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ABSTRACT Monitoring single-channel EEG is a promising home-based approach for insomnia identifi-
cation. Currently, many automatic sleep stage scoring approaches based on single-channel EEG have been
developed, whereas few studies research on automatic insomnia identification based on single-channel EEG
labelled with sleep stage annotations. In this paper, we propose a one-dimensional convolutional neural
network (1D-CNN) model for automatic insomnia identification based on single-channel EEG labelled with
sleep stage annotations, and further investigate the identification performance based on different sleep stages
EEG epochs. Single-channel EEG on 9 insomnia patients and 9 healthy subjects was used in this study.
We constructed 4 subdatasets from EEG epochs based on the sleep stage annotations: All sleep stage dataset
(ALL-DS), REM sleep stage dataset (REM-DS), light sleep stage dataset (LSS-DS), and SWS sleep stage
dataset (SWS-DS). Subsequently, 4 subdatasets were fed into our 1D-CNN.We conducted experiments under
intra-patient and inter-patient paradigms, respectively. Our experiments demonstrated that our 1D-CNN
leveraging 3 subdatasets composed of REM, LSS and SWS epochs, respectively, achieved higher average
accuracies in comparison with baseline methods under both intra-patient and inter-patient paradigms. The
experimental results also indicated that amongst all the sleep stages, 1D-CNN leveraging REM and SWS
epochs exhibited the best insomnia identification average accuracies in intra-patient paradigm, which are
98.98% and 99.16% respectively, whereas no statistically significant difference was found in inter-patient
paradigm. For automatic insomnia identification based on single-channel EEG labelled with sleep stage
annotations, 1D-CNN model introduced in this paper could achieve superior performance than traditional
methods.

INDEX TERMS Convolutional neural networks, insomnia, inter-patient paradigm, intra-patient paradigm,
single-channel electroencephalogram (EEG), sleep stage, sleep data analysis.

I. INTRODUCTION
Sleep is a fundamental physiological activity, which plays a
crucial role in physical and mental health for human body [1].
Insomnia is a sleep disorder that is prevalent in adults [2].
In the clinical practice, clinicians diagnose insomnia through
sleep questionnaires, polysomnography (PSG) monitoring of
the patients, and the diagnostic criteria for insomnia released
by American Academy of Sleep Medicine (AASM) [3], [4].
However, the subjectivity of the sleep questionnaires and the
first-night effect of the PSG recordings make the insomnia
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diagnose a time-consuming, expensive and subjective pro-
cess, which is unsuitable for home-usage [5], [6].

Home-based sleep monitoring, which is a hot research
area, has many approaches: (1) smart mats based on piezo-
electric and pressure sensors, (2) electrocardiogram (ECG)
and pulse wave, (3) electroencephalogram (EEG) [7].
Various algorithms have been proposed to tackle the prob-
lem of automatic sleep disorder detection based on the
above approaches. Hassan et al. [8] extracted statistical fea-
tures in the tunable-Q factor wavelet domain and classified
obstructive sleep apnea (OSA) by random under sampling
boosting (RUSBoost) classifier based on single-lead ECG.
Heyat et al. [9] leveraged the power spectral density (PSD)
features and decision tree classifier for sleep bruxism
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TABLE 1. R&K Sleep stage scoring criteria and description.

detection based on two channels of scalp EEG signal. Since
EEG is the gold standard for understanding sleep, mon-
itoring single-channel EEG signal is the most promising
way to identify sleep disorder [7], [10], [11]. The method
does not require a large number of sensors attached to sub-
jects, which makes the recorded data reflect the sleep habit
better.

Current automatic insomnia identification methods based
on single-channel EEG require experience-based handcraft
features to train a traditional classifier. Aydin et al. [12]
extracted the 10-dimensional singular spectrum features of
the sleep EEG signal, and then fed the features into a sin-
gle hidden layer artificial neural network (ANN) for insom-
nia identification. Hamida et al. [13] extracted spectral and
Hjorth’s parameters features, and applied principal compo-
nent analysis (PCA) for dimension reduction. The first prin-
cipal component was then classified according to the set
threshold. Shahin et al. [14] extracted statistical, temporal
and spectral features of EEG signals, and leveraged deep
neural network (DNN) for automatic insomnia identification.
Zhang et al. [15] proposed an insomnia identification method
based on temporal, spectral, nonlinear features and random
forest (RF) classifier. Therefore, till date, most of the existing
work for automatic insomnia identification task was based
on hand-crafted feature extraction and traditional machine
learning algorithms.

Convolutional neural networks (CNN) do not need to
define features manually, which can overcome the limita-
tion of the handcrafted features that are limited by prior
knowledge. This advantage makes CNN gain much atten-
tion in biomedical engineering field [16], [17]. Since most
of the existing work for automatic insomnia identification
task was based on hand-crafted features and traditional
machine learning algorithms, an end-to-end one-dimensional
CNN (1D-CNN) model based on single-channel EEG signal
is investigated in this study.

Sleep is a cyclical process, which is composed of three
main stages: rapid eye movement, light sleep and deep
sleep [18]. According to the Rechtschaffen and Kales (R&K)
rules [19], an overnight EEG sleep signal is divided into
30-second epochs, and each epoch is categorized as wake,
rapid eye movement (REM) and non-rapid eye move-
ment (NREM) stage, which is further divided into S1, S2,

S3 and S4 stages. Table 1 summarizes the sleep stage scoring
criteria and description.Many approaches for automatic sleep
stage scoring based on single-channel EEG have been devel-
oped, which can achieve high identification performance.
Hassan and Bhuiyan [20] extracted various statistical features
in ensemble empirical mode decomposition (EEMD) and
leveraged RUSBoost classifier for sleep stage classification.
Jiang et al. [21] leveraged 151-dimensional time and fre-
quency domain features, RF classifier and proposed hidden
Markov model (HMM) based rule refinement to identify
sleep stages. Supratak et al. [22] proposed a deep learning
model DeepSleepNet for automatic sleep stage classification,
which contains CNN part and bidirectional-long short-term
memory (LSTM) part. Chen et al. [23] proposed a deep
learning model SleepStageNet including multi-scale CNN,
recurrent neural networks (RNN) and conditional random
field (CRF) to identify sleep stages. Therefore, in this study,
we investigate the automatic insomnia identification method
leveraging EEG labelled with sleep stage annotations.

Several studies have investigated the insomnia
identification performance based on different sleep stages
of EEG [13], [14]. Hamida et al. [13] evaluated the per-
formance of wake, S1, S2, SWS and REM stages, finding
SWS epochs have the best insomnia identification perfor-
mance. Shahin et al. [14] compared the performance of
all stages, NREM, S2+S3, NREM+REM stages, finding
NREM+REM epochs have the best performance, whereas
they did not evaluate the performance only leveraging
REM epochs. At present, it is still unclear which EEG sleep
stages has the best insomnia identification performance [24].

In this paper, we propose a 1D-CNN model for auto-
matic insomnia identification leveraging single-channel
EEG labelled with sleep stage annotations, and further
investigate the identification performance based on differ-
ent sleep stages. This is the first implementation of CNN
in automatic insomnia identification task to the best of the
author’s knowledge. The rest of this paper is organized
as follows. Section II describes the dataset and baseline
method. Section III presents ourmethod including the general
idea, data preprocessing and 1D-CNN model. Section IV
presents the experiments and results. In Section V, we discuss
the experimental results. Finally, Section VI concludes the
paper.
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TABLE 2. Subject information in this study.

II. MATERIAL AND BASELINE
A. DATASET
Data utilized in this study were obtained from the
CAP Sleep database, which is publicly available on
the PhysioNet [25]. CAP Sleep database is registered at
the Sleep Disorder Center of the Ospedale Maggiore of
Parma, Italy [26]. The dataset comprises PSG recordings
from 108 subjects including 16 healthy subjects, 9 insomnia
patients and other sleep-disordered patients. Each subject
is recorded at least 3 EEG channels, 2 EOG channels,
EMG of the submentalis muscle, bilateral anterior tib-
ial EMG, respiration signals and EKG. Additionally, each
30s epoch of the recordings is manually labelled into one
of the six sleep stages (W, S1, S2, S3, S4, REM) by expert
neurologists trained at the Sleep Center according to the
R&K standard [19].

In our work, C4-A1 channel EEG was selected to per-
form automatic insomnia identification task. The reasons
why we choose C4-A1 channel EEG for automatic insom-
nia identification are as follows: (1) Buysse et al. [27]
investigated the EEG spectral analysis of primary insomnia
patients in NREM sleep period based on C4-A1 channel and
found that NREM period could moderate quantitative EEG
difference between insomnia patients and healthy subjects.
(2) Researchers in the past [28] demonstrated that lever-
aging C4-A1 channel EEG for sleep stage classification
could achieve better classification result. Since Healthy-6 to
Healthy-9 subjects did not measure C4-A1 channel EEG,
and the waveform of the Healthy-13 subject occurred peak
clipping distortion, we selected the remaining 9 insomnia
patients and 9 healthy subjects in CAP Sleep Database for
our experiments. Table 2 shows the sleep duration, number
of epochs and the sampling frequency of subjects.

B. BASELINE
According to the method in [12], the trajectory matrix X
of EEG epoch was computed based on the phase-space
reconstruction and got the covariance matrix C = 1

N X
TX .

Subsequently, the first 10 singular values (in descending
order) of C were computed by singular value decomposi-
tion (SVD). Finally, the 10-dimensional singular spectrum
features were fed into ANN for insomnia identification. The
ANN consisted of one hidden layer, which had 10 neurons.
All layers used the sigmoid activation function. In subsequent
experiments, we selected the epochs of wake, REM, S1 and
S2 sleep stages in C4-A1 channel EEG for implementing this
method.

Previous studies demonstrated that relative power and
Hjorth parameters of EEG signal are important features for
insomnia identification [29]–[31]. According to the method
in [13], EEG was filtered at 6 frequency bands: delta
(0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), sigma (12-16Hz),
beta (16-30Hz) and gamma (30-40Hz). A total of 22 features
including power and Hjorth parameters were extracted. Sub-
sequently, the dimensionality of features were decreased by
PCA algorithm. Power features contain the relative power
in each frequency band and their ratios. Hjorth parameters
features include activity, mobility and complexity, which are
defined as follows:

activity = var(x) (1)

mobility =

√
var(x ′)
var(x)

(2)

complexity =
mobility(x ′)
mobility(x)

(3)

where x is the EEG epoch. According to the method in
literature [13], we leveraged the epochs of SWS sleep stages
in C4-A1 channel EEG for implementing this method. Then
we applied PCA for dimensionality reduction and leveraged
the first principal component as the final one-dimensional
feature. We searched the optimal differentiate threshold for
the first principal component on training dataset. Then,
the optimal differentiate threshold was used in test dataset
for insomnia identification. However, we considered only
leveraging the first principal component feature may cause
loss of information. Since RF is an ensemble learning algo-
rithm by constructing a group of decision trees [32], which
has properties of adaptability and robustness, we also used
RF classifier for the above 22-dimensional features. In this
way, we could further evaluate the identification performance
of the 22-dimensional features. In our experiment, we found
that with the number of trees increasing, the result had the
highest insomnia identification accuracy when the number
of trees reached 1000. When the number of trees continued
to increase, the identification performance did not increase
significantly, while the computation speed decreased. There-
fore, the number of trees was set to 1000 in our
experiment.
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FIGURE 1. Block diagram of the general idea in this study.

III. METHOD
A. GENERAL IDEA
Fig. 1 depicts the general idea of our study. Traditionally,
a complete automatic insomnia identification model includes
three basic sections: data preprocessing, feature extractor
and classifier. Since 1D-CNN integrates the feature extrac-
tor and classifier into one single algorithm, the model in
this study consists of two sections: data preprocessing and
1D-CNN model. In order to investigate the superiority
of 1D-CNN model, it is necessary to make a compar-
ison with the baseline methods in [12], [13] based on
the same dataset and preprocessing method. In order to
investigate the generalizability of our method, we con-
ducted experiments under both intra-patient and inter-patient
paradigms.

In order to further investigate which sleep stage has
better insomnia identification performance, we constructed
4 subdatasets from EEG epochs according to their sleep
stage annotations. According to the AASM standard [33],
we merged the S3 and S4 into single slow wave sleep (SWS)
stage. The S1 and S2 were merged into light sleep stage
(LSS) [18]. The 4 subdatasets are ALL-DS, REM-DS,
LSS-DS, SWS-DS, which are constructed from the all sleep
stage, REM, S1+S2, S3+S4 epochs respectively. We com-
pared the insomnia identification performance of our method
leveraging the 4 subdatasets respectively.

B. DATA PREPROCESSING
The whole night single-channel EEG (C4-A1) was band fil-
tered and resampled. The sleep stage annotations of epochs
after the data preprocessing were unchanged.

1) BAND PASS FILTERING
Since EEG is low-frequency signal, whose frequency compo-
nents are mainly concentrated in 0.5-50Hz frequency band,
we designed an 80th-order band-pass FIR filter (0.5-50 Hz)
based on Hamming window. The raw C4-A1 channel EEG
was preprocessed by the filter for eliminating high frequency
noise and direct current component.

2) RESAMPLING
As illustrated in Table 2, C4-A1 channel EEG record-
ings in CAP Sleep Database have different sampling
frequency. Hence, all EEG recordings were resampled
at 128 Hz.

C. PROPOSED MODEL
1) 1D-CNN STRUCTURE
The framework of our 1D-CNN is inspired by AlexNet [34].
We replaced the 2D convolutional kernel with 1D convo-
lutional kernel and added batch normalization layer to our
1D-CNN, while the size of convolutional kernel remains
unchanged. Fig. 2 depicts the schematic diagram of our
1D-CNN model, which consists of 5 convolution layers,
3 pooling layers and 3 fully connected layers.

Since the input of our 1D-CNN is the specified sleep
stage 30s epoch, i.e. the 1×3840 one-dimensional time series,
1D convolutional kernel is used in our model. The
1D convolution operation process is defined as:

yli = f (
d∑
n=1

wln · y
l−1
i+n + b

l), i = 1, 2, . . . ,N−d+1 (4)

where yli is the i th pixel of the output feature on the l th layer.
wln and bl denote the weight vector and the bias parameter
of the convolutional kernel on the l th layer, respectively.
d denotes the size of the convolutional kernel. N denotes the
length of input feature vector yl−1i . f (·) denotes the activation
function of convolution layer.

The first and second convolution layers use large kernels
with size of 1 × 11 and 1 × 5, respectively, whereas the
third to fifth convolution layers use small kernels with size of
1× 3. After the first, second and the fifth convolution layers,
we utilized the maxpooling layer with size of 1× 3 to reduce
the dimension of feature maps. Subsequently, the generated
feature maps of the last maxpooling layer are flattened into
a one-dimensional vector. This vector are fed into the fully
connected layer for binary classification, and the final identi-
fication result is obtained. We chose ReLU (Rectified Linear
Unit) as the activation function, which is defined as follows:

f (x) =

{
x, if x > 0
0, otherwise

(5)

A batch normalization layer follows the first convolution
layer, which can normalize the feature activations, thus reduc-
ing the internal covariate shift. The batch normalization is
defined as follows [35]:

x̂i =
xi − µB√
σ 2
B + ε

(6)

yi = γ x̂i + β (7)

where B represents the mini-batch including m samples,
µB and σ 2

B represent the mean and variance of B, respectively.
ε is a constant for numerical stablility. γ and β are the scale
and shift parameters computed in the training process, respec-
tively, which can be seen in [35] for details. The parameters
associated with our CNN are given in Table 3.

2) 1D-CNN TRAINING SETS CONSTRUCTION
Each 30s EEG segment of the recordings in the dataset is
labelled into a sleep stage by expert [26]. The 30s EEG seg-
ment is defined as epoch. In order to investigate the effect of
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FIGURE 2. Schematic diagram of our 1D-CNN model.

TABLE 3. Parameters of our 1D-CNN model.

sleep stages on insomnia identification, we constructed sub-
datasets according to the sleep stage of epochs. The process
of subdatasets construction consists of two parts, selecting
specified sleep stages and overlapping.

Firstly, we selected the sleep stage of the subdataset that
needs to be constructed. Subsequently, if two consecutive
epochs of the subject had the same sleep stage, we used a
slidingwindow for overlapping. The overlapping timewas set
to 25s. Note that the sleep stage label of the new epoch after
overlapping was unchanged. Conversely, if two consecutive
epochs had different sleep stages, we did not conduct over-
lapping. Fig. 3 shows the schematic diagram of overlapping
method in this study. With the above method, we constructed

TABLE 4. Number of epochs for the 5 subdatasets.

4 subdatasets: ALL-DS, REM-DS, LSS-DS and SWS-DS.
Additionally, we constructed a BSL-DS (baseline dataset)
for implementing baseline method in [12]. Fig. 4 shows the
schematic diagram of constructing subdataset in this study.

• All sleep stage dataset (ALL-DS): including all sleep
stage epochs of the EEG recording.

• REM sleep stage dataset (REM-DS): only including
REM epochs of the EEG recording.

• Light sleep stage dataset (LSS-DS): including S1 and
S2 epochs of the EEG recording.

• SWS sleep stage dataset (SWS-DS): including S3 and
S4 epochs of the EEG recording.

• Baseline dataset (BSL-DS): including wake, REM,
S1 and S2 epochs of the EEG recording.

It should be noted that since the epochs number for each
sleep stage from each subject is different, the sizes of the
5 subdatasets constructed directly by the method mentioned
above are different. However, the size of the dataset can
greatly affect the performance of machine learning algorithm.
Therefore, we employed the following strategies to adjust the
number of subdatasets: (1) we regarded the minimum number
among the 5 types of epochs of the target subject used to
construct subdataset as the threshold. Each type of the epochs
only kept the threshold number and the rest of the epochswere
discarded. (2) if the minimum number was greater than 800,
we set the threshold as 800. We implemented those two
strategies for each subject and finally obtained the 5 sub-
datasets that had the same size as well as the same number of
epochs from each subject. For further details see Discussion.
Table 4 shows the number of epochs for the 5 subdatasets.

VOLUME 8, 2020 104285



B. Yang, H. Liu: Automatic Identification of Insomnia Based on Single-Channel EEG Labelled

FIGURE 3. The schematic diagram of overlapping method in this study.

FIGURE 4. The schematic diagram of constructing subdatasets based on specified sleep stage epochs.

3) 1D-CNN TRAINING SETTING
The weight parameters in our 1D-CNNwere initialized lever-
aging the kaiming initializer [36], which could improve the
converging speed of model. In addition, the parameter opti-
mization was performed with Adam optimizers with an initial
learning rate of 0.0001 [37]. The network was trained for
80 epochs with a batch size of 256. The cross entropy loss
function was used in this study, which is defined as:

En = −
1
N

N∑
k=1

pk · log(yk )+ (1− pk )log(1− yk ) (8)

where N is the number of the training samples. yk and
pk denote the true label and the predicted label of the sample,
respectively.

In order to prevent overfitting problems, we utilized the
dropout and L2 regularizationmethod. Dropout is a technique
that units of the layer are randomly disconnected with spec-
ified probability during training [38]. L2 regularization is a
technique that adds a regularization term after loss function
to reduce the network complexity. The cross entropy loss

TABLE 5. Model hyper-parameters.

function with L2 regularization term is defined as:

E`2 = En + λ ‖w‖22 (9)

whereEn is the basic cross entropy loss function. λ ‖w‖22 is the
L2 regularization term. λ and w are the penalty factor and the
network parameters, respectively. In this study, the penalty
factor λ was set to 0.0001. Moreover, we used the dropout
of 0.5 after the first and second layer of the fully connected
layer. Table 5 shows the hyper-parameters of our 1D-CNN.
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FIGURE 5. Intra-patient experiment. Performance comparison of our 1D-CNN leveraging the
4 subdatasets across accuracy (Acc), precision, recall, F1-score and k. We conducted paired
two-sided t test to compare the average accuracies of our 1D-CNN leveraging ALL-DS, LSS-DS
and SWS-DS with 1D-CNN leveraging REM-DS (* means p<0.05, no marking means no statistical
significance).

IV. EXPERIMENTS AND RESULTS
Data preprocessing and feature extraction sections were
implemented inMatlab R2018a environment on Intel i7-9700
@3.00GHz with 8 GB RAM. Deep learning experiments
were conducted in Python environment leveraging Pytorch
framework on NVIDIA GeForce GTX 1080 Ti. In addition,
we used SPSS Software System version 20.0 for paired
two-sided t test. Values of p <0.05 were considered statis-
tically significant.

A. PERFORMANCE METRICS
In this research, accuracy, precision, recall, F1 score and
kappa coefficient (k) were used for evaluating the perfor-
mance matrics, which are defined as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

F1score =
2× Precision× Recall
Precision+ Recall

(13)

k =
po − pe
1− pe

(14)

where TP, FP, TN , FN represent the true positive, false
positive, true negative and false negative, respectively.
po and pe represent the actual agreement and the chance
agreement, respectively.

B. EVALUATION PARADIGMS
1) INTRA-PATIENT PARADIGM
Under intra-patient paradigm, epochs from all subjects are
mixed together. Then, they are split into training, validation
and test set based on the specified ratio, i.e. epochs from the
same patient are utilized for both training and testing [39].

2) INTER-PATIENT PARADIGM
Under inter-patient paradigm, subjects are firstly split into
training and testing set. The epochs from the training set
and testing set subjects are used for training and testing,
respectively, i.e. epochs from different patients are utilized
for training and testing. Generally, inter-patient paradigm
can prevent the problem of the signal similarity from the
same subject, which can guarantee the generalizability of the
model [7].

C. INTRA-PATIENT EXPERIMENT
1) DATASET
In intra-patient experiment, epochs from all the 18 subjects
weremixed together. Therewere 11752 epochs in total, where
insomnia patients contained 5970 samples whereas healthy
subjects contained 5782 samples. 10-fold cross validation
was employed to evaluate the performance of our model, i.e.
each fold, in turn, was used for testing whereas the remaining
9 folds were used for training. We performed the experiment
with our 1D-CNN leveraging the 4 subdatasets: ALL-DS,
REM-DS, LSS-DS and SWS-DS, and compared the identi-
fication performance with baseline method.

2) RESULT
Fig. 5 depicts the identification performance metrics of our
1D-CNN leveraging the 4 subdatasets. Table 6 shows the
performance comparison between baseline methods and our
1D-CNN leveraging the 4 subdatasets. Fig. 7 depicts the
accuracy and loss curve for our 1D-CNN leveragingREM-DS
in training process.

Fig. 5 and Table 6 show that, in intra-patient experi-
ment, the average accuracies of our 1D-CNN leveraging
REM-DS, LSS-DS and SWS-DS are 98.98%, 96.38%
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FIGURE 6. Inter-patient experiment. Performance comparison of our 1D-CNN leveraging
4 subdatasets across Acc, precision, recall, F1-score and k.

TABLE 6. Intra-patient experiment. Performance comparison between baseline methods and our 1D-CNN leveraging the 4 subdatasets across accuracy
(Acc), precision, recall, F1-score and k.

and 99.16%, respectively, which are higher than the that
of 3 baseline methods.

In order to further examine any significant difference in
the average accuracy of our 1D-CNN leveraging the 4 sub-
datasets, paired two-sided t test was conducted. Fig. 5 indicate
that amongst the 4 subdatasets, the average accuracy of our
1D-CNN leveraging REM-DS is significantly higher than
that of ALL-DS and LSS-DS (p <0.05), whereas where
is no statistically significant difference between REM-DS
and SWS-DS, i.e. our 1D-CNN leveraging REM and SWS
epochs exhibit the best insomnia identification performance
in intra-patient experiment.

D. INTER-PATIENT EXPERIMENT
1) DATASET
In inter-patient experiment, subjects were firstly split into
training set and testing set. Based on the leave one
subject out cross validation (LOSOCV) strategy, at each time,
we randomly selected one insomnia patient and one healthy
subject for testing, whereas the remaining subjects were all
used for training. The experiments were repeated 10 times.

We performed the experiment with our 1D-CNN leverag-
ing the 4 subdatasets: ALL-DS, REM-DS, LSS-DS and
SWS-DS, and compared the performance with baseline
method.

2) RESULT
Fig. 6 depicts the identification performance metrics of our
1D-CNN leveraging the 4 subdatasets. Table 7 shows the
performance comparison between baseline methods and our
1D-CNN leveraging the 4 subdatasets. Fig. 8 depicts the
accuracy and loss curve for our 1D-CNN leveragingREM-DS
in training process.

Fig. 6 and Table 7 show that, in inter-patient experi-
ment, the average accuracies of our 1D-CNN leveraging
ALL-DS, REM-DS, LSS-DS and SWS-DS are 86.82%,
87.49%, 82.06%, 83.76%, respectively, which are higher than
that of 3 baseline methods.

Similar to intra-patient experiment, paired two-sided t test
was conducted to examine any significant difference in
the average of our 1D-CNN leveraging the 4 subdatasets.
However, in inter-patient experiment, the average accuracies
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TABLE 7. Inter-patient experiment. Performance comparison between baseline methods and our 1D-CNN leveraging the 4 subdatasets across accuracy
(Acc), precision, recall, F1-score and k.

FIGURE 7. Intra-patient experiment. Accuracy and loss curve for our
1D-CNN leveraging REM-DS in training process.

FIGURE 8. Inter-patient experiment. Accuracy and loss curve for our
1D-CNN leveraging REM-DS in training process.

of our 1D-CNN leveraging those 4 subdatasets showed no
statistically significant difference between them (p >0.05).

V. DISCUSSION
In this paper, we proposed a 1D-CNN model for auto-
matic insomnia identification leveraging single-channel

TABLE 8. Comparison of identification performance for our method and
other existing methods.

EEG signal labelled with sleep stage annotations. In order
to further investigate which sleep stage has better insom-
nia identification performance, we constructed 4 subdatasets
from EEG epochs according to their sleep stage annotations,
and compared the performance of our 1D-CNN leveraging
the 4 subdatasets respectively. Table 8 shows the compari-
son of identification performance for our method and other
existing methods. As shows in Table 8, 1D-CNN model
introduced in this paper could achieve superior performance
than exsiting methods.

We employed two strategies when constructing subdatsets.
Those two strategies guaranteed the 4 subdatasets have the
same size and the same epoch number from each subject,
which could avoid the effect of dataset size and difference
between subjects on identification performance. In general,
1D-CNN might learn more features from the subjects who
have more epochs when the epoch number from each subject
varies greatly, thus leading to the performance degradation
in inter-patient experiment. Therefore, we set a threshold for
epoch number at 800 to prevent the great difference of the
epoch number for each subject in subdataset.

Our experiments demonstrated that our 1D-CNN lever-
aging the 3 subdatasets composed of REM, LSS and SWS
epochs, respectively, achieved higher average accuracies
in comparison with baseline methods both in intra-patient
and inter-patient experiments. We consider this is because
1D-CNN is an end-to-end leaning model, i.e. the feature
extractor and classifier are integrated into one single algo-
rithm. The end-to-end learning method can overcome the
limitation of the handcrafted features that are limited by prior

VOLUME 8, 2020 104289



B. Yang, H. Liu: Automatic Identification of Insomnia Based on Single-Channel EEG Labelled

knowledge, thus improving the performance of insomnia
identification.

The experimental results also indicated that amongst all
the sleep stages, 1D-CNN leveraging REM and SWS epochs
exhibited the best insomnia identification performance in
intra-patient experiment, whereas no statistically significant
difference was found in inter-patient experiment. Several
researches in the past [40]–[42] demonstrated that the power
of EEG during sleep between insomnia patients and healthy
subjects had significant difference in NREM and REM
stages. More specifically, the high frequency EEG activities
(in the sigma and beta range) were increased in NREM and
REM stage in insomnia group [24]. This might be a possi-
ble reason for REM-DS and SWS-DS have better insomnia
identification performance in intra-patient experiment. Given
the strong hereditary and individual variability, it is hard to
discover statistical rules when leveraging small sample sizes
dataset in inter-patient experiment. Therefore, larger sample
size dataset is required for further investigation.

Moreover, the comparison of the two experiments
demonstrated that the average identification accuracy of
our 1D-CNN could achieve 99.16% in intra-patient exper-
iment, whereas it could only reach 87.49% in inter-patient
experiment with larger standard deviation. We consider the
high accuracy in intra-patient experiment is caused by the
similarity of epochs, i.e. epochs from the same patient are
utilized both for training and testing. However, inter-patient
experiment is more realistic evaluation paradigmwhich could
guarantee the generalizability of the method. Therefore,
we suggest future research on automatic insomnia identifica-
tion based on deep learning should focus on the inter-patient
experiment performance.

We want to also mention that the goal of the proposed
model in this paper is to identify each 30s epoch in the whole
night EEG recording correctly. If the automatic insomnia
identification result is only based on one 30s epoch, it will be
a waste of the practical measurement EEG data. Therefore,
in the clinical practice, we suggest that each epoch of the
whole night EEG recording is identified by the 1D-CNN,
and then the final identification result is obtained by majority
voting.

Our research also has some limitations. Firstly, the effect
of the frequency band of EEG on automatic insomnia iden-
tification based on 1D-CNN has not been explored yet.
Perlis et al. [42] explained the pathological mechanism
of insomnia from a neurocognitive perspective, i.e. insom-
nia was associated with high frequency activity of EEG.
In future work, we will focus on the effect of frequency
band of EEG on automatic insomnia identification based
on 1D-CNN. Secondly, the dataset utilized in this study was
relatively small, and this is the reason why we implemented
the inter-patient experiment based on LOSOCV strategy.
Additionally, we tried the large-scale CNN structures such as
VggNet and ResNet. However, we found that they had a good
performance in intra-patient experiment, whereas they failed
to produce acceptable results when it came to inter-patient

experiment. We consider this is because the deep CNN struc-
ture result in overfitting over the relatively small dataset.
Therefore, we reduced the scale of the network and found the
1D-CNN with 5 convolution layers could achieve superior
performance. In future work, we plan to obtain larger sleep
databases with sleep stage annotations. Under large sample
dataset, we could select more subjects for testing, and further
increase the scale of our 1D-CNN to maximize the ability of
deep convolutional neural networks.

VI. CONCLUSION
In this paper, we proposed a 1D-CNN model for auto-
matic insomnia identification based on single-channel EEG
labelled with sleep stage annotations, and further investi-
gated the identification performance based on different sleep
stages. Our experiments demonstrated that our 1D-CNN
leveraging the 3 subdatasets composed of REM, LSS and
SWS epochs, respectively, achieved higher average accuracy
in comparison with baseline methods under both intra-patient
and inter-patient paradigms. The experimental results also
indicated that amongst all the sleep stages, 1D-CNN leverag-
ing REM and SWS epochs exhibited the best insomnia iden-
tification performance in intra-patient paradigm, whereas no
statistically significant difference was found in inter-patient
paradigm.

Overall, for automatic insomnia identification based on
single-channel EEG labelled with sleep stages, 1D-CNN
model introduced in this paper could achieve superior per-
formance than traditional methods. Further experiment based
on larger sleep databases under inter-patient paradigm is still
required in future work.
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