
Received May 8, 2020, accepted June 1, 2020, date of publication June 4, 2020, date of current version June 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999942

Image Object Extraction Based on Semantic
Segmentation and Label Loss
XIAORU WANG 1, PEIRONG XU 1, ZHIHONG YU 2, AND FU LI 3, (Senior Member, IEEE)
1Beijing Key Laboratory of Network System and Network Culture, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Intel China Research Center, Beijing 100190, China
3Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97207-0751, USA

Corresponding author: Xiaoru Wang (wxr@bupt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61672108 and Grant 61976025.

ABSTRACT Object extraction refers to the operation of obtaining an object area from an image based on a
small amount of mark information given by users, which is a key step in image processing. In order to obtain
a complete object profile, current methods usually require a large number of manual annotations, especially
for objects with irregular contours. Since traditional algorithms rely on low-level pixel features without
semantic information, and are based on obvious mathematical assumptions (ie, strong inductive bias), it is
difficult to completely identify objects. At present, in order to improve the integrity of object extraction,
semantic segmentation-based methods increase the complexity and latancy by adding more pre-processing
and post-processing steps. In this paper, we propose a novel model named IOEBSS, which includes a fast
binary plane pre-processing, an improved Deeplab v3+ semantic segmentation model, and an auxiliary loss
function named Label Loss. Through the fast binary plane pre-processing, the model can accelerate the
transformation of interactive inputs. The improved semantic segmentation model makes the extracted results
more semantically complete, and Label Loss is more conducive to gradient flow and accelerates training
convergence. For the above reasons, IOEBSS can accurately and quickly identify objects with complex
contours and colors. On Pascal VOC and COCO datasets, compared to current methods, IOEBSS has a
significant improvement in accuracy, inference speed, and convergence speed.

INDEX TERMS Label loss, object extraction, semantic segmentation.

I. INTRODUCTION
Object extraction is a key operation in image processing.
It determines the area to be reserved and discarded based
on users’ interactive inputs containing a small amount of
foreground and background information, enabling users to
perform subsequent image processing operations such as
image fusion, shape and position editing, etc. MagicWand [1]
is one of the most commonly used object extraction tools of
PhotoShop. The tool is based on the Region Growing algo-
rithm, which exploits a point given by users as a seed point to
expand into a larger area. During the region merging process,
if the similarities between the adjacent points and the points
of the edge of the region are less than the threshold, the adja-
cent points will be merged into the selected region until
no points satisfies the condition. Although Region Growing
does not allow background points to be used as seed points,
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it allows multiple seed points to be merged in parallel, speed-
ing up the extraction. Region Growing relies on the merging
of the low-level features among pixels. When the similarities
in the low-level features of two pixels are large, although they
belong to the same semantic class, they will not be merged
into the same region. Eventually, the algorithm has a problem
that the extraction of the object area is incomplete.

Poisson Matting [2] is an image fusion tool. It combines
the gradient fields of the ROI and the background image,
solves the divergence according to the gradient field, and
combines the calculated boundary constraints to calculate the
fused pixel values. When the background image is blank,
the image formed by the fused pixel values is the result of
object extraction. Therefore, Poisson Matting is equivalent to
the object extraction algorithm that specifies the background
image. This algorithm needs Poisson reconstruction. In the
reconstruction process, a large number of Poisson equations
need to be solved, which makes the algorithm time intensive
and difficult to achieve real-time interactive object extraction.
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GraphCut [3] is a classic interactive segmentation
algorithm. It regards the image as a graph model. Corre-
spondingly, the nodes in the graph model are the pixels
in the image, and the edge between every two nodes is
defined by the feature similarity between the two pixels. The
source node and the terminal node are used to transform
the problem before the solution to a minimum cut problem.
It can be solved according to the maximum flow minimum
cut theorem. When the similarities in the low-level pixel
features are large, GraphCut extracts better and its principle
is clearer than other traditional algorithms. However, the rea-
son why the traditional object extraction algorithms are not
widely used is mainly because of the semantic gap. These
algorithms typically rely on low-level pixel features. Since
different combinations of the same low-level features may
form different semantic information, and the same semantic
information may be composed of different low-level features,
it is difficult for the traditional object extraction algorithms
to obtain the object region completely and accurately. For
example, for GraphCut, when the object area belongs to the
same semantic class but the pixel features are different, it is
often not divided into the same area, which usually leads to
incomplete extraction of the object area. This problem only
turned around after the emergence of semantic segmentation.

In order to step over the semantic gap, the industry has
proposed a large number of algorithms based on semantic
segmentation [1], [4]–[10]. Depending on the type of interac-
tive inputs, object extraction can be divided into trimaps and
strokes. The former divides the image into three areas includ-
ing foreground, background, and to be divided areas. The lat-
ter uses casual graffiti tomark the foreground and background
on the image, and the rest is the area to be divided. These
semantic segmentation based algorithms have two disadvan-
tages. On the one hand, some semantic segmentation-based
algorithms [4], [5], [10] use trimaps as the interactive input
method, which requires users to provide more priori informa-
tion and get more limited in real scenarios. On the other hand,
in order to improve the integrity of the object extraction, these
algorithms [1], [6]–[9] often require complex pre-processing
and post-processing steps, which are not only complicated
but also inefficient.

In this paper, our model consists mainly of a fast binary
plane preprocessing, an improved Deeplab v3+ semantic seg-
mentation model, and an auxiliary loss function (Label Loss).

First we consider the complexities of the pre-processing
and post-processing procedures mentioned above. The pre-
vious method [11] converts the interactive inputs into two
multi-valued planes according to the Euclidean distance, and
the traversal brings a lot of time overhead. At the same time,
post-processing with traditional algorithms further increases
overhead. Our fast binary plane pre-processing converts
users’ inputs directly into two 0-1 binary planes without
traversing the image pixels, and the high precision of the
model is sufficient to replace the post-processing. Therefore,
the model structure is simple and the running efficiency is
high.

In order to improve the semantic integrity of the object
extraction region, we have improved the semantic segmen-
tation model, DeepLab v3+, on the VOC dataset. We fine-
tune the number of input channels and output channels for
IOEBSS to apply to the object extraction task. At the same
time, in order to more accurately understand the interactive
input information and realize the migration from semantic
segmentation to object extraction, IOEBSS replaces the back-
bone network with the more versatile ResNet-101. This
design enhances the ability to extract semantic information
and significantly improves the accuracy of the model.

Since most semantic segmentation models have large
capacity and many parameters, training is very time
consuming, especially starting from scratch. This is a waste
of computing resources and time. In response to this problem,
considering the specificity of the object extraction with inter-
active inputs, we designed an auxiliary loss function named
Label Loss, by requiring the distance between the network
output and the interactive inputs to be as small as possible,
which is more favorable for gradient flowing. It greatly
speeds up the convergence of the network convergence during
training.

The rest of this paper is organized as follows. Sect 2.
reviews the related works, Sect 3. introduces our algorithm
principles, Sect 4. describes our experimental process and
results, and finally we summarizes our work in Sect 5.

II. RELATED WORK
Object extraction has a long-term research. The earliest
research focused on the mapping algorithm, their goal was
to get the transparency α corresponding to each pixel.
Poisson Matting [2] transforms it into a problem that solves
the Poisson equation. Bayes Matting [12] expresses the prob-
lem as a Bayesian form and obtains a transparency matrix
by solving the maximum posterior probability. Closed Form
Matting [13] assumes that the color of a partial window can
be represented as a linear combination of two colors, which
can be solved in a closedmanner without explicitly estimating
the front background. KNN Matting [14] is a non-local map
that assumes that the transparency of non-local pixels can be
obtained by a linear combination of the transparency of pixels
that are close together.

Superpixels group perceptually similar pixels to create
visually meaningful entities while heavily reducing the
number of primitives for subsequent processing steps [15].
Among these methods, Simple Linear Iterative Clustering,
or SLIC [16], is the most widely used one in image process-
ing. Based on k-means with weighted distance metrics, SLIC
limits search space to areas proportional to superpixel size
to reduce complexity. However, the local area association is
unable to catch long-range and global context information,
which leads to inaccurate object extraction.

Watershed Segmentation [17], [18] is a morphological
segmentation method imitating the map immersion pro-
cess. It combines edge detection and region growing to
achieve neighbourhood-based segmentation and get multiple
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connected areas. Therefore, for many disconnected object
areas(e.g. partially occluded parts), Watershed Segmentation
usually cannot get complete segmentation results.

Active Contour [19], [20], or Snake, is a object segmen-
tation method based on object contours. It takes an image
and an initial contour as input and minimizes internal force
and external force to make the contour close to the edge of
the object by iterations. However, due to the energy equation
is not intrinsic, this method encounters difficulties when the
object area consists of multiple parts.

The above methods are based on certain mathemati-
cal assumptions, such as independence assumptions, linear
assumptions, etc. In many cases the assumptions are not true
and the interactive input processing is not sufficient.

A direct study of the object extraction algorithm beganwith
interactive segmentation. GraphCut [3] and GrabCut [21] are
representatives based on graph theory. GraphCut [3] views
this problem as the separation between two point sets con-
taining the source and terminal points. GrabCut is an iterative
method to further improve the accuracy of the segmenta-
tion. Lazy Snapping [22] uses clustering and precomputa-
tion based on GraphCut to provide real-time feedback to
users. Normalized Cut [23] uses the cluster grouping tech-
nique to calculate similar pixel feature regions based on the
graph. These algorithms are based on fewer mathematical
assumptions than matting-like algorithms and have a signif-
icant improvement in effect. However, due to the seman-
tic gap, these algorithms cannot identify complex objects,
so their application is limited in real scenes. At the same
time, graph-based algorithms require a lot of calculations,
especially as the image resolution increases, the time spent
will grows at a geometric rate.

In recent years, since FCN [24] established a basic frame-
work for semantic segmentation, the use of codec structure,
pre-trained model, abandoning fully connected layers, and

feature fusion, have become the main technologies of seman-
tic segmentation. Later studies proposed more techniques,
such as dilated convolution [25], [26], conditional random
fields [27], [28], pyramid feature modules [25], [29], and neu-
ral architecture searches [30], [31]. Based on FCN, amodel of
object extraction is designed in [11], and post-processingwith
GraphCut greatly exceeds the performance of the previous
methods. But the model contains complex pre-processing and
post-processing, which is too cumbersome and inefficient.
In addition, there are methods such as AlphaGan [4] and
Deep Image Matting [5], but they require the trimap planes
as inputs, which needs more prompts from users and does not
conform to the application in real scenes.

The above methods based on semantic segmentation often
require trimaps as inputs, which leads to users having to
give enough prompt information through cumbersome oper-
ations, and the application of in real scenes is limited.
Moreover, the complicated pre-processing and post-
processing brought by the improvement of precision leads
to excessive overhead, which greatly reduces the running
efficiency.

III. OBJECT EXTRACTION MODEL BASED ON SEMANTIC
SEGMENTATION AND LABEL LOSS
As shown in Fig.1, the overall structure of our model is
divided into three stages. In the first stage, to transform the
users’ inputs into two binary planes, we propose the fast
binary plane pre-processing, which significantly accelerate
processing. In the second stage, to get accurate and complete
object areas, we exploit the improved semantic segmentation
model, which transforms the 5-channel tensor into an object
area mask with better semantic integrity. In the third stage,
to accelerate gradient flow, we design an auxiliary loss func-
tion named Label Loss, which makes the network converge
much faster during training.

FIGURE 1. The framework of our model.
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A. FAST BINARY PLANE PRE-PROCESSING
The following quads is a basic unit for training the model.

{I ,P,N ,BM} (1)

where I is the original input image, P(Positive Plane) rep-
resents the foreground plane, N(Negative Plane) represents
the background plane, and BM(Binary Mask) represents
the mask of the object area, which is a binary plane and
can be transformed from masks of the senmantic segmen-
tation dataset. Since semantic segmentation is a multi-class
task, a mask in a dataset typically contains multiple classes.
In order to get precise class label as ground truth of each class
from a mask, we separate all classes of a mask into multiple
planes, which are BinaryMasks.

In order to get PositivePlane and NegativePlane, collecting
manual labels is usually adopted. However, this method is
not suitable for the task of this paper. On one hand, the cost
is unbearable because it takes a lot of time to mark every
image. On the other hand, this method is not adaptive. Once
the dataset is changed, it needs to be marked again. So we
take the method of simulating users’ inputs. But due to the
different habits of different users, we can’t simulate interac-
tive inputs of each person, so a random point selectionmethod
is necessary. By randomly simulating users’ points as inputs,
the foreground point set S1 and the background point set S0

are obtained, and the two planes are generated as follow.

Pti,j =
sgn(r − min∀kd((i, j), S tk )+ 1)

2
, t ∈ {0, 1} (2)

where d(A,B) =
√
(Ax − Bx)2 + (Ay − By)2 represents the

Euclidean distance, sgn represents the sign function, S tk repre-
sents the kth point in the point set, and r represents the radius
of the point. This method has two advantages. The first is that
the conversion from point sets to planes is fast, because there
is no need to calculate the values of all pixels, the model only
needs to calculate the values of the points near the point set
generated by users. The second is that models trained in this
way are adaptive to trimap-style data directly.

Reference [11] sets restrictions to random points selection.
we believe that these restrictions will lead to tendency of the
model. Therewill be a deviation of extraction results when the
interactive inputs violates these restrictions. The following
experiment also proves this. In this paper, we eliminate these
restrictions to achieve better generalization.

B. IMPROVED SEMANTIC SEGMENTATION MODEL
Typically, the number of channels in the output layer of a
semantic segmentation network is equal to the number of
semantic classes. In the semantic segmentation processing,
using different datasets result in different numbers of output
channels of the network. For example, the number of output
channels of a network trained on the Pascal VOCdataset is 21,
because there are 20 object classes and 1 background class.
In the object extraction processing, we need to distinguish
only two classes: foreground and background. Therefore,

setting the number of channels to 2 in the output layer is nec-
essary. This segmentation network predicts two probabilities
for each pixel, which are the probabilities being a foreground
point and a background point. When the current is larger
than the latter, this pixel is regarded as a foreground point,
otherwise a background point.

Nowadays, Deeplab v3+ is one of the best performing
semantic segmentation models on the Pascal VOC 2012
dataset. Our work shows that it can be migrated to the object
extraction task with slightly modification. In our model,
we replace the backbone network with ResNet-101(other
resnet variants achieve similar performance but increase com-
plexity) on the basis of the original model. This mainly beca-
sue ResNet is more generalized and adaptable to different
tasks with the residual structure. Moreover, the object extrac-
tion task with interactive inputs is less complex than general
semantic segmentation while Xception-65 is a network with
a large parameter space and more likely to fall into local
optimumis. So it is not suitable for the task in this paper. The
following experiment also proves it.

The semantic segmentation task often takes 3-channel
RGB images as inputs. And because of the integration
of interactive inputs(Positive Plane and Negative Plane),
the number of channels has increased to 5. Therefore the
model is difficult to optimize with the pre-trained ResNet
model. However, the work of [32] shows that it is not nec-
essary although the pre-trained model can help the network
converge faster in some degree. Even if the pre-trained model
is not used, the same accuracy can be achieved. Our experi-
ments also show that the precision of our model exceeds other
methods with pre-trained models with only a few clicks.

C. LABEL LOSS
Semantic segmentation is a multi-class task, so it is reason-
able to take cross entropy as the loss function. However,
simply updating the parameters through cross entropy in
object extraction process is quite slow because the network
needs to understand the connection between the interactive
inputs and the object regions. But it is easy to let the output
be exactly the same as inputs (Positive Plane) or completely
different(Negative Plane). This way is equivalent to learning
the mapping.

f (x) = x or f (x) = x (3)

Therefore, our design comes from the idea that learning the
local identity mapping and then spreading to the object area
to achieve faster training speed.

In object extraction process, points with a value of 1 in the
foreground plane must be predicted to be 1 by the network,
and points with a value of 1 in the background plane must
be predicted to be 0 by the network. This is because the
two planes are the priori information given by users and the
network output must be consistent with it.

All cases about network output and two planes are listed
in Table 1. The loss function should be 0 in the correct and
unknown cases, and maximum in the wrong cases. So that
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FIGURE 2. Our model extracts different objects based on interactive inputs.

TABLE 1. The relationship between interactive inputs and network
output.

it penalizes network output that is inconsistent with users’
inputs. Moreover, the loss function should be mapped to the
real number field. According to this design, our proposed
label loss expression is as follow.

Loss = σ {

∑
[S1(S1 − L)2 − S0(S0 − L)2]

W × H
} (4)

where S1 and S0 represent the foreground plane and the
background plane respectively. The square and multiplica-
tion are the operations of the corresponding element of the
planes. W and H represent the width and height of the
two-dimensional plane, respectively. And σ (x) = 1

1+e−x is
used to map the value to (0, 1). Our experiments below prove
that Label Loss can significantly increase the converge speed
of network training.

IV. EXPERIMENTS
The IOEBSS model proposed in this paper includes an effi-
cient binary plane pre-processing, a high precision finetuning
semantic segmentation model, and an auxiliary loss function
that is more conducive to gradient flow. In order to show
the role of these stages, we introduced the measurement
experiments of accuracy, inference speed and training speed
in 4.3.1, 4.3.2, and 4.3.3 respectively. The experiment about
how the accuracy and the training time of the model are
affected by backbones and Label Loss is introduced in 4.3.4.

A. DATASETS AND METRICS
The Pascal VOC 2012 dataset [33] is one of the pop-
ular datasets and benchmarks for semantic segmentation

currently. It contains 17125 JPEG images, only 1464 seman-
tic and instance segmentation labels are used as training sets,
and 1449 semantic and instance segmentations labels are
used as validation sets. There are 20 classes for semantic
segmentation, numbered 1-20, and the background number
is 0. Reference [34] increased the number of images of the
dataset to 10,582, which is a commonly used training set
for semantic segmentation models. Similarly, we used the
augmented semantic segmentation dataset for training and an
instance segmentation validation set for testing.

The COCO dataset is called MS COCO and is a generic
image dataset proposed by Microsoft [35]. COCO2014 and
COCO2017 are the two main versions used, the former with
instance segmentation labels and the latter with material
segmentation and panoramic segmentation, so the latter is
not suitable for object extraction. Therefore, we tested the
trained model with the COCO2014 validation set. Since the
COCO dataset contains a total of 80 classes, 20 of which are
identical to the 20 classes of Pascal VOC 2012, 60 are unique.
Therefore, we tested according to the 20 seen classes of data
during model training and the 60 unseen classes of data.

Our next experiment mainly used Pascal VOC 2012 as
the measurement data for various indicators. For a better
comparison with the previous state-of-the-art, we exploit the
COCO dataset as an aid in measuring accuracy and mIoU.

To evaluate our model, we used a range of metrics. In terms
of the accuracy of object extraction, we calculate Pixel
Accuracy (PA) and mean Intersection over Union(mIoU) of
the segmentation results. The latter, as our main evaluation
criterion, is also adopted by most semantic segmentation
researchers.

B. SETTINGS
In the stage of training the model, the Pascal VOC 2012
semantic segmentation augmented dataset is adopted and
resized to the size of 513 x 513. After pre-processing, each
RGB image can generally correspond to multiple masks with
object areas. We simulate users’ inputs completely randomly
in the manner mentioned above, dynamically generating pos-
itive and negative planes during training. During training,
we simulate users’ inputs by creating 15 front-background
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pairs of points for each image. We have found that too many
clicks make it difficult for the network to recognize the con-
nection between the front-background planes and the object
mask, and too few clicks causes the network to focus only on
the front-background planes, ignoring the information of the
RGB image itself. In addition, we take the Adam optimizer,
setting the size of the mini batch to 4, the learning rate to
0.0001, and the radius r of the front-background points to 5.

In the test and comparison stage, we first test the accu-
racy and mIoU of the model on the Pascal VOC 2012 and
COCO2014 instance segmentation validation sets. The for-
mer exploits the entire dataset while the latter exploits
100 images in each class. In general, the training set and
test set should be 1:1 in size. However, in practice, there
is often a lack of accurately labeled datasets, so we still
use one of the common datasets in semantic segmentation,
Pascal VOC 2012 (20 classes), for training. At the same time,
in order to verify the generalization ability of the model,
we test the model on 20 seen classes and 60 unseen classes
in COCO2014. High performance on unseen classes means
strong generalization ability. Then we measure the infer-
ence time of a series of methods including our model on
different resolution images. 100 images at each resolution
are measured. The images used for these measurements are
from the Pascal VOC 2012 dataset. Then we measure and
compare the training time of the model according to the data
provided in [11]. Finally, our experiments explore the effects
of different semantic segmentation methods.

In order to verify the effectiveness and advancement of the
proposed method, we choose a series of common methods
in the following experiments, such as MagicWand, Poisson
Matting, and GraphCut, as well as state of the art [11], which
serves as the baseline.

C. RESULTS AND ANALYSIS
As the number of front-background points increases,
the ‘‘tips’’ obtained by the model increase, and the mIoU of
the extracted object area increases accordingly. In this case,
we plot the mIoU as a function of the number of points.
In order to compare with [11], and their work is not publicly
implemented, we draw and compare based on the data they
provide.

The result of Fig.3 shows that our model leads the algo-
rithm and model including [11] on the Pascal VOC 2012
instance segmentation verification set. In the 20 seen classes
of COCO2014, our model performance is comparable to [11].
And in the 60 unseen classes of COCO2014, our model
surpasses other methods.

1) ACCURACY AND MIOU
Fig.4 shows the results of various methods including our
model on Pascal VOC and COCO datasets. The leftmost
column represents the RGB image and users’ interactive
inputs, green for the front points and red for the background
points. Each of the other columns presents the output of a
method.MagicWand tends to pick out areas with close colors.

The GraphCut algorithm often has large areas of false seg-
mentation, and Poisson Matting destroys the pixel distribu-
tion of the original image. Baseline here refers to the [11]
model, we reproduce it according to the principle, and find
that their model is more accurate than the traditional algo-
rithms, but still in some areas with complex deformation, and
the edge processing is not perfect. Our model is very close to
Ground Truth, with subtle differences on only a few edges.

The mIoU performance of several object extraction meth-
ods on the Pascal VOC dataset is shown in Table 2.We test the
mIoU achieved after 20 clicks, the number of clicks required
to reach 85%mIoU, and the accuracy achieved after 10 clicks.
Since MagicWand, Poisson Matting, and GraphCut still can’t
reach 85% after 20 clicks, we record it as 20+. It can be seen
that in the extreme case our model is significantly ahead of
othermodels, and achieving the same effect with fewer clicks.

TABLE 2. Comparison of other common object extraction methods.

2) INFERENCE TIME
We measure the time required for different methods to infer-
ence images with the same size. As shown in Table 3 since we
can’t get the implementation of [11], we can only estimate the
lower running limit. The time of their models is mainly spent
on the generation of the front-background planes, as well as
the GraphCut post-processing.

TABLE 3. Comparison of different methods of inference time.

Our model greatly simplifies pre-processing compared to
other deep learning models, making slower CPU-based serial
computations as less as possible, resulting in a much faster
inference.

3) TRAINING TIME
According to the results of [11] and our experiments, Fig.5
shows the comparison of training time. We find that the
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FIGURE 3. Performance of common methods and our model on COCO2014 and Pascal VOC 2012 instance segmentation verification set.

process of FCN model from 32s to 16s to 8s is very lengthy
and unnecessary. It is efficient to train end-to-end systems
directly. Our model can be trained in just 10 hours on a single
GPU without any pretrained model.

In practical applications,users’ experience is related to the
speed of object extraction. In large scale commercial sce-
narios, too slow extraction speed will affect the commer-
cial interests of the product, which is why many traditional
object extraction algorithms are still used. Our model exhibits
extremely high performance at three different resolutions of
256 × 256, 512 × 512, and 1024 × 1024 (Table 3). Even
at a large resolution of 1024 × 1024, our algorithm has still
about 14 fps. The most deadly problem with other methods is
that they rely heavily on CPUs rather than GPUs. Since CPUs
perform serial calculations, there is still a high latency even
in the case of a small total computation. While [11] also takes
GPUs for inference, its pre-processing needs to calculate the
value of every pixel, and GraphCut post-processing further
slows down the speed.

4) EFFECTS OF BACKBONES AND LABEL LOSS
In order to explore the impact of different segmentation
models on object extraction accuracy, we try a variety of
models. Table 4 shows that Label Loss can reduce the time
to train the maximum mIoU to approximately half without
affecting accuracy. Noting that in Deeplab v3+ (ResNet-101),
the addition of label loss can even improve performance in the
case of several clicks (4-10 clicks).

TABLE 4. Comparison of accuracy and iteration times of different
backbones.
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FIGURE 4. Results of object extraction given by different methods.

5) ANALYSIS ON STRENGTHS AND WEAKNESSES
The advantages of our proposed method are that previ-
ous object extraction methods can achieve faster inference
speed, higher accuracy, and less training time. For traditional
methods, the main advantage of our proposed method is
that it can identify regions with semantic features. This is
because our method is based on data learning, and semantic
knowledge is contained in labeled data, while traditional
methods are not. For deep learning-based methods, the main
advantages of our proposed method are that it reduces
unnecessary post-processing, reduces the complexity of pre-
processing, and also improves the training speed of the
model.

As far as the baseline is concerned, they used a gray value
of 0-255 in the preprocessing to represent the area clicked
by the user, which will cause a large number of traversals
and greatly reduce the inference speed. Our method only
performs a binary representation according to the user’s click,
and only needs to calculate the points near the clicked posi-
tion, thus reducing the time consumption. In addition, they
performed GraphCuts on the output of the semantic segmen-
tation model, which will greatly increase the time overhead,
and our method does not need to use post-processing.

Finally, our proposed label loss is a new loss function for
interactive tasks. It turns out that most methods based on
deep learning only use cross entropy, L1, L2 loss, and do
not directly use the prior information given by the user to
calculate the loss. This requires the model to take a long
time to understand the prior information. Relationship with
object area. And our label loss achieves fast model training by
directly minimizing the difference between the model output
and these prior information.

The disadvantage of our proposed method is that, because
the semantic segmentation model attaches importance to the
understanding of the overall semantics of the image, the abil-
ity to extract regions with weak semantics is insufficient. For
example, it is difficult for IOEBSS to extract some strange
subsea areas, because these areas may have weak semantics.
Since there are similar problems in semantic segmentation
(for example, there is only one chair leg, most existing meth-
ods are difficult to segment correctly), we believe that this
is a deficiency of the semantic segmentation model itself.
However, this deficiency may be gradually resolved with
the development of semantic segmentation research. At this
point, if these regions have high local similarities (brightness,
texture, etc.), traditional methods that rely solely on pixel
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FIGURE 5. Training time spent by different methods.

features may perform slightly better. However, once these
areas with weak semantics show complex local features,
the traditional method often loses effect.

V. CONCLUSIONS AND FUTURE WORK
The traditional object extraction algorithms have low accu-
racy, and they are difficult to identify the object regions
with large difference in low-level pixel features and strong
semantic relevance. Methods based semantic segmentation
add more pre-processing and post-processing, which leads to
slow training and inference. In this paper, we propose a new
object extraction model to deal with these problems. With
the help of the fast binary plane pre-processing, a stronger
semantic segmentation network, and Label Loss, our model
achieves higher accuracy, faster model convergence speed
and inference speed on Pascal VOC and COCO datasets.

In the future, we will explore whether high precision
object extraction can be used to improve the precision of
semantic segmentation. Simulating interactive inputs to opti-
mize the results of semantic segmentation may be a feasible
approach. In addition, we hope to find other applications and
extensions of Label Loss in interactive tasks.

Besises, using a stronger semantic segmentation model is
definitely a way to improve accuracy, but it cannot funda-
mentally solve the problem of extracting regions with weak
semantics. This problemmay need to start with the amount of
data. However, the data for semantic segmentation is scarce
and expensive. We recommend using unsupervised semantic
segmentation and training a large number of image data to
achieve a more robust object extraction method.
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