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ABSTRACT Human recognition on smartphone devices for unlocking, online payment, and bank account
verification is one of the significant uses of biometrics. The exponential development and integration of this
technology have been established since the introduction in 2013 of the fingerprint mounted sensor in the
Apple iPhone 5s by Apple Inc.©© (Motorola© Atrix was previously launched in 2011). Nowadays, in the
commercial world, the main biometric variants integrated into mobile devices are fingerprint, facial, iris,
and voice. In 2019, LG© Electronics announced the first mobile exhibiting vascular biometric recognition,
integrated using the palm vein modality: LG© GS8 ThinQ (hand ID). In this work, in an attempt to
become the become the first research-embedded approach to smartphone vein identification, a novel wrist
vascular biometric recognition is designed, implemented, and tested on the Xiaomi(©) Pocophone F1 and
the Xiaomi(©) Mi 8 devices. The near-infrared camera mounted for facial recognition on these devices
accounts for the hardware employed. Two software algorithms, TGS-CVBR® and PIS-CVBR®), are
designed and applied to a database generation and the identification task, respectively. The database, named
UC3M-Contactless Version 2 (UC3M-CV?2), consists of 2400 contactless infrared images from both wrists
of 50 different subjects (25 females and 25 males, 100 individual wrists in total), collected in two separate
sessions with different environmental light environmental light conditions. The vein biometric recognition,
using PIS-CVBR(®), is based on the SIFT®), SURF®), and ORB algorithms. The results, discussed according
to the ISO/IEC 19795-1:2019 standard, are promising and pave the way for contactless real-time-processing
wrist recognition on smartphone devices.

INDEX TERMS Vein biometric recognition, smartphone, wrist vascular biometric recognition, contactless
database, biometrics on mobile devices, near-infrared camera, Xiaomi(©) Pocophone F1, Xiaomi(©© Mi 8,

SIFT® (scale-invariant feature transform), SURF®) (speeded up robust features).

I. INTRODUCTION
In recent years, biometric recognition has been a significant
field in the security world that has witnessed an exponen-
tial increase in the integration of identification/authentication
systems in daily life: access control, online payments,
bank account access, and device unlocking. Security and,
of course, comfort are the two leading causes. Hygiene is
another important concern behind this constant and impres-
sive growth of biometric-based systems, especially multi-
user systems (e.g., access control). For this purpose, non-
contact systems are designed. There are numerous contactless
biometric modalities: facial, voice, iris, gait, vascular, and
contactless fingerprint.

In previous research [1], paying attention to vascu-
lar recognition modality and the current patents of palm
vein (Fujitsu© PalmSecure™, US 2005/0148876 Al [2])
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and finger vein (Hitachi(© Finger Vein Authentication, US
2011/0222740 A1 [3]) variants, a portable contactless device
for Vascular Biometric Recognition (VBR) was implemented
and tested. In [4] and [5], other systems, with physical
contact between the user and the device, were designed
for wrist VBR. All these prototypes are suitable for access
control and forensic applications. However, in the present
work, a complete VBR system embedded into a smart-
phone, aimed for future online payments, bank account
access, and screen unlocking, without touching the device, is
proposed.

A. MOTIVATION

Smartphones are essential in daily life and are the systems
with the most biometric modalities embedded simultaneously
on the same device: fingerprint (e.g., Vivo© X20 [6]), facial
(e.g., Huawei© Mate 20 Pro [7]), iris (e.g., Samsung(©)
Galaxy S8 [8]) and voice (e.g., Google Assistant [9]).
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TABLE 1. Wrist VBR datasets.

Dataset Subjects Wrists Samples Sessions Images Year Contactless
Singapore (NIR) [19] 150 2 3 N/A 900 2007 NO
UC3M [20] 121 1 (right) 5 1 605 2011 NO
PUT [18] 50 2 4 3 1200 2011 NO
Raghavendra et al. [4] 50 2 5 2 1000 2016 NO
UC3M-CV1 [1] 50 2 6 2 1200 2020 YES
UC3M-CV2 (Proposed) 50 2 12 2 2400 2020 YES

(smartphones)

FIGURE 1. Smartphones used for VBR integration (image capture,
processing, and storage): Xiaomi(© devices. (a) Xiaomi© Pocophone F1.
(b) Xiaomi(© Mi 8.

Likewise, in the research world, other modalities for
smartphones are studied: gait [10], keystroke [11], or
handwriting [12].

Last year, LG(© Electronics company announced the first
mobile with vascular biometric recognition integrated inte-
grated using the palm vein modality: LG© G8 ThinQ (hand
ID) [13]. This commercial launch, the high current integration
of biometric systems into mobile devices, and the research
approach in contactless recognition are the motivation behind
this work.

B. CONTRIBUTIONS

In this study, a non-contact wrist vein biometric system
integrated into a smartphone device is presented. For this
purpose, two devices, designed by Xiaomi Inc.(©), are used
as complete capture, processing, and storage and stor-
age hardware: Xiaomi(©) Pocophone F1 (Fig. 1 a) and
Xiaomi© Mi 8 (Fig. 1 b). Both mobiles mount a near-
infrared camera originally used to unlock them with facial
recognition.
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Two software algorithms have been proposed and
registered: Three-Guideline Software for Contactless
Vascular Biometric Recognition (TGS-CVBR®) and Pre-
processing and Identification Software for Contactless Vas-
cular Biometric Recognition (PIS-CVBR®)). Both have been
implemented using Android™, The former, TGS-CVBR®),
has been used to generate a contactless database (UC3M-
CV2), and it also provides feedback to the user on how to
place the wrist correctly during the recognition process. Then,
PIS-CVBRG®) is in charge of the biometric recognition task.

C. RELATED WORK

The current wrist VBR State-of-the-Art, in the research stage,
has been recently analyzed in several works, [1] (published
in the current year 2020) and [14], according to the existing
systems, datasets, and algorithms. In addition, Tables 1 and 2
summarize the most recent literature showing, respectively,
the existing databases and the recognition techniques, includ-
ing their performance.

It is thought that there are no well-integrated and well-
known commercial systems on the market based on the wrist
vein modality. Also, as far as is known, published papers
about vein systems integrated into a mobile phone do not
exist. Only several works make use of smartphones but modi-
fying their hardware: the infrared blocking filter is physically
removed from the camera. These studies are based on the
hand palm vein [15] and the hand dorsal vein [16] modalities.

The wrist VBR State-of-the-Art has been analyzed from
the point of view of the recognition algorithms and tech-
niques because the proposed acquisition hardware or sys-
tem, a smartphone, is different and innovative. Furthermore,
the absence of contact between the user and the capture sys-
tem is a current stream of research that is starting to emerge,
as is the case of [1] or [17] (finger vein modality).

According to Table 1, PUT [18] database, collected in 3
different sessions in 2014 with the participation of 50 sub-
jects (50 subjects x 2 wrists x 4 samples x 3 sessions =
1200 images), is the only existing public dataset. Two other
privately-distributed databases were collected, respectively,
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TABLE 2. State-of-the-Art summary for wrist VBR.

Feature Compari- Computing Biometric
Study Year Dataset Preprocessing Feature Extraction A . time (seconds
son/Classification performance
per sample)
Monochromatic
image + Adaptive 0.771
histogram Dense Local Binary Support Vector (Windows®, _
Dasetal. [21] | 2014 PUT equalization + Pattern (D-LBP) | Machines (SVMs) Matlab®, | FER=079%
Discrete Meyer Intel® i5 CPU)
Wavelet
Local features:
Maximum Curvature
Points (MCP) and
Multi-scale match
filter. Global features:
Monochromatic Sparse . Local features:
. ] Representation .
image + Contrast Classifier (SRC) Cross-correlation.
Raghavendra et 2016 Raghavendra L1m1t.ed Adaptive Local Binary Patterns Global features: N/A EER = 1.63 %
al. [4] et al. [4] Histogram Sparse
o (LBP), Local Phase .
Equalization Quantization (LPQ) Representation
(CLAHE) . ’ Classifier (SRC)
Histogram of
Gradients (HOG),
Steerable pyramids,
Local Binary Patterns
Variance (LBPV) and
Log Gabor Filters
. Maximum value 2D
Mohamed et al Monochromatic Binarization (local correlation + Score
' 2018 PUT image + Median filter . . N/A EER =0.0 %
[14] and global threshold) fusion with Parade
+ CLAHE
t-norm
Monochromatic
images + Gaussian 0.92 (Linux™,
Nikisins et al. 2018 PUT filter + k-means++ Hessian matrix Cross-correlation Python™, FNMR =3.75 %
[22] algorithm + Region based comparison Intel® & FMR =0.1 %
Of Interest (ROI) i7-5930K CPU)
extraction
Monochromatic Brute Force 0.317
image + CLAHE + Matching (BFM) (Qualcomm® EER
8e - . SIFT®, SURF® and | and Fast Library for | Snapdragon™ | (Pocophone F1
Proposed 2020 | UC3M-CV2 | Gaussian, median .
and averacing filters ORB Approximate 845: smartphone)=
ai fllg) Nearest Neighbors | Octa-Core and 14.76 %
(FLANN) 2.8 GHz)

in 2007 and 2011, and have been used in other research works
in later years: Singapore [19] and UC3M [20]. Also, other
studies use their private dataset, as is the case of [1] and [4].
As far is known, the UC3M-CV 1 [1], along with the database
collected in this work, UC3M-CV2, is the only one that
includes contactless image acquisition. UCM3-CV?2 presents
the most extensive dataset, with 2400 images, although the
50 subjects are far from the 150 of the Singapore database.

The recognition software algorithms have been classified
into three groups or steps: preprocessing, feature extraction,
and feature comparison or classification. The absence of
Deep Learning techniques applied to the wrist VBR modality
is the cause of this traditional recognition division. However,
some examples of Deep Learning research are referenced
further on for the finger vein variant.

VOLUME 8, 2020

The most common preprocessing or intermediate biomet-
ric sample processing techniques, starting from monochro-
matic infrared images, are histogram equalization ([4], [14],
and [21]), and noise reduction using filters (2D Median and
Gaussian filters, [14] and [22]). These steps are followed to
isolate and enhance the visualization of the patterns described
by the vascular tissues.

Then, for feature extraction, several techniques have been
used: Dense Local Binary Pattern (D-LBP) in [21]; Maximum
Curvature Points (MCP), Multi-scale match filter, Sparse
Representation Classifier (SRC), LBP, Local Phase Quan-
tization (LPQ), Histogram of Gradients (HOG), Steerable
pyramids, Local Binary Patterns Variance (LBPV), and Log
Gabor Filters in [4]; Binarization in [14] and Hessian matrix
in [22]. Most of these methods, based on segmentation and
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FIGURE 2. Components of the designed VBR system embedded on a Smartphone.

biometric template comparison, are not robust enough against
vein tissue orientation, scale, or even deformation [23].

In this sense, as Matsuda et al. [23] claim, minutiae-based
techniques (e.g., [20], not in Table 2) and SIFT methods
are usually more robust. In the proposed study, to avoid the
scale and orientation variability, in the vein patterns, due
to the non-contact acquisition that does not fix the wrist
position, the algorithms SIFT®), SURF®), and ORB have
been tested and applied. In addition, a contactless guiding
algorithm, TGS-CVBR®), has been designed to lead the user
through wrist positioning and reduce the scale and orienta-
tion variations. SIFT®, SURF®), and ORB are local fea-
ture extractors for homography based on the image intensity
variability described by corners and edges (Harris Corner
Detector [24]).

Traditional Machine Learning techniques for feature
comparison/classification were introduced in [21] with the
supervised technique Support Vector Machines (SVMs).
In the current work, other supervised Machine Learning
method, based on k-Nearest Neighbor (kNN), has been
used for the SIFT® and SURF® keypoints classification:
Fast Library for Approximate Nearest Neighbor (FLANN).
Another remarkable procedure, presented in [14], was exhib-
ited in 2018 with the biometric score fusion of both subjects’
wrists. This work states the best biometric performance, with-
out considering the database figures and external conditions
(e.g., contact and external light isolation). The computational
cost, not indicated in some works (N/A), is also provided
in Table 2.
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As has been mentioned previously, Deep Learning has
not been applied to wrist VBR modality. However, essen-
tial advances in the use of Convolutional Neural Net-
works (CNNs) have already been stated in other vascular
modalities, like finger vein variant. The CNN architecture,
used in [25], where a complete finger vein State-of-the-Art is
presented, achieves an identification accuracy greater than 95
% in several databases. For the same VBR modality, a CNN
architecture comparison and analysis (AlexNet, VGGNet,
and ResNet) is exposed in [26] obtaining a DenseNet
CNN with EER values less than 1 %. On the other hand,
reference [23] provides an EER lower than 1 % using a
non-Deep Learning method based on deformation-tolerant
features against vein deformations (different finger postures).

For a complete VBR analysis, reference [27] is highly
recommended.

In order to contribute to ongoing research and provide the
possibility of realizing an even stricter comparison of the soft-
ware techniques according to existing datasets, a Python™
version of the proposed software algorithms has been
published [28] (https://joinup.ec.europa.eu/solution/vein-
biometric-recognition-smartphone) under the terms and
conditions of the Creative Commons Attribution Non-
Commercial license (CC-BY-NC-SA-4.0).

Il. DESIGNED SYSTEM

Following the standard ISO/IEC 19795-1:2019 [29], the sys-
tem has been designed according to the scheme in Fig. 2.
As this figure shows, the recognition process starts with the
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FIGURE 3. Capture hardware: (a) Xiaomi© Pocophone F1 near-infrared
camera (surrounded in green) and near-infrared LED near-infrared LED
(surrounded in red) embedded on the left side of the notch. (b) Xiaomi©
Mi 8 near-infrared camera (surrounded in green) and near-infrared LED
(surrounded in red) on the right side of the notch. (c) Xiaomi©
Pocophone F1 near-infrared camera (non-mounted replacement).

(d) Xiaomi© Mi 8 near-infrared camera (non-mounted replacement).

acquisition of the user’s sample through the biometric sensor
of the smartphone: a near-infrared camera. The capture and
guiding algorithm, TGS-CVBR(®), is in charge of this task.
Then, the captured image is processed in two steps (signal
processing subsystem) through PIS-CVBR®): preprocessing
and feature extraction. The unique features extracted are
stored in a database and compared to identify or verify the
user.

A. INTEGRATED BIOMETRIC HARDWARE

In order to obtain a real-time wrist VBR system, all the soft-
ware tasks (database collection, database storage, image pre-
processing, feature extraction, and feature comparison) are
processed in the same hardware: a smartphone. Two mobile
devices, designed by the Chinese company Xiaomi Inc.©
have been selected and used used independently: Xiaomi(©)
Pocophone F1 (Fig. 1 a) and Xiaomi(©) Mi 8 (Fig. 1 b). The
main reason for using these models is the embedded near-
infrared camera for facial recognition, only available in a
few commercial smartphones. The near-infrared cameras and
the near-infrared LED (Light Emitting LED (Light Emitting
Diode) lights emitted by the mobile phones, required for
VBR, are shown in Fig. 3 a, b, and Fig. 3 c, d (replacement
cameras not mounted).

The details about the components, camera and LED, and
their features are unknown due to the commercial protection.
It has only been possible to buy non-mounted replacement
cameras and to verify that the LED light flashes at 30 Hz
(measured with Thorlabs@© PDA10CF-EC InGaAs Ampli-
fied Detector) and has a wide spectrum around 960 nm
(measured with Yokogawa(@© AQ6370B Optical Spectrum
Analyzer). It is essential to point out that no hardware modifi-
cations have been made. The main relevant hardware features
of these two devices are summarized in Table 3.

B. SOFTWARE ALGORITHMS
The recognition algorithm presented in this paper is divided
into two software algorithms: TGS-CVBR®), employed to
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TABLE 3. Relevant hardware features for Xiaomi© Pocophone F1 [30]
and Xiaomi© Mi 8 [31].

Xiaomi© . . .
Feature Pocophone F1 Xiaomi© Mi 8
Infrared Face Unknown Unknown
o (640 x 480 (640 x 480
Recognition
Camera greyscale greyscale
images) images)
Qualcomm® Qualcomm®
CPU Snapdragon™ Snapdragon™
845 (Octa-Core, | 845 (Octa-Core,
2.8 GHz) 2.8 GHz)
Qualcomm® Qualcomm®
GPU Adreno™ 630, | Adreno™ 630,
up to 710 MHz | up to 710 MHz
Hardware (710 MHz) (710 MHz)
RAM 6 GB 6 GB
Internal Storage 64 GB 64 GB
IPS LCD AMOLED
S full-screen 6.18" | full-screen 6.21"
creen (1080 x 2246 | (1080 x 2248
pixels) pixels)
Size 155.5 X 75.2 X | 154.9 x 74.8 x
8.8 mm 7.6 mm
Weight 182 ¢ 175 g
(ON Android™ 9 Pie | Android™ 9 Pie
Software
MIUI Version Global 10.2 Global 10.1

guide users on how to place the wrist in the identification pro-
cess and the database collection (image capture and visualiza-
tion on the smartphone screen) and PIS-CVBR(®), in charge
of the recognition tasks.

1) TGS-CVBR®
This software algorithm displays the real-time video of the
near-infrared camera capture (640 x 480 resolution) on the
smartphone screen and three fixed guidelines, as it is shown
in Fig. 4. It provides feedback to the user on how to place the
wrist correctly. Also, it has been used for database generation
(UC3M-CV2 database) and user identification, combined
with PIS-CVBR®. It fixes the user’s wrist, obtaining scale-
orientation-invariant images to improve the identification
process. The horizontal guideline sets the wrist orientation,
and the two smaller guidelines establish the distance between
the wrist and the smartphone camera.

The user should follow the steps shown in Fig. 4 a:

1) Locate the wrist groove print or mark.

2) Align/match the wrist groove print with the guide trace

displayed.

This software has been developed using Android™ and

has been run in Android™ 9 Pie OS version (MIUI© Global
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TGS-CVBR® example

Placement
according to the
lines shown on

the Smartphone,

Location of
the wrist
fgroove print

(2) (b)

FIGURE 4. TGS-CVBR® (Three-Guideline Software for Contactless
Vascular Biometric Recognition), wrist positioning steps. (a) Step 1:
location of the wrist groove line. Step 2: match of the wrist groove print
and the guideline. (b) TGS-CVBR® example on Xiaomi©) Pocophone F1.

2)

(a) (b) (©)

FIGURE 5. PIS-CVBR®: Preprocessing. Steps in a User 0 sample (images
from Xiaomi© Pocophone F1): (a) Greyscale image. (b) Image after
CLAHE algorithm. (c) Image after CLAHE algorithm and filtered by
Gaussian filter, Median filter, and Averaging (11 x 11 kernel).

Global 10.2 in Xiaomi(©) Pocophone F1 and MIUI© Global
10.1 in Xiaomi© Mi 8). It is essential to point out that,
access the near-infrared camera, the devices have been rooted,
obtaining superuser permissions.

2) PIS-CVBR®

The Preprocessing and Identification Software for Contact-

less Vascular Biometric Recognition (PIS-CVBR®) pro-

posed is divided into three parts: preprocessing, feature

extraction, and feature comparison.

1) Preprocessing:

For each device, the near-infrared camera provides
greyscale images (monochromatic images with values
from 0, black, to 255, white) with 640 x 480 resolution.
The images have been captured in ““.jpg” compress
format (Fig. 5 a, User 0’s sample of the dataset) using
TGS-CVBR®), the near-infrared camera, and the near-
infrared LED.
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To increase the contrast between the veins and the
other living tissue, the adaptative histogram equal-
ization technique, CLAHE (Contrast Limited Adap-
tive Histogram Equalization) [32], has been applied
(Fig. 5b). To reduce the high-frequency noise (salt-and-
pepper and Gaussian noise) generated by the CLAHE
algorithm, several low-pass software filters have been
applied (Fig. 5 c) in the following order: Gaussian filter,
Median filter, and Averaging filter. The kernel size of
all of themis 11 x 11.

No further steps have been taken for the preprocess-
ing task. It is essential to remark that the Region Of
Interest (ROI) extraction has not been required by this
software algorithm, due to the excellent isolation from
the background obtained with the cameras, with a short
distance design and LED lights emitted by the smart-
phones. However, it would probably improve system
performance and is a step to take into account in the
future.

Feature Extraction:

In order to deal with the complexity of the biometric
recognition task, due to the non-physical-contact prop-
erty of the proposed solution, three scale-orientation-
invariant algorithms for homography have been tested
for the extraction of unique features from the wrist
vein patterns: SIFT® (Scale-Invariant Feature Trans-
form) [33], SURF® (Speeded Up Robust Fea-
tures) [34] and ORB (Oriented FAST and Rotated
BRIEF) [35]. The main reason to use these algorithms
is the high variability observed in the size and orienta-
tion of the wrist in each user sample when the system
is contactless. As was mentioned, and it is shown in
the experiment and result section (Section III), the pro-
posed TGS-CVBR@®) algorithm solves this issue. In the
VBR world, as far as is known, these three algorithms,
SIFT®), SURF®), and ORB, have been tested in [1]
and only SIFT®) in [36].

SIFT®), the non-free patent algorithm, was proposed
in [33] to avoid the scale variant of the Harris Corner
Detector [24] features. Then, SURF® [34] was pre-
sented as a real-time solution due to the slow feature
extraction process of SIFT®. Finally, ORB [35], even
faster, is a free use solution for the feature extraction
(key points and its descriptors). To obtain a real-time
contactless system embedded into a smartphone these
three feature extraction algorithms have been tested
and compared, considering its evolution and processing
time.

Fig. 6 a, b, and c show, respectively, one example of
feature extraction, 100 key points, for each algorithm.
The location, scale, and orientation of the features
are represented. As can be observed, especially for
SIFT® and SURF® key points, the descriptors are
homogeneously distributed throughout the vein lines
and the surrounded tissue. Probably, this fact increases
the robustness of the proposed algorithm, not only
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(a) (b) (©

FIGURE 6. PIS-CVBR®): Feature extraction. Scale and orientation
of 100 key points extracted from a User 0 sample with the three
algorithms: (a) SIFT®. (b) SURF®. (c) ORB.

considering vein patterns but also the surrounded
areas influenced by them. In future work, a more
extreme segmentation (e.g., binarization + skeletoniza-
tion) could be compared with the proposed solution to
verify this hypothesis.

3) Feature Comparison:
Following the feature extraction algorithms used,
the optimum comparison algorithms selected and
applied have been Brute Force Matching (BFM)
and Fast Library for Approximate Nearest Neighbors
(FLANN) [37]. BFM, implemented for the ORB fea-
tures, and FLANN, used for the SIFT® and SURF®
features, provide similarity distance values between
the descriptors of the key points extracted. As was
mentioned in the introduction, FLANN is a supervised
classification Machine Learning technique based on
k-Nearest Neighbor (kNN). In the BFM case, the Ham-
ming distance has been used.
Fig. 7 a, b, and c show, respectively, an example of
feature comparison for the three feature extraction
algorithms, SIFT®, SURF® and ORB, and the two
comparison processes, BFM and FLANN.
This software algorithm has been also developed using
Android™ and has been run in Android™ 9 Pie OS
version (MIUI®© Global 10.2 in Xiaomi(©) Pocophone
F1 and MIUI© Global 10.1 in Xiaomi© Mi 8).

3) TGS-CVBR® AND PIS-CVBR® COMBINED:
DECISION POLICY
With the main goal of obtaining a real-time authentication
and identification system, taking into account the computing
time, TGS-CVBR®) and PIS-CVBR®) have been combined
and tested.

To decide if the matched points are suitable (distance small
enough), after the feature comparison of the PIS-CVBR®
algorithm, a distance score threshold has been implemented,
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FIGURE 7. PIS-CVBR®: Feature comparison. Correct matching points for
two samples of the User 0 with the three feature extraction algorithms
and the two comparison algorithms: (a) SIFT® (with FLANN). (b) SURF®
(with FLANN). (c) ORB (with BFM).

following

Match Correct, ifd <§ )
atc =
BEM Incorrect, ifd = §

where:

« d: is the comparison distance.
o &:1s the selected distance threshold.

FLANN, used for the SIFT® and SURF® descriptors,

also provides similarity distances. In this case, the matches
are filtered with the Lowe’s ratio, as in

Correct ifd xR <$§
Match = ’ 2
FLANN Incorrect, ifd xR>§ @
where:
o d: is the comparison distance.
o R:is the Lowe’s ratio.
e J:1s the selected distance threshold.
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(a) (b) (©)

FIGURE 8. TGS-CVBR® and PIS-CVBR® combined (decision policy):
captures of the verification and identification process for the SIFT®
algorithm and Lowe’s ratio filtering. (a) Verification of the User 0 (subject
0, right wrist). (b) Identification of the User 0 (subject 0, right wrist).

(b) Identification of the User 1 (subject 0, left wrist).

For the authentication/verification process (1:1 user com-
parison), the features extracted from the previously defined
user vein pattern are compared with the real-time video cap-
ture, i.e., the key points from the pattern (Fig. 8 a, top) are
compared with the key points obtained from the video (Fig. 8
a, bottom). This process is shown on the screen of the devices.

In the identification process (1:N user comparison), the key
points of the real-time video capture are compared with the
ones previously obtained and defined from the users’ pat-
terns. Fig. 8 b and ¢ show an example of the User 0 identifi-
cation. It is essential to remark that according to the standard
ISO/IEC 19795-1:2019 [29], this software algorithm combi-
nation does not identify because it does not provide a rank of
potential candidates.

C. DATABASE

The contactless dataset generated to test the system is named
UC3M-CV2 database (UC3M-Contactless Version 2). It has
been collected with TGS-CVBR®), PIS-CVBR®), and both
smartphones.

1) PARAMETERS
1) Subject conditions:

The UC3M-CV2 database consists of 2400 near-
infrared greyscale 640 x 480 images captured from
100 users: both wrist of 50 subjects (25 females and
25 males) from Europe (43), America (4), Africa (1)
and Asia (2) aged between 21 and 75 years (39.92 years
on average, 17.74 standard deviation). The age-origin
distribution is shown in Fig. 9.

Two capture sessions, separated between 2 and
4 weeks, have been performed. Per each mobile device,
Pocophone F1 and Mi 8, and subject wrist, six samples
per session have been taken: 50 subjects x 2 wrists X
6 samples x 2 sessions x 2 devices = 2400 images.
These images have been stored in the internal memory
of the devices in ““.jpg”’ compress format.
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FIGURE 9. UC3M-CV2 database: distribution of the 50 subjects by age
and origin.

2) Environmental conditions:
The samples have been taken under the following
conditions:

a) Temperature: approximately 20-23 °C.

b) Humidity: dry ambient.

c) External light: different daytimes, places (out-
door/indoor), and external artificial or natural
light (usually without direct sunlight).

2) COLLECTION METHOD
The next steps have been followed for the UC3M-CV2
collection:

1) The volunteers are informed of the experiment they
will be part of and their rights according to the last
General Data Protection Regulation (GDPR, applied
since May 25th, 2018) [38]. Then, they sign the explicit
consent.

2) Registration of the personal data of the subject.

3) Brief demonstration of the process to be followed,
as it is shown in Fig. 4, to position the wrist correctly
according to TGS-CVBR®.

4) An operator takes one capture when the user’s wrist is
placed correctly advising the user (voice indications)
if the wrist is placed in an extremely wrong way: too
far/near from the camera (not taking into account the
two small guidelines) or with an incorrect orientation
(not placing the wrist grove print aligned with the
largest guideline).

5) The capture process is repeated, obtaining 24 samples
per each subject (6 samples per wrist and 2 devices):
one session per subject. The capture order for the
devices has been Mi 8-Pocophone F1 in Session 1 and
Pocophone F1-Mi 8 in session 2. The external light
conditions between the different subjects are not the
same: different days at a different time in different
places (outdoor/indoor).
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(a) (b)

FIGURE 10. TGS-CVBRQ® results: similar scale-orientation wrist images.
(a) Six samples obtained from the User 0. (b) Six samples obtained from
the User 82.

6) Between two and four weeks after the first session,
steps 4 and 5 are repeated in the second session obtain-
ing 48 samples per each subject (24 samples per wrist)
in total.

Ill. EXPERIMENTS AND RESULTS

To obtain the biometric and the computing time performance
of the proposed system, the software algorithms presented in
this work, TGS-CVBR®) and PIS-CVBR®), have been faced
with the 2400-images dataset collected. The evaluation of
them has been divided. However, the biometric performance
is very closely correlated to the union of both algorithms.

A. TGS-CVBR
To study this algorithm, the dataset, UC3M-CV2, has been
visually analyzed. Fig. 10 shows the results: 6 samples of
the User 0 and User 82 of the database. As can be extracted
from these images, using the contactless guiding algorithm,
the size or scale, and the orientation of the wrist of each user
are the same. In consequence, the illumination of the wrist
areais homogeneous and is stabilized for every sample. These
facts simplify the recognition task.

The distance between the near-infrared camera of the
smartphones and the user’s wrist has been usually 7-10 cm,
depending on the width of each user’s wrist.

B. PIS-CVBR

The analysis of this algorithm has been divided into two
experiments or tests: biometric performance and computing-
time performance
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1) BIOMETRIC PERFORMANCE

Following the current standard ISO/IEC 19795-1:2019 [29],
the results have been obtained and exposed according to
the three feature extraction algorithms, SIFT®), SURF®,
and ORB, and the two devices used, Pocophone F1
and Mi 8.

As is mandatory by the standard [29], the False Match
Rate (FMR) and False Non-Match Rate (FNMR) are
provided in a Detection Error Trade-Off (DET) plot (rec-
ommended). Failure-To-Enrol Rate (FTER) and Failure-To-
Acquire Rate (FTAR) are zero.

DET curves have been obtained comparing, with FLANN
(SIFT® and SURF® features) and BFM (ORB features),
the 1200 images (Sessions 1 and 2) of each device, sepa-
rately: 1100 intraclass or mated comparisons (50 subjects X
2 wrist patterns x 11 samples) and 108900 interclass or non-
mated comparisons (100 wrist patterns x99 wrist patterns x
11 samples). Fig. 11 shows the DET curves for Pocophone
F1 (a, b, and c) and Mi 8 (d, e, and f) devices, the algorithms,
SIFT®) (a and d), SURF®) (b and e), and ORB (c and f), and
the different sessions (Session 1, Session 2 and both together).

Analyzing the variability in all the DET curves accord-
ing to the sessions, the best performance has been obtained
for Session 2, most probably, due to the better interaction
and practice acquired by the subject placing the wrist using
the designed guiding algorithm. The curves are closer to
small values (lower FNMR and FMR) for Session 2 than
for Session 1 and both sessions together, regardless of
the feature extraction and comparison algorithm and the
devices.

The different behavior observed in the curves comparing
the results for the 1200 images of each smartphone, Poco-
phone F1 (Fig. 11 a, b, and ¢) and Mi 8 (Fig. 11 d, e, and
f), could be considered negligible. The curves illustrate that
the Pocophone F1 presents a slightly better performance.
It is probably due to the positioning practice acquired by
the subject in the sessions (previously cited) and not to the
hardware performance. The images have been taken firstly
with the Mi 8 and secondly with the Pocophone F1 in
Session 1 and vice versa in Session 2 (the influence of
the positioning practice in the sessions seems to be higher
than the order of the devices in the database collection).
In addition, it is thought that the near-infrared camera sensor
and the near-infrared LED for both smartphones are very
similar.

Finally, analyzing Fig. 11, all the curves indicate that the
SIFT®) feature extraction algorithm (FLANN feature com-
parison) provides the best performance (EER = 14.76 % for
the full dataset of the Pocophone F1 device and EER = 17.03
% for the full dataset of the Mi 8 device).

Although the Equal Error Rate (EER) analysis is depre-
cated according to the standard [29], the assertions previously
discussed could be summarized in Fig. 12.

The EER, for the three features extraction algorithms,
is given over the different sessions of the datasets (Pocophone
F1 dataset, Mi 8 dataset, and the full UC3M-CV?2 dataset with
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FIGURE 11. Biometric performance: DET curves. The FNMR (False Non-Match Rate) is represented versus the FMR (False Match Rate). The
green (continuous), cyan (line-dot), and red (line-line) curves are respectively for Session 1, Session 2, and Session 1 & 2. (a) Xiaomi©
Pocophone F1 with SIFT®. (b) Xiaomi© Pocophone F1 with SURF®. (c) Xiaomi(© Pocophone F1 with ORB. (d) Xiaomi© Mi 8 with SIFT®.

(e) Xiaomi© Mi 8 with SURF®. (f) Xiaomi© Mi 8 with ORB.

EER (%)

Session | Session 2 Session 1 & 2 Session | Session 2 Session | & 2 Full dataset

UC3M-CV2: Pocophone F1 dataset UC3M-CV2: Mi 8 dataset UC3M-CV2

FIGURE 12. Biometric performance: EER for the Pocophone F1 dataset
(1200 images, 1100 genuine comparisons, and 108900 impostor
comparisons), Mi 8 dataset (1200 images, 1100 genuine comparisons, and
108900 impostor comparisons) and full UC3M-CV2 dataset (2400 images,
2300 genuine comparisons, and 227700 impostor comparisons).

2400 images, 2300 genuine comparisons, and 227700 impos-
tor comparisons).

To conclude the biometric performance, Fig. 13 shows
the DET curve of the selected algorithm, SIFT®), for the
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FIGURE 13. Biometric performance: DET curves for the SIFT® algorithm
(FLANN comparison) using the Pocophone F1 dataset (continuous green
curve), the Mi 8 dataset (line-dot cyan curve), and the full

UC3M-CV2 dataset (line-line red curve).

Pocophone F1 dataset (1200 images), the Mi 8 dataset
(1200 images), and both datasets (2400 images).
These results have been obtained using Matlab® R2019b.
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FIGURE 14. Computing time performance: time invested for the different algorithms (SIFT® SURF® and ORB),

processes, and datasets run on the devices.

TABLE 4. Unit processing time (two samples comparison).

Xiaomi© . . .
Task Pocophone F1 Xiaomi© Mi 8
(ms)
(ms)
Preprocessing 34 28
SIFT® 227 259
Feature
extraction SURF® 63 34
ORB 18 18
SIFT® 6 6
Feature
SURF® 4 4
comparison
ORB >1 >1
SIFT® 317 293
Total SURF® 101 86
ORB 52 46

2) COMPUTING TIME PERFORMANCE
In order to obtain a real-time system for a real daily applica-
tion, after analyzing the biometric performance of the soft-
ware algorithms, the time invested in processing all the tasks
(preprocessing, feature extraction, and feature comparison)
has been measured for the TGS-CVBR®) and PIS-CVBR®
combination.

Fig. 14 provides the computational time of all the processes
run in both devices for the UC3M-CV2 database.
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TABLE 5. Authentication and verification framerates.

Feautre Xiaomi©
extraction 20 Xiaomi© Mi 8
. Pocophone F1
algorithm
SIFT® 3-4 4
Authentication
(FPS, 1 user) SURF® 6-7 7-8
ORB 13-14 14-15
SIFT® 1-2 (*) 1-2 (%)
Identification
SURF® 9-10 10
(FPS, 100 user)
ORB 11 11

(*) Framerate probably too low for real-time processing.

The tasks are listed on the horizontal axis for each dataset
and feature extraction algorithm, while the time, in sec-
onds, spent on each task is listed on the vertical axis. The
Pocophone F1 and Mi 8 datasets have been run on each
device, respectively, and the full dataset (2400 images) on
both smartphones. The preprocessing task has been plot-
ted in green due to its independence to the feature extrac-
tion algorithm. This figure illustrates the fact that, for all
the datasets, devices, and algorithms, the highest cost of
time is in the feature or descriptor extraction and feature
comparison (intraclass and interclass comparison). Also,
it is remarkable that SIFT® is the slowest algorithm, and
ORB is the fastest, as should be expected from their evi-
denced track record. Table 4, reinforces this fact, summa-
rizing the unit processing values for each device. As was
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mentioned in 3) TGS-CVBR®) and PIS-CVBR®) combined:

decision policy section and to test the real influence of these
facts, the authentication/verification, and identification pro-
cesses have been shown in real-time on the devices’ screen.

Table 5 shows the framerate, in Frames Per Second (FPS),
for each feature extraction algorithm and its corresponding
feature comparison algorithm. The FPS rate, shown in the
identification row, evidences a higher computational cost
in identification than in authentication (comparison of 1
user against comparison of 100 users). The table illustrates,
as expected, that SIFT® (FLANN matching) provides the
slowest FPS rate, but 3-4 FPS and 1-2 FPS are probably
enough, depending on the final application, to authenticate
(1 user) and identify (100 users), respectively. The rates for
the three algorithms are higher for the Mi 8 device, showing
for this device a faster processing performance. This fact is in
concordance with the smaller unit processing values obtained
(Table 4) on the Mi 8 device.

IV. CONCLUSION

In this paper, a novel contactless vascular biometric recog-
nition system for wrist vein modality has been created,
tested, and completely embedded into a smartphone. The
non-contact interaction with the smartphone, intended for
screen unlocking and more secure online payments, has been
the motivation behind this work. For this purpose, the near-
infrared camera, and near-infrared LED, originally integrated
for facial recognition into the Xiaomi(©) Pocophone F1 and
Xiaomi(© Mi 8 devices, have been accessed. Two novel
algorithms have been proposed in order to deal with the image
variability due to the absence of physical contact or fixing
mechanism of the wrist area:

1) TGS-CVBR®: algorithm to guide the subject on how
to place the wrist correctly during the collection of the
database and the recognition process.

2) PIS-CVBR®): algorithm in charge of the recognition
goal through the image preprocessing, feature extrac-
tion, feature comparison, and final decision task.

To verify and test the biometric and computing time per-
formance of these algorithms on the two mobile devices,
2400 infrared images from 50 subjects (100 wrists) have been
collected in a contactless way (UC3M-CV2 database).

The results have been focused on the employed fea-
ture or keypoint extraction algorithms: SIFT®, SURF®), and
ORB. The biometric performance analysis shows that the
SIFT®) algorithm provides the best recognition results. The
EER obtained fluctuates between 6,82 % (best case, Session
2 on Mi 8 device) and 18,72 % (worst case, full UC3M-
CV2). As a first approach, using a smartphone camera in
a non-physical-contact way, these values are promising in
order to integrate this technology with the rest of the existing
biometric systems on smartphones. This work provides a low-
cost solution to keep improving the contactless interaction
with these accessible devices. Also, it presents the possibility
of easily integrating the non-contact vascular recognition into
any system, with simple biometric hardware specifications.
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Nevertheless, the biometric recognition values are far from
being acceptable, with a marked opportunity for improvement
considering, for example, the FMR values stated by Apple
Inc.© in fingerprint (Touch ID, FMR = 0.002 % [39]) and
facial recognition (Face ID, FMR = 0.0001 % [40]). Unfor-
tunately, in order to compare the three biometric modalities
into a smartphone, as far as is known, these values are not
available for the devices used. The current State-of-the-Art
of wrist VBR and trendy Deep Learning techniques (CNNs)
applied in other vascular variants, also claim better biomet-
ric performance. They should be considered and compared
taking into account the new scenario proposed in this paper:
smartphone as a capture device, contactless acquisition, and
external environmental light influence.

The computing time performance analysis reflects that
current devices are prepared to process and execute in real-
time these types of algorithms for authentication. The slowest
one, SIFT®), only presents a probably low FPS rate for
identification. This fact is acceptable considering that it is a
proof of concept and that smartphones are usually used only
for verification or authentication applications (e.g., online
payments, bank account access, and screen unlocking), but
not identification (e.g., access control and forensic applica-
tions).

For future works, all efforts will be focused on improving
recognition accuracy.
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