNet, our SACNN algorithm progressed
in terms of accuracy. Regardless of the parameter setup,
the accuracy rate of the SACNN model increased by 2%–3%
compared with that of the traditional DenseNet algorithm.
When used to classify emotion, the accuracy of our algorithm
exceeded 90%.Although our algorithm has achieved progress
in terms of recognition rate, the computation time increased
by around 7% compared with that of DenseNet. Our next
work will focus on reducing our algorithm’s computation
time.
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TABLE 2. Comparison of the average accuracy obtained using the SACNN
model and the DenseNet algorithm corresponding to different depth
settings at a GR of 24. The EIDC signal is used as the input feature.

TABLE 3. Comparison of the average accuracy obtained using the SACNN
model and the DenseNet algorithm corresponding to different depth
settings at a GR of 32. The EIDC signal is used as the input feature.

FIGURE 8. Experimental results on emotion recognition. The average
recognition rate is 90.04%.

Figure 8 depicts the confusion matrix of the experimental
results for emotion recognition. In general, our algorithm
performed well in recognizing all types of emotion because
the accuracy of each emotion was approximately 90%. Two
kinds of emotions, namely, anger and happiness, were rel-
atively easy to recognize and had recognition accuracies
of 92.3% and 93.4%, respectively. Fear, sadness, and sur-
prise obtained correction rates of 89.7%, 86.1%, and 88.7%,
respectively. Relatively high confusion appeared among three
pairs of emotions: fear versus anger, fear versus sadness, and
surprise versus sadness. The average accuracy of the entire
algorithm exceeded 90%.

Finally, we compared our algorithm structure with recogni-
tion algorithms from a similar category to verify the merits of
our algorithm. In this study, the StO2 signal was applied for
the first time as a feature to recognize emotion. Thus, no spe-
cific similar algorithm was found. Accordingly, we used
several extensively applied famous algorithms as comparison

TABLE 4. Comparison of the experimental results of SACNN and other
famous algorithms.

objects and employed the MSI-extracted StO2 feature as the
input [74]–[81]. Our SACNNmodel achieved better accuracy
than other famous algorithms (Table 4), thereby further illus-
trating the advantages of our algorithm.

V. CONCLUSION
This study is the first to use the SACNN algorithm in
recognizing human emotional states. Compared with other
methods (especially facial recognition), our technical method
does not involve judging the emotional state based on facial
expressions, although we also take images of faces. We use
real-time MSI technology to extract the content of StO2 at
the human nose as an ROI feature and recognize human emo-
tions. Thus, our method has considerable advantages over
other methods in terms of data source because our data are not
static but real-time, and the content of StO2 involves objective
data and cannot be changed artificially. This feature differs
considerably from an expression because an expression is
easy to disguise.

For our SACNN algorithm structure, we use spatial and
spectral signal features for MSI to extract StO2 signals and
integrate the spectral features into the cluster algorithm struc-
ture. Clustering initializes zones with the same emotional
properties or the same spectral signal base to provide a
basis for the next training in the same data cube. The most
common clusteringmethod entails calculating the ‘‘distance’’
between spatial data. The proposed clusteringmodel structure
can further use the correlation structure of the spectral and
StO2 signals. We also consider the data correlation in the
entire process. The algorithm divides the ROI (nose) into
multiple data cubes (EIDCs) in accordance with spatial and
spectral features. Then, the signal pretreating process is com-
pleted from multispectral images to EIDCs. Subsequently,
we incorporate the timing EIDC sequence into our learning
models and LSTM to extract the emotion feature.

Compared with the traditional DenseNet structure,
the SACNN structure focuses on the data’s spectral corre-
lation and spatial–structural correlation. We reconstruct and
strengthen the correlation between layers in SACNN through
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the adjustment method. The features extracted through our
algorithm are consistent with our demand for spectral and
spatial features. In this study, we use DenseNet as our basic
framework in training and learning. In the dense block of
DenseNet, the current layer is directly linked to the FM of
all previous ones, and this structure can efficiently improve
gradient disappearance. However, we assume that consid-
ering the layers’ relationship and differences will generate
additional possibilities for extracting recognition features.
We posit that for the layers’ relationship and difference, sev-
eral clues can be obtained from the correlation and difference
between the spectral wavelength and StO2 signals.

We start with our deep learning model at different layers to
explore the correlation and difference of the spatial–spectral
signals, with the connection between layers as our cutting
point. The correction value or weight structure given in the
process of adjustment is utilized to reconstruct the relation-
ship and weight of all previous FMs (i.e., the input of the cur-
rent layer). We handle all FMs in the previous layers through
the adjustment to ensure that the spectral–spatial features are
fully explored. In our case, the adjustment involves FMs from
previous layers. Through the adjustment, we can rearrange
the spectral and spatial correlations, the importance of all pre-
vious layers’ features, and the impact on the subsequent train-
ing. Afterward, LSTM is introduced to further strengthen the
connection and feature extraction of time-series data. Finally,
our SACNN algorithm is used to extract the corresponding
emotion recognition features in the spectral–spatial–temporal
signals. The algorithm achieves an encouraging accuracy rate
in emotional recognition.

Meanwhile, our research has a methodological limitation
that must be addressed. Our algorithm is based on DenseNet
but is more complex than DenseNet. A refined model for
reducing the computation time, in combinationwith the appli-
cation DEMO in the HCI field, should be developed in future
research.

In summary, this study is the first to use objective data
and signals that cannot be artificially altered, such as StO2
content, to recognize human emotions. The accuracy of our
algorithm exceeds 90%. Our future study will focus on
improving the accuracy of the algorithm, and we will exert
extra efforts to eliminate external interference parameters and
reduce the computation time. Furthermore, we will consider a
small-scale, inexpensive industrialization of our study. Thus,
the customized recognition system could be applied in the
industry in the future.
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