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ABSTRACT Within the MicroGrid environment, the Energy Resource Management (ERM) problem
becomes highly complex due to the uncertainty related to the Renewable Generation (RG) such as Pho-
tovoltaic power generation (PV), Electric Vehicle (EV) trip with Grid to Vehicle (G2V) or Vehicle to
Grid (V2G), Energy Market price and load demand with Demand Response (DR) programs. Each of these
issues should be tackled while optimizing revenues and reducing the running costs of Virtual Power Player
(VPP) that collects each of these types of energy resources from the MicroGrid. This article presents a
new hybrid optimization algorithm called ‘‘Hybrid Levy Particle Swarm Variable Neighborhood Search
Optimization’’ (HL_PS_VNSO) to solve the ERM problem. Its key aspect is the hybridization of the Particle
Swarm Optimization (PSO) and the Variable Neighborhood Search Optimization (VNS) algorithm with the
enhanced step length using Levy Flight. The effectiveness of the proposed approach is measured by a 25-bus
MicroGrid with 500 uncertain scenarios of the aforementioned uncertainty. The results of HL_PS_VNSO are
compared with the most advanced optimization algorithms. The findings show that HL_PS_VNSO’s results
are superior for the Average Ranking Index (A.R.I) and Ranking Index (R.I). For effective comparative
analysis of algorithms, the traditional statisticalmethod calledOne-wayANOVATukeyAnalysis is used. The
results from this analysis also prove the superiority of HL_PS_VNSO over the most advanced optimization
algorithms.

INDEX TERMS Energy resource management, hybrid Levy particle swarm variable neighborhood search
optimization, microgrid, demand response, electric vehicle, electricity market.

I. INTRODUCTION
In the MicroGrid context, the growing emergence of uncer-
tain Distributed Energy Resources (DERs) such as solar PV,
Demand Response (DR) programs, Electric Vehicles with
G2V or V2G feature, Energy Storage Systems (ESSs) and the
uncertain market price of energy are challenging the func-
tioning of distribution networks. As a consequence, energy
aggregators or Virtual Power Player (VPP) must tackle uncer-
tain sources in a real-world microgrid problem. To do this,
VPP needs a powerful technique to cope with the increas-
ing variety of uncertainties. When important actions have to
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be undertaken every day in advance to optimize profit by
lowering operating costs, day-to-day energy planning is a
great challenge in the management of energy sources. How-
ever, owing to the vast number of energy sources and their
inherent uncertainties, the ERM problem transforms into a
Mix-integer nonlinear problem (MINLP) [1], which makes it
quite complicated.

In the last decade, many Evolutionary Computation Tech-
niques (ECT) have been widely used to solve the ERM prob-
lem with different uncertainty. In [2] Bacterial Foraging (BF)
used for the MicroGrid optimization with the consideration
of the cost of emissions as well as the operation and main-
tenance. Energy management in hybrid energy systems is
discussed using the Interior Search Algorithm (ISA) [3].
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Some of the popular ECT like Simulated Annealing [4],
Particle Swarm Optimization (PSO) [5], Crow Search
Algorithm (CSA) [6], Genetic Algorithm (GA) [7]–[10]
and Tabu search (TS) [8] are used for ERM problem with
different uncertainty. Artificial Bee Colony suggested [11]
to address the day-ahead ERM in MicroGrid by taking
into account uncertainties related to RG, EVs trip, market
price and load demand. The Firefly Algorithm (FA) pro-
posed in [12], for the Economical scheduling with opti-
mized battery sizing. In [13] optimal scheduling is done
by Imperialist Competitive Algorithm (ICA) in MicroGrid
environment with uncertainty related to RG and load demand.
Home Energy Management problem with uncertainty related
to electricity price and solar PV is solved by Natural
Aggregation Algorithm (NAA) [14]. Microgrid optimization
with uncertainty related to RE source and cogeneration is
achieved using the Efficient Heuristic Algorithm for Schedul-
ing Energy Production (CHASE) [15]. Recently, hybrid or
modified algorithms are becoming popular because of its
competence to solve real-world complex problems. Signaled
PSO (SiPSO) [16], Which is the updated variant of PSO
with a signaling mechanism to tackle the ERM problem
in the MicroGrid environment. In [17] the basic Gravita-
tional Search Algorithm (GSA) is updated by self-mutation
to prevent getting stuck in the local optima to solve the
problem of energy resource scheduling. Adaptive Modified
Firefly Optimization Algorithm (AMFA) [18], a refinement
of the Firefly Algorithm utilizing a self-adapting approach
to accelerate global space exploration. Enhanced variants of
PSO called Gaussian Mutated PSO (PSO-MUT) [19] and
Application Specific Modified Particle Swarm Optimization
(ASMPSO) [20] are used to address MicroGrid scheduling
in different scenarios. Modified Bacterial Foraging Opti-
mization (MBFO) [21] technique suggested minimizing the
operating cost as well as emission simultaneously. Hybridiza-
tion of Simulated Annealing (SA) with initialization using
Ant Colony Optimization (ACO) is proposed to tackle the
ERM issue with high penetration of EVs [22]. Multi-period
Artificial Bee Colony (MABC) [23] with uncertainty pre-
diction using a Markov chain is applied for energy manage-
ment. In [24], the performance of Differential Search (DS)
and Quantum Particle Swarm Optimization (QPSO) is com-
pared with its hybrid called HDSA and HQPSO for the
energy management problem. The comparison reveals that
HDSA gives better result in terms of profit and opera-
tion time as compared to the aforementioned algorithms.
The modified version of PSO called Guaranteed conver-
gence Particle Swarm Optimization with Gaussian Mutation
(GPSO-GM) [25] and Adaptive Modified Particle Swarm
Optimization algorithm (AMPSO) [26] are presented to solve
the ERM problem. The GECAD (Polytechnic of Porto) group
organized the competition on ‘‘Optimal scheduling of dis-
tributed energy resources’’ [27]. In this competition, Variable
Neighborhood Search algorithm (VNS), Modified Chaotic
Biogeography-based Optimization (CBBO) with Random
Sinusoidal Migration and Cross-Entropy with Evolutionary

Particle Swarm Optimization (CEEPSO) secured the first,
second and third rank respectively. Grey Wolf Optimization
with Fuzzy Logic (FL-GWO) is used for ERM and optimal
battery sizing in microgrid environment [28]. The optimal
allocation of renewable generation and energy storage system
for economic benefits is done by Grey Wolf Optimization
(GWO) [29]. In [30], Lezama proposed the hybrid-adaptive
Differential Evolution (HyDE) algorithm for the ERM with
uncertainties and compared it with the various version of DE.
In MicroGrid with load and RE uncertainty, artificial fish
swarm algorithm (AFSA) [31] is used for ERM. The Modi-
fied PSO suggested for real-time ERM with optimal usage of
battery [32].

Hybridization of GA and SA is suggested in [33] for
the optimal scheduling of the sources of energy in the
islanded and grid-connected modes of a MicroGrid. In [34]
author developed the hybridization of VNS and DEEPSO
with cross-entropy characteristic for the optimal schedul-
ing in a MicroGrid. The GECAD group in collaboration
with Delft University organized the competition [35] on
ERM problem in a microgrid with 100 uncertain scenarios
at IEEE-WCCI/CEC conference, 2018. In this competition,
Variable Neighborhood Search Optimization- Differential
Evolutionary Particle Swarm Optimization (VNS-DEEPSO),
Enhanced Velocity Differential Evolutionary Particle Swarm
Optimization (EVDEPSO) and PSO with Global Best Per-
turbation (PSO-GBP)/Chaotic Evolutionary Particle Swarm
Optimization Algorithm (CEPSO) got the first, second and
third rank respectively. Table 1 provides the summary of
the literature survey of the ECT techniques used for ERM
problem with consideration of different uncertainty related to
renewable generation (RG), forecasting load demand, Elec-
tric Vehicles (EVs) trips and Electricity Market (EM) price.
In TABLE 1 the marks ‘3’ and ‘x’ indicate the consideration
and no consideration of uncertainty, respectively in a respec-
tive reference.

Thus, the above-mentioned literature survey reveals the
fact that, despite the modification and hybridization of algo-
rithms, the objective of near-optimal solutions remains a
major challenge in the field of optimization. No free lunch
theorem [36] of optimization also proves that it is very
difficult to find an algorithm that consistently provides the
near-optimal and robust solution for all types of complex
non-linear problems. Recently, hybridization of evolutionary
algorithms has become popular in resolving the ERM prob-
lem due to their ability to handle non-linearity and uncer-
tainty.

In summary, a robust hybrid optimization technique is key
to achieving the near-optimal solution in a complex ERM
problem with the highly uncertain environment. The arti-
cle, therefore, has the following contributions to obtain a
near-optimal solution:

1. Developed an effective hybridization of the PSO
and VNS algorithm with the enhanced step length
using Levy Flight entitled as ‘‘Hybrid Levy Particle
Swarm Variable Neighborhood Search Optimization’’
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TABLE 1. Literature survey of evolutionary computation techniques used for the ERM problem with different uncertainty.

(HL_PS_VNSO). HL_PS_VNSO secured the second
rank in IEEE-CEC/GECCO, 2019 competitions. [37].

2. The HL_PS_VNSO algorithm has the near-optimal
solution for a model developed by GECAD group for
solving the day ahead energy resource scheduling prob-
lems in a MicroGrid with high uncertainty owing to
Solar PV generation, load forecasting, EVs trip and
Electricity Market price.

3. To prove the effectiveness and robustness of the
HL_PS_VNSO algorithm, it is compared with the com-
petition participated algorithms. The comparative anal-
ysis is carried out in terms of average fitness, standard
deviation, R.I and A.R.I.

4. A statistical method entitled as One-way ANOVA
Tukey analysis is used for the effective comparative
study.

After the introductory portion, this article contains the fol-
lowing sections: Part II. Problem Formulation of ERM with
uncertainty, HL_PS_VNSO algorithm in Part III. Part IV.
consists of Test case and result analysis and Conclusion is
given in Part V.

II. PROBLEM FORMULATION OF ENERGY RESOURCE
MANAGEMENT (ERM) WITH UNCERTAINTY
A. VIRTUAL POWER PLAYER (VPP) ENERGY
MANAGEMENT
The VPP aims to increase the profit by minimizing the oper-
ating cost of energy resources and maximize the income
by selling the spare energy into the electricity markets. The
objective function is converted into minimization of function
f and represented by equation (1). Figure 1 illustrates the
Energy Resource Management in MicroGrid by VPP with
an uncertain environment. Where, VPP can buy the energy
from the dispatchable DGs, renewable energy sources (i.e.
PV units) and prosumer through the DR program. VPP can
also buy or sell the energy from or to the energy storage
units, Electricity Markets (EMs) and Electric Vehicles (EVs).
After accumulating the energy from all the resources, opti-
mal scheduling of energy is done by the VPP through the
optimization and sells the energy to different types of load
(i.e. residential, commercial and industrial load), EVs and
EMs. The cost of buying the energy from the different energy
sources is considered as an operating cost of VPP and the cost
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FIGURE 1. Energy resource management in MicroGrid by VPP with the uncertain environment [38].

of selling the energy to the electricity market is considered as
an income of VPP.

Minimize_f = O.CDay+1
total − IncomeDay+1total (1)

where ‘Day’ is the day before the optimal scheduling is done
by VPP. O.CDay+1

total represents the total operating cost (O.C)
of the resources managed by the VPP in a day advance. Total
income generated by VPP is represented by IncomeDay+1total .

The minimum value of f (hopefully negative) is the profit
of the VPP. If f is negative it is expected to have a profit
otherwise, O.C is higher than Income. Thus, the profit is
P = −f , where P is the profit. Nevertheless, for the goal
in optimization terms is to obtain the minimum value of
f in the metaheuristics form (2), as shown at the bottom
of the next page. In equation (2), O.C consists of the cost
of dispatchable distributed generation (DG), external power
suppliers, discharge of energy storage systems and electric
vehicles, penalization of non-supplied demand, penalization
of DG units’ generation curtailment and Demand Response
(DR) programs.

The indices are represented by: DG is an index of dis-
patchable distributed generation units; EPS is an index of
external power suppliers; PV is an index of photovoltaic
power generation units; ESS is an index of energy storage
systems; EV is an index of electric vehicles; LD is an index
of loads; SN is an index of scenarios; t is an index of a time
slot.

The parameters are described by: NDG is the total number
of DG units; NEPS is the total number of external power

suppliers; NPV is the total number of photovoltaic power gen-
eration units; NESS is the total number of energy storage units;
NEV is the total number of electric vehicles; NSN is the total
number of considered scenarios; NLD is the total number of
loads. T is the total number of time slots. CDG(DG,t) is the cost
of generation of DG unit in slot t (m.u./kWh); CEPS(EPS,t) is
the cost of generation of EPS in slot t (m.u./kWh); CPV(PV,t) is
the cost of PV units in slot t (m.u./kWh); CDis(ESS,t) is the dis-
charge cost of ESS in slot t (m.u./kWh); CDis(EV,t) is the
discharge cost of EV in slot t (m.u./kWh); CGC(DG,t) is the
generation curtailment cost of DG unit in slot t (m.u./kWh);
CNSD(LD,t) is the non-supplied demand cost of load LD in slot
t (m.u./kWh); CCutDR(LD,t) is the DR load curtailment cost in
slot t (m.u./kWh)

The variables are described by: The Operating cost (m.u)
is respresented as O.C; PDG(DG,t) is the active power gen-
eration by DG unit in slot t (kW); PEPS(EPS,t) is the active
power generation by EPS in slot t (kW); Active power gen-
eration by PV unit in slot t for scenario SN (kW) is rep-
resented by PPV(PV,t,SN ); PDis(ESS,t,SN ) is the active power
discharge by ESS in slot t for scenario SN (kW); The active
power discharge by EV in slot t for scenario SN (kW)
is represented by PDis(EV,t,SN ); PGC(DG,t,SN ) is the active
PNSD(LD,t,SN ) power generation curtailment by DG unit in
slot t for scenario SN (kW); PCutDR(LD,t,SN ) is the active
power non-supplied demand of load LD in slot t for sce-
nario SN (kW); PCutDR(LD,t,SN ) is the active power curtail-
ment of load LD by DR program in slot t for scenario
SN (kW); π (SN) is the probability of occurrence of the
scenario SN.
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The VPP can receive its income by buying and selling of
energy in the electricity markets [39].

Income =
NSN∑
SN=1

T∑
t=1

( NEM∑
EM=1

(PBuy(EM,t)

− PSell(EM,t)).MP(EM,t,SN )

)
• π (SN) (3)

In equation (3), Income consists of the cost of buying and
selling of energy in the electricity markets. EM is an index
of energy markets. NEM is the number of electricity markets.
MP(EM,t,SN ) is the energy market price in slot t for scenario
SN (m.u./kWh).

The variables are described by: Income is the VPP income
(m.u.); PBuy(EM,t) is the active power buy from electricity
market EM in slot t (kW); PSell(EM,t) is the active power sell
to electricity market EM in slot t (kW).

For the objective function (1) network considers the
constraints of the power balance equations, EVs, ESSs,
DR program and electricity market. For more details about
the constraints please refer [39].

B. MODELING OF UNCERTAINTY
For the day ahead ERM, VPP completely relies on the fore-
cast of uncertain sources like load demand, PV generation,
market price and EVs trip. Assumption of an accurate forecast
could create catastrophic failure of MicroGrid if actual data
is different from the forecast. To cope up with this problem,
the Monte Carlo Simulation (MCS) technique is applied for
the scenario generations and reduction by considering the
past data and trend of uncertain sources [40]. In MCS tech-
nique, the probability distribution function (PDF) is used to
produce scenarios using the equation (4). Figure 2 shows the
graphical representation of the scenario generation over each
time slot t.

xSN (t) = xpredict (t)+ xerror,SN (t) (4)

FIGURE 2. Scenario generation over each time slot t.

where, xerror,SN (t) is a normal distribution function with
mean zero and standard deviation σ , xpredict (t) is predicted
value of variable x at t time and xSN (t) is the final value of
variable x for scenario SN at t time. Also, in contexts of static
metrics, the scenario curtailment method is used to exclude
low-probability scenarios and aggregate the high-probability
scenarios. Specific information on this technique is presented
in [40].

The MCS technique generates the 5000 distinct uncertain
scenarios of load production, PV generation and market price
with forecast error using the normal distribution method
of 10%, 15% and 20% respectively. The tool presented in [41]
is used for the generation of uncertainty related to EVs trips.
For this problem, the MCS approach reduced the scenarios
to 500, depending on the highest probability of occurrence of
scenario.

C. FITNESS FUNCTION
The fitness function presented in equation (5) is the sum of
the objective function equation (1) and the aggregate penalty
for violation of network constraints.

Fit(X ) = f + ρ
NCON∑
i=1

max[0, ci] (5)

O.C =
T∑
t=1

NDG∑
DG=1

CDG(DG,t) × PDG(DG,t) +
T∑
t=1

NEPS∑
EPS=1

CEPS(EPS,t) × PEPS(EPS,t)

+

NSN∑
SN=1

T∑
t=1





NPV∑
PV=1

CPV(PV,t) × PPV(PV,t,SN )

+

NESS∑
ESS=1

CDis(ESS,t) × PDis(ESS,t,SN )

+

NEV∑
EV=1

CDis(EV,t) × PDis(EV,t,SN )

+

NDG∑
DG=1

CGC(DG,t) × PGC(DG,t,SN )

+

NLD∑
LD=1

CNSD(LD,t) × PNSD(LD,t,SN )

+

NLD∑
LD=1

CCutDR(LD,t) × PCutDR(LD,t,SN )



• π (SN)



(2)
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FIGURE 3. Working of fitness function [38].

where, X represents the solution vector. ci is the magnitude
of ith constraint, NCON is the total constraints and ρ is the
penalty factor. Fit(X ) is the value of fitness function (m.u)
for the solution vector X .
By taking into account the uncertain sources in the solution

vector, the fitness function is modified based on the scenario
created by the MCS defined by equation (6).

FitSN (X ) = f (X + δSN ) (6)

where, δSN is the alteration of variable in scenario SN,
FitSN (X ) represents the fitness function for the scenario SN.
The fitness function mean and standard deviation [37] for the
scenarios SN can be calculated using the equation (7) and (8)
respectively:

MEAN_FitSN (X )

=
1
NSN

NSN∑
SN

f (X + δSN ) (7)

STD_FitSN (X )

=

√√√√ 1
NSN

NSN∑
SN=1

[f (X + δSN )−MEAN_FitSN (X )]2 (8)

where, MEAN_FitSN (X ) and STD_FitSN (X ) are the mean
and the standard deviation of fitness function over the
500 scenarios.

The total number of times, the function evaluation is calcu-
lated by equation (9), which depends on the considered pop-
ulation, iteration and scenario for the solution of a problem.

FEs = Np∗NSN ∗Niteration (9)

where, Np is the total number of particles; NIteration is the
total number of Iterations; FEs is the total number of function
evaluations.

Figure 3 illustrates the internal functioning of the fitness
function. The fitness function receives the input data as an
array such as test case information, specific parameters, ini-
tial solutions and the number of scenarios (500 scenarios are
considered for the competition). The internal functioning of
the fitness function randomly chooses the 500 high probabil-
ity scenarios from the total available scenarios and evaluate
the fitness values of it. As an outcome, we get the fitness value
of fitness function for each selected scenario as well as the
solution of it in a matrix form.

The layout of the solution is an integral part of meta-
heuristics to display a given solution. The solution format
adopted for this problem follows the vector representation as
shown in Figure 4. The solution is represented as a vector
of six-group of variables named as a group (1) active power
output of DGs, group (2) generator binaries, group (3) EVs
charge/discharge, group (4) ESSs charge/discharge, group (5)
demand response of load and group (6) electricity market
price. In each 1-hour duration, the vector comprising a total
of 142 separate variables, which are reproduced chronologi-
cally for 24 hours. Thus, the total size of the solution vector
for the 24 hours is 24∗142 = 3408 variables. In a solu-
tion vector, all variables are continuous variables, apart from
group (2) generator binaries. Group (2), binary of generator,
refers to binary variables used to denote that a generator is
coupled (’1’’ value) or detached (’0’ value). Further informa-
tion about the internal functioning of fitness and solution are
available in [37].
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FIGURE 4. Solution of the problem [37].

III. HYBRID LEVY PARTICLE SWARM VARIABLE
NEIGHBORHOOD SEARCH OPTIMIZATION (HL_PS_VNSO)
The HL_PS_VNSO is the hybrid version of VNS and PSO
with levy flight step length. In which VNS is used for the
effective initialization of the population to get the near opti-
mal solution in minimum execution time.

A. VNS ALGORITHM
The VNS [42] approach is to extend the local hunt and allow
systemic improvements in the neighborhood and to address
complicated problems. In VNS, the first task comprises the
setting of the VNS strategic parameter and then initializing
the population using equation (10).

Xp,D =
(XMAXD − XMIND )

2
(10)

where, Xp,D is the initial position of the pth particle for
dimension ‘D’ of the solution vector, Where, XMAXD and
XMIND is the upper and lower bound of vector ‘D’. After
the initialization of the particles, identify the best particle
based on the minimum value of the fitness function using
equation (5). After finding the best particle, call the Levy
PSO. In which the best particle of VNS considers as an initial
position.

V new
p = A.F1∗[(Pbest − Xp)+W ∗C (Gbest − Xp)

+U (0.2, 0.2, 1). ∗ Step_Length. ∗ (Xp − Gbest )]

(11)

B. LEVY PSO
Levy PSO is the modified version of PSO with levy dis-
tribution without inertia term. The new velocity in Levy
PSO defined by equation (11). Where, the first, second and
third step named as Perception, Cooperation and Levy step
respectively. The product of the sum of all the three steps

and Acceleration Factor_1(A.F_1) gives the new velocity of
particle ‘p’. Where A.F1 is used to increase the exploration
of search space and U (0.2, 0.2, 1) represents the uniform
random number between (0.2,1) with an interval of 0.2. The
detail information about the three steps are given below:

1) PERCEPTION
In this step, the personal best particle Pbest followed the cur-
rent position of particle Xp. The perception term helps in the
exploitation of the local search area to obtain the sub-optimal
solution.

2) COOPERATION
In this concept, the global best particle Gbest followed by
the current particle position. The Gbest is the particle, which
has the minimum value of fitness function among all tested
particles. Here, WC is the cooperation weight obtain by the
random number between (0,1). In equation (11), W ∗C is the
mutation of cooperation weight obtain by equation (12).
The cooperation term useful for the exploration of global
search space to obtain the sub-optimal solution.

3) LEVY STEP
It is a random walk, the length of which is derived from
the Levy distribution as described in equation (13). Where,
‘u’ and ‘v’ obtain from the normal distribution. The most
species (e.g. swordfish and Silky sharks) and insects use Levy
flights to hunt for food [43]. In HL_PS_VNSO algorithm,
the function of levy step is to efficiently exploit and explore
the search space to obtain the global solution. The behavior of
Levy flights in 50 successive steps beginning at origin (0,0)
is illustrated in Figure 5.

W ∗C = [0.5+ rand(0, 1)− (1./(1+ eWC ))] (12)

Step_Length =
u

|v|1/β
(13)

108788 VOLUME 8, 2020



D. Dabhi, K. Pandya: Uncertain Scenario Based MicroGrid Optimization

FIGURE 5. Illustration of levy flight [44].

where, u = rand(0, 1)∗Sigma, v = rand(0, 1)

Sigma =
{

0(1+ β) ∗ sin(5 ∗ β)
0[(1+ β)/2] ∗ β ∗ 2(β−3)

}1/β
(14)

where, β called levy coefficient.
The new velocity V new

p given by equation (11) is the opti-
mal step length of particles to get the optimal solution. The
size of the step length is neither too low nor large; else,
the solution gets stuck into local minima. Thus, to design the
method in such amanner that the optimumvalue and direction
of the step size would be given to achieve the sub-optimal
solution in a sufficient amount of time. If the present veloc-
ity obtained by equation (11) exceeds the boundary point,
it should be enforced by equation (15).

V new
p =

{
VMin
p +L.F(V

Max
p −VMin

p )......if ..V new
p >VMax

p

VMin
p +L.F(V

Max
p −VMin

p )......if ..V new
p <VMin

p

(15)

Here, the Limit Factor (L.F) enhance and keep the step length
within the boundary limit.

Xnewp = A.F2∗
(
Xp + V new

p

)
(16)

After finding the new velocity V new
p , determine the new posi-

tion of each particle ‘p’ using equation (16). Equation (16)
is the updated version of the standard new position equation
as defined in all the population-based algorithms by using
Acceleration Factor_2 (A.F_2) to speeds up the particle dis-
placement process and prevent it from falling into the local
minima.

Figure 6 shows the movement of HL_PS_VNSO algo-
rithm, in which the current position Xp mutated by the A.F2
and it becomes the mutated current position X∗p . Then the
vector summation of X∗p and new velocity V new

p gives a new
position Xnewp . Where V new

p is the vector sum of the term
perception, cooperation and levy step.

Figure 7 illustrates the flowchart of HL_PS_VNSO algo-
rithm, which apply for the ERMproblem in a highly uncertain
environment. The flowchart of the HL_PS_VNSO algorithm
has the following steps:
Step 1 (Initialization by VNS): Here, VNS used for the

effective initialization of the considered particles, for that first

task comprises of setting the VNS strategic parameter and
then initializing the particle population using equation (10).
Step 2: Set iteration to zero and determine the fitness of

each initialized particle using the fitness function defined in
equation (5) and find the best particle based on the minimum
values of fitness function and then update the iteration.
Step 3: Improve the position of each particle by VNS to

obtain the best particle.
Step 4: If iteration becomes greater than or equal to two,

then call Levy PSO otherwise go to step-3.
Step 5 (Levy PSO): - Set the Levy PSO parameters and

then initialize position and velocity between upper and lower
bound by randomization.
Step 6: Determine the fitness function of each initialized

particle and the best particle provided by VNS, and then
update the memory based on the minimum fitness value.
Update the iteration count by one.
Step 7: Replicate each particle’s actual position, then

update the memory by the replicated and best existing
particle.
Step 8: Randomly produce a number between [0, 1] and

if its value exceeds the probability of local search, go to
Step-9 for exploring the global search space, otherwise go to
Step-13 for the exploitation of local search space.
Step 9: (Global exploration):- Update the velocity and

position of each particle using equation (11) and (16) respec-
tively.
Step 10: Using equation (12), adjust the weight of the

replicate population to generate the new particles.
Step 11: Impose the limit, if the current and replicate

particles violating the limits.
Step 12: Determine the fitness function of each existing

and replicated particle to obtain the global best particle and
then go to step-16.
Step 13 (Local Search):- Using local search, determine the

new location of the existing particles.
Step 14: Impose the limit, if the current particles violating

the limits.
Step 15: Determine the fitness function of each existing

particle to obtain the global best particle.
Step 16: Upgrade the memory of HL_PS_VNSO by the

global best particle.
Step 17: Update the iteration, and then check the cutoff

limit of iteration.
Step 18: If the cutoff limit is crossed, exit from the

HL_PS_VNSO algorithm or else proceed to step-7.

IV. TEST CASE AND RESULT ANALYSIS
In this test case, the network shown is a real distribution
system of a housing area in Portugal. The system is comprised
of 24 underground lines linked with the main grid through
the transformer at bus 1. All evaluated algorithms are tested
for the 25-bus MicroGrid network contains 500 scenarios of
uncertain sources such as PV units, 36 EVs, 90 residential
loads with demand response scheme, 2 ESSs and 2 EMs.
Table 2 shows the test case data of the 25-bus network in
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FIGURE 6. Movement of HL_PS_VNSO algorithm.

TABLE 2. Test case data [39]

terms of variable type, cost, power range and the number
of units. Detail information about the case study available
in [37]. Figure 8 represents the diagram of a 25-bus Micro-
Grid network.

The VPP’s objective is to optimally utilize the accessible
distributed energy resources of the 25-bus MicroGrid. For
that, HL_PS_VNSO algorithm was applied to solve the ERM
problem under uncertain condition. To verify the efficacy

and robustness of algorithms, for all competing algorithms
we find the 20 final solutions (one for each run or trial) for
the ERM problem. In each run, a maximum 50,000 function
evaluations are allowed.

To prove the effectiveness of theHL_PS_VNSO algorithm,
the results of HL_PS_VNSO are compared with the compe-
tition participated algorithm such as Gauss Mapped Variable
Neighborhood Particle Swarm Optimization (GM_VNPSO),
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FIGURE 7. Flowchart of HL_PS_VNSO algorithm.

CUMDANCauchy-C1: Cellular Estimation Distribution
Algorithm, PSO-GBP, Cross-Entropy Variable Neighbor-
hood Differential Evolutionary Particle Swarm Optimization
(CE_VNDEPSO) and EVDEPSO. The results of above all
listed algorithms have been extracted from the competition
database [37].

The HL_PS_VNSO algorithm is tested on a 64-bit operat-
ing system Intel Core(TM)-i3 processor with 8GB of RAM
operating on Windows 10. MATLAB R2016b is used to
address the HL_PS_VNSO algorithm.

A. FINE-TUNING OF HL_PS_VNSO PARAMETERS
One of the most critical aspects of the design of any
metaheuristic technique is the calibration of the strategic

parameters. In the HL_PS_VNSOmethod, a variety of exper-
iments have been carried out to evaluate the optimum values
of the strategic parameters. In these experiments, fix the
size of population and no. of iteration to evaluate the fitness
function closer to limit of 50,000 evaluations as per equa-
tion (9), but the other strategic parameters, such as Accel-
eration Factor-1 (A.F1), Acceleration Factor-2 (A.F2), Limit
Factor (L.F) and local search probability altered to their opti-
mum range. The results of the experiments give the optimum
value of the strategic parameters as shown in Table 3 based
on the best value of the Average Ranking Index (A.R.I).

After tuning the parameters of HL_PS_VNSO algorithm,
it is used to solve the day ahead ERM problem. The per-
formance of HL_PS_VNSO is compared with all tested
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FIGURE 8. 25-bus network [45].

TABLE 3. The parameters of HL_PS_VNSO.

algorithms in terms of average fitness and standard deviation
for each run as shown in Table 4. The average fitness is
the mean value of the fitness function over the 50,000 func-
tion evaluations in each run as per the equation (7). The
standard deviation is the deviation of the fitness function
over the 50,000 function evaluations in each run as per the
equation (8).

R.I = MEAN_FitSN (X )+ STD_FitSN (X ) (17)

Table 5 presents the Ranking Index (R.I) of all evaluated
algorithms as per the equation (17). The R.I is the sum of
average fitness and standard deviation over 50,000 function
evaluations in each run as per given in Table 4. In the case
of metaheuristic optimizationmethods, the initial populations
are created randomly. As a result, all the methods obtain dif-
ferent optimal solutions in every run (trial). So, for comparing

the performance of various metaheuristic methods, the simu-
lations are carried out many times (e.g. 20 runs) and the Rank-
ing Index (R.I) are found out for each run. Table 5 reveals that
HL_PS_VNSO has the best values of R.I in almost all 20 runs
except 10, 11, 15, 16 and 17 runs. In runs 10, 11, 15, 16 and
17 the proposedHL_PS_VNSO algorithm gives inferior solu-
tions as compared to the other two methods (GM_VNPSO
and CE_VNDEPSO). So in 75% runs HL_PS_VNSO algo-
rithm gives the best value of R.I compared to all tested
algorithms. Out of 20 runs, the HL_PS_VNSO algorithm
gives the best R.I in run 14 of value 78.53. It means that for
this run HL_PS_VNSO gives the best solution for the ERM
problem out of 20 runs. The best solution of run 14 given by
the HL_PS_VNSO algorithm is provided in Table 10. This
solution consists of the optimal scheduling of the different
energy resources within the constraints limit.

Table 6 shows the Average Ranking Index (A.R.I) of all
tested algorithms for 20 runs obtained using equation (18).
Here, NRuns is the number of runs used for the calculation
of A.R.I. Table 6 also provides the average fitness, standard
deviation, best and worst fitness function over 20 runs for all
tested algorithms.

A.R.I =
1

NRuns

NRuns∑
i=1

(MEAN_FitSN (X )+ STD_FitSN (X ))

(18)
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TABLE 4. Average fitness and standard deviation of algorithms in each run.

TABLE 5. Ranking index (R.I) of algorithms over 20 runs.

TABLE 6. Algorithm comparison over 20 runs.

As seen in Table 6, the HL_PS_VNSO algorithm obtained
the lowest A.R.I of value 84.10 m.u., which is the sum of
the average fitness and the standard deviation. The minimum

value of A.R.I. means that, the operating cost is less or
profit is high. The other tested algorithms like GM_VNPSO,
CE_VNDEPSO, CUMDAN Cauchy-C1, EVDEPSO and
PSO-GBP got the second, third, fourth, fifth and sixth rank
respectively in terms of A.R.I.

It is obvious from the comparison that HL_PS_VNSO
delivers the best outcomes compared to all tested techniques
in terms of A.R.I. The best and worst operating cost of
HL_PS_VNSO is 3.76m.u. and 284.93m.u. respectively. The
worst value of the operation cost obtained by HL_PS_VNSO
is also the lowest compare to all tested algorithms. The
standard deviation given in Table 6 indicates the variability
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TABLE 7. Tested algorithms iterations and mean execution time.

of the fitness function over 20 runs. Out of all tested algo-
rithms, HL_PS_VNSO provides the lowest value of the stan-
dard deviation of 47.52 m.u. Which shows the robustness of
HL_PS_VNSO algorithm.

Table 7 provides the assessment of the algorithms in terms
of no of iterations and mean execution time. The execution
time is also an essential aspect of checking the robustness
of any algorithm. Table 7 reveals that, in terms of mean
execution time, HL_PS_VNSO is ranked fourth among all
tested algorithms. Whereas other algorithms such as CUM-
DAN Cauchy-C1, CE_VNDEPSO, PSO-GBP, GM_VNPSO
and EVDEPSO are ranked first, second, third, fifth and sixth
respectively, but the A.R.I of them are quite high relative to
HL_PS_VNSO. Therefore, an algorithm which provides the
optimal solution in the lowest mean execution time would
gain the benefit of solving this kind of large-scale problem
in a limited time. The HL_PS_VNSO has discovered the best
solution in a reasonable time, which indicates the efficacy of
the suggested strategy.

However, a comparison focused solely on R.I indicates a
weak approach to evaluating the results. Apart from the real-
ity that the R.I value of HL_PS_VNSO is lower than all tested
methods, it is important to verify whether all the methods
have a statistically significant difference from each other in
terms of R.I. For that, use the statistical test named as One-
wayANOVATukey’s Honestly Significant Difference (HSD)
test.

B. STATISTICAL TEST
One-way ANOVA [46] is a statistical approach used to verify
the R.I of all the algorithms evaluated for each run shows any
noticeable variations. In this respect, a test of the hypothesis
is used to confirm the performance. In this test, the degree of
significance is set at 5% to verify the statistical differences
between the all tested algorithms. The one-way ANOVA test
gives a meaningful finding, if the value of ‘P’ given by test
is below 0.05, then it may be assumed that there is ample
statistical proof that any one or more algorithms are substan-
tially different from the other in terms of R.I. The limitation
of One-way ANOVA is that it can only show that the R.I of all
algorithms has substantial variances, but it cannot provide the
details on which one algorithm differs from the others. For
this purpose, a pairwise comparison test, known as Tukey’s
Honestly Significant Difference (HSD) test [47], is conducted

TABLE 8. Result of ONE-WAY ANOVA.

TABLE 9. TUKEY HSD result.

to categorize the which algorithms are substantially different
from HL_PS_VNSO.

The one-way ANOVA analysis provides a value of ’P’
below 0.05 as seen in Table 8, suggesting a major differ-
ence between one or more algorithms. Then after using the
Tukey HSD test for pairwise assessment. In this test first step
is to find the critical value (Qcritical) from the studentized
range distribution table [48] based on the a = 6 treat-
ments (algorithms) and degrees of freedom DF = 114 as
given in Table 8. The critical value obtained from the studen-
tized range distribution table is 3.172. Then, calculate the Q-
statistic as per equation (19) for all the pairwise comparison
with HL_PS_VNSO algorithm. The values of Qi,j are given
in Table 9.

Qi,j =

∣∣yi − yj∣∣√
(MS)
NRuns

(19)

where, i, j = 1, ..a, i 6= j. yi− yj is the difference between the
A.R.I of the compared pair of algorithms. M = 62.6 is the
Mean Square for within algorithms as given in Table 8.

Table 9 reveals that for all pairwise treatments, the mag-
nitude of Tukey HSD Q statistic Qi,j is higher than Qcritical
except for the pairwise treatment between HL_PS_VNSO
andGM_VNPSO. This implies that the R.I of HL_PS_VNSO
and GM_VNPSO are approximately the same but substan-
tially different from the remaining algorithms in each run.
Whereas in terms of A.R.I, the HL_PS_VNSO algorithm
provides the best outcome relative to all tested algorithms.
Also as seen in Table 7, HL_PS_VNSO offers the solution
in lower mean execution time as compared to GM_VNPSO.
So overall the HL_PS_VNSO provides the best solution for
ERMproblem in a highly uncertain environment as compared
to all tested methods.

V. CONCLUSION
In the Microgrid context, the extensive usage of uncertain
sources of energy such as PV, ESSs, DR schemes, V2G and
Electricity Markets with various scenarios making the ERM
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TABLE 10. Solution of HL_PS_VNSO.

challenge highly dynamic and high-dimensional. To solve
this problem with maximum profit, the VPP must use the
appropriate method.

This article suggested a hybrid version of VNS and PSO
with levy flight step length and entitled as Hybrid Levy Par-
ticle Swarm Variable Neighborhood Search Optimization’’
(HL_PS_VNSO). In the proposed method, the VNS is used
for the effective initialization of the population to reach
towards the near-optimal solution in minimum iterations and
execution time. The use of the levy step in the PSO algorithm
enhances the global exploration capability of the proposed
algorithm.

The HL_PS_VNSO algorithm is applied for the
ERM problem under highly uncertain environment. The
robustness and efficacy of HL_PS_VNSO are compared
with the most advanced optimization algorithms namely
GM_VNPSO, CE_VNDEPSO, CUMDAN Cauchy-C1,
EVDEPSO and PSO-GBP. Comparative evaluation reveals
that HL_PS_VNSO provides the low value of R.I and A.R.I
relative to the algorithms described above. This means that
VPP acquires maximum profit by using the HL_PS_VNSO
algorithm. Statistical evaluation by the one-way ANOVA
Tukey HSD test further confirms its superiority by demon-
strating that the R.I of HL_PS_VNSO is statistically

substantially different from the above-listed algorithms
except for the GM_VNPSO algorithm. But in terms of A.R.I
and mean time of execution, HL_PS_VNSO offers better
performance than GM_VNPSO. Eventually, the suggested
HL_PS_VNSO approach produces optimal performance and
demonstrates that it is capable of coping with practical prob-
lems containing a wide variety of uncertainty.

In the future, HL_PS_VNSO will be used to tackle an
extremely dynamic MicroGrid network with large integra-
tion of unpredictable energy sources and a broad range of
scenarios.

APPENDIX
The optimal solution of the HL_PS_VNSO algorithm is pro-
vided in Table 10.
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