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ABSTRACT With the deep integration of cyber physical production systems in the era of Industry 4.0,
smart workshop dramatically increases the amount of data collected by smart device. A key factor in
achieving smart manufacturing is to use data analysis methods for evaluating the equipment reliability and
for supporting the predictive maintenance of equipment. Based on these insights, this paper proposes a deep
learning-based approach that uses time series data for equipment reliability analysis. First, a framework of
the TensorFlow-enabled deep neural networks (DNN) model for equipment reliability analysis is presented.
Secondly, using time series equipment data, an evaluation strategy of equipment reliability based on deep
learning is proposed. Finally, the reliability of a cylinder, an important part of the small trolley in automobile
assembly line, is evaluated in a case study. Compared with the traditional reliability analysis method such
as PCA and HMM, the prediction results show a significant improvement in prediction accuracy. This work
contributes to promoting artificial intelligence algorithms for realizing highly efficient manufacturing.

INDEX TERMS Reliability analysis, time series data, deep learning, smart manufacturing.

I. INTRODUCTION
With the evolution of Industry 4.0, workshop tends to become
cyber-physical production system with the characteristics of
real-time perception, dynamic control and information ser-
vices [1], [2]. The reliability of manufacturing equipment is
the basic guarantee for a stable and continuous production
in the workshop. The health status of an equipment affects
its utilization and production efficiency. Although modern
manufacturing systems have high redundancy, unpredictable
failure can still break through this redundancy protection.
Discrete manufacturing industries such as automobiles, avi-
ation, and household appliances require efficient and con-
tinuous operations. Accidental failures will delay the order
completion time and cause serious economic losses. It is
crucial to model the equipment degradation process by using
time series data, analyze the reliability of the equipment, and
evaluate the risk of its failure.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jixiang Yang .

In an intelligent manufacturing environment, industrial
sensor networks acquire data at a high frequency [3], [4].
With the rising popularity of multi-functional low-power sen-
sor nodes and the increase of data interfaces of the intelli-
gent equipment, manufacturing enterprises can easily get the
data sets of the whole life cycle of an equipment. However,
there are a few shortcomings in sensor data acquired from
the equipment such as being time limited, fragmented and
inconsistent, which have poor correlation with other data
types, and existing random interference noise [5]. Intelligent
fault prediction or reliability analysis is an open issue for
predictive maintenance of the industrial equipment [6], [7].
Advanced machine learning algorithms and statistical theo-
ries are required to mine knowledge from the equipment data.
The health status of an equipment should be identified, and
scientific reference should be provided for reliable operation
and predictive maintenance.

Model-driven conditionmonitoring plays an important role
in understanding and tracking the degradation process during
the life cycle of the manufacturing equipment [8], [9], such
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as operation, standby, maintenance, partial failure, and com-
plete failure. This paper introduces a TensorFlow-enabled
deep neural networks (DNN) model for equipment reliability
analysis based on time series data. The target of this model
is to achieve active maintenance of the equipment rather than
the conventional maintenance. The contributions of this paper
are as follows:
• Considering that a shallow learning model cannot effec-
tively characterize the complex mapping relationship
between signals and health status of the equipment in
the context of big data, we propose a DL-based multi-
classification prediction method by using time series
sensor data for short-term status monitoring.

• TensorFlow, an open source machine learning frame-
work, is introduced in the system modeling. With the
advantage of its analysis efficiency and convergence
speed, the equipment status can be predicted in real-time
based on the time series data.

• Based on the equipment degradation model, the relia-
bility of the equipment in the next stage change can be
evaluated by the time series prediction results. An equip-
ment reliability strategy for early warning is established
to provide scientific guidance for the predictive mainte-
nance of the equipment.

This paper is structured as follows: Section II presents
the TensorFlow-enabled deep neural network (DNN) system
architecture for equipment reliability analysis. Equipment
reliability evaluation strategy based on time series data is
proposed in section III. Section IV conducts a case study of
the cylinder of a small trolley in the automobile assembly line.
Section V concludes the paper.

II. LITERATURE REVIEW
Equipment reliability analysis is mainly conducted to quan-
tify the probability of equipment failure. Poor reliability
of equipment will lead to a high probability of equip-
ment failure. Yang et al. [10] proposed a simple yet effec-
tive supervised deep hash approach, which constructed
binary hash codes from labeled data for large-scale image
search. Makantasis et al. [11] proposed a deep supervised
learning-based classification method that hierarchically con-
structs high-level features in an automated way. These ref-
erences are the main motivation behind the research work
presented in this paper.

Deep learning is a method for representing data and for
learning data in machine learning. TensorFlow was used to
integrate one-dimensional or two-dimensional convolutional
neural networks (CNN) in [12]. Considering the complex-
ity of the reliability analysis model and the objectivity of
the equipment data set, we propose a TensorFlow-enabled
DNN model to simulate the degradation process of the
equipment. According to Zio [1], the knowledge, informa-
tion, and data available for the modeling, computations,
and analyses done in reliability engineering are rapidly
increasing. The degradation model for health management
of equipment is increasingly made of heterogeneous and

highly interconnected elements. Lei et al. [13] proposed an
intelligent fault diagnosis method using unsupervised feature
learning for mechanical big data. The proposed unsupervised
two-layer neural network achieved high diagnosis accuracies
for the motor bearing dataset, compared to existing methods.
Gal and Ghahramani [14] used dropout as a Bayesian approx-
imation to estimate uncertainty with a DNN model. Com-
pared with traditional reliability analysis methods, machine
learning methods (e.g., DNN) have been applied widely
with the features of parallel processing, fault tolerance,
self-learning and self-monitoring.

Time series data are measurement sequences that describe
the behavior of time-varying systems or equipment. The
application of time series-based prediction methods in the
fields of medicine, aerospace, finance, commerce, mete-
orology and entertainment were introduced in [15], [16].
Khodayar et al. [17] developed a DNN structure based on
stacked autoencoder and stacked denoising autoencoder for
ultra-short-term and short-term wind speed predictions. The
experiment results showed that the DLmodel was feasible for
short-term predictions. Deb et al. [18] summarized state of
the art machine learning methods for predicting time series-
based energy consumption. The authors concluded that a
hybridmodel comprised of two ormore prediction techniques
was more effective for time series prediction. Considering
the randomness of equipment deterioration, in this paper,
we evaluate the risk of equipment failure through short-term
and medium-term predictions. The motivation behind the
work presents in this paper is to discover the critical time node
and support active maintenance when the running status of
equipment changes.

III. SYSTEM ARCHITECTURE
In this section, the system architecture of equipment reliabil-
ity analysis based on time series data is presented in Fig. 1,
which shows the system architecture from three aspects,
namely, data collection, model training, and model serving.
The data collection is the base layer to support the model
training. Model training is the foundation of the model serv-
ing layer.

A. DATA COLLECTION
Data collection is an important step in equipment reliability
analysis, which includes bottom data collection and data pre-
processing. Industrial IoT is characterized by heterogeneity,
diversity and dynamic. Cognitive technology-enabled IIoT
helps to realize semantic representation and sensor data cor-
relation [19]. MQTT, A TCP-based protocol characterized by
its concise and lightweight features, is suitable for low broad-
band, high latency, and unstable network environments [20].
InfluxDB is an open source distributed database of time series
events and metrics. It is popular for storing real-time IoT
data. Kafka Streams, a Java library relying on Apache Kafka,
is used to build distributed flow processing programs. In this
scenario, Kafka Streams is deployed as a distributed flow
platform to connect MQTT and InfluxDB. In the database,
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FIGURE 1. System architecture of reliability analysis for equipment time series data.

unexpected data loss or the noise in the sensor-read data from
equipment should be pre-processed with combining internal
data with external features.

And the data preprocessing includes data cleaning, data
completion, and data transformation. Data cleaning is used to
delete duplicate information and correct existing errors. Data
completion completes missing data for ensuring consistency.
Data transformation enables the collected data to meet statis-
tics calculation or analysis need.

B. MODEL TRAINING
TensorFlow is an open source software library for numerical
computation using data flow graphs. In TensorFlow, com-
putations are carried out using tensors. A tensor is defined
as a vector or n-dimensional matrix representing the data.
Human-computer interactive mode of computation is realized
by building computational structural graph, which reduces
the difficulty in the development of DLmodels. The data flow
graphs describe mathematical computations with directed
graphs of nodes and edges. When the input tensors are ready,
the nodes will be assigned to processing units to make asyn-
chronous parallel computing. Computation graphs can also
be compiled and be optimized to separate the definition of
graphs from the actual computing process. We use Keras
to build the related models, which is an integrated tool for
building the neural network model based on backends includ-
ing TensorFlow, Theano and CNTK. Keras includes highly
modular and easily expandable neural networks API, and
supports most kinds of ANN models.

C. MODEL SERVING
TensorFlow provides SavedModel mechanism to export. The
trained models are saved as external files for external services

or subsequent applications. Using real-time state data, the
equipment status is evaluated with a multi-classification pre-
diction model online. With the prediction performance status
of the equipment acquired from time series data, we can
track the degradation process of the equipment and provide
condition-based maintenance according to its performance
degradation.

Intelligent manufacturing puts high emphasis on equip-
ment collaboration and efficiency. Unexpected downtime
caused by equipment failure will cause serious economic loss
tomanufacturing enterprises. Therefore, it is crucial to adapt a
reasonable condition-based maintenance strategy. The inter-
val between abnormal events of the equipment is predicted
to provide scientific guidance for on-demanded maintenance,
and the prediction result is an important reference for equip-
ment health management.

In this paper, we conduct research on the cylinder of a small
trolley in automobile production line. The duration of the
cylinder operation such as lifting or falling is closely related
to its performance. Considering that the operation duration
of an aging cylinder will gradually increase, the operation
duration can be used to monitor the process of performance
decay of the cylinder. Based on the operation duration of the
cylinder, we can predict the operation status using the DNN
model with time series data. It is helpful in the maintenance
of the cylinder before a failure occurs.

IV. EQUIPMENT RELIABILITY ANALYSIS MECHANISM
This section establishes the equipment reliability anal-
ysis mechanism based on equipment time series data.
First, we build a TensorFlow-enabled DNN model for
multi-classification in equipment status monitoring. Then,
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FIGURE 2. Multilayer feedforward neural networks.

real-time series data are used to monitor the equipment status
by using database interface technique. Finally, based on the
predicted equipment status distributed in time series, we pro-
pose the reliability evaluation strategy for equipment.

A. MULTI-CLASSIFICATION MODEL OF EQUIPMENT STATE
1) DEEP NEURAL NETWORK
Deep neural network is a representation learning method in
machine learning, which is based on a multi-layer network.
The learning ability of multi-layer networks is stronger than
a single layer or several layers perceptron. Multi-layer feed-
forward neural network is a typical example [21] as shown in
Fig. 2. The feedforward network is a static non-linear map-
ping. By compound mapping of simple non-linear processing
units, the multi-layer feedforward network can approximate
continuous functions with a high accuracy, and has strong
ability for classification and pattern recognition.

A training set used for multi-layer feedforward neural
network is shown in (1).

D = {(x1, x2, x3, . . . , xi, . . .)(y1, y2, y3, . . . , yi, . . .)},

xi ∈ Rd , yi ∈ Rl (1)

where d denotes the number of input neurons and l denotes
the number of output neurons.

Let the connection weight be υij between the ith neuron in
the input layer and the jth neuron in the hidden layer. Then the
input received by the jth neuron in the hidden layer is given
as follows:

αj =
∑d

i=1
υihxi. (2)

By denoting the connection weight between the kth neuron
in the hidden layer and the lth neuron in the output layer as
ωkl , the input received at the output layer is (3).

βl =
∑q

h=1
ωklbh. (3)

The total number of neurons in the hidden layers is given by
q. The learning process of the neural networks adjusts the
weights such as υij and ωkl , and the threshold θi by using
the training data. For the q-layer feedforward neural network,

the transform relation between the input and output can be
denoted by (4).

s(q)i =
nq−1∑
j=0

ω
(q)
ij x

(q−1)
j , (x(q−1)0 = θ

(q)
i ,ω

(q−1)
i0 = −1)

i = (1, 2, . . . , nq); j = (1, 2, . . . , nq−1);

q = (1, 2, . . . ,Q) (4)

2) KEY TECHNOLOGIES
Based on the time series data in InfluxDB, we conduct the
pre-processing process including regularization and feature
scaling for the incomplete observed data. The DNN model is
built to track the state change of the equipment with Keras.
We present the key techniques used in the model as follows.

a: ONE-HOT ENCODING
In the process of model training, character features rep-
resented by numerical values can influence the prediction
model. To solve this problem, one-hot encoding n-bit state
register to encode n states. This encoding process carries
out the binarization of the features. Thus converts them
into a form that could be provided to the machine learning
algorithms. When it comes to deep supervised model, this
method solves the problem that the classifier cannot handle
the attribute information, and it plays the role in expanding
the data labels or the features of the model. As an exam-
ple, consider a natural state code [000, 001, 010, 011, 100,
101]. After one-hot encoding, the code becomes [000001,
000010, 000100, 001000, 010000, 100000]. Each indexed
data reflects three running states, namely, [good, fair, poor].
The one-hot coding for these states is given by [001, 010,
100].

b: ACTIVATION FUNCTION ReLU
Activation function introduces nonlinearity into the neurons
and helps the neural network to approximate a non-linear
function. The choice of activation function has an important
influence on the quality of the neural network. Rectified
Linear Unit (ReLU) is a commonly used activation function
in ANNs, which is expressed by f (x) = max(0, x).
Other common activation functions are sigmoid and tanh.

The gradients of sigmoid and tanh are very close to zero
in the saturation zone. This can easily lead to the problem
of vanishing gradient, and slow down the convergence rate.
On the other hand, the gradient of ReLU is constant in most
cases, which helps to solve the convergence problem in a deep
network.

c: SOFTMAX FUNCTION
Softmax is used to map the output of multiple neurons into
probability in a network classifier. It calculates the probability
of all the possible classes or features considered in a machine
learning model. SoftMax is used to map the output value of
multiple neurons in the sum of (0,1) as 1. The probability
value for the ith class is shown in (5). When there is a discrete
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variable with n possible values, the softmax function in the
output of a classifier represents n different probabilities in
deep supervised learning.When the network gives the output,
the maximum value (probability maximum) is selected as the
prediction value. Therefore, SoftMax function may be more
suitable for a multi-classification problem.

Si =
ei∑
j e
j . (5)

d: CROSS-ENTROPY LOSS FUNCTION
Cross entropy loss is a measure of the precision of the model
in the training process. It is one of the most widely used loss
functions in DL, and is mostly applied to multi-classification
problems. The functional form of cross-entropy loss is as
shown in (6).

Loss = Hyi (y) = −
∑
i

y′i log(yi). (6)

The predicted results are given by yi, and y′i refers to the
ground truth. The cross-entropy loss function reflects the
similarity of yi and y′i.

3) REAL-TIME MONITORING OF EQUIPMENT STATUS
Equipment degradation is often a slow but gradual process.
It is impossible to monitor the equipment at fixed intervals or
only when a certain threshold is out of bounds. The real-time
monitoring model based on time series data provides impor-
tant support for equipment health management. The real-time
monitoring of equipment status is divided into two stages: (1)
First, the TensorFlow-enabled DNN model is trained offline
using the equipment history data stored in InfluxDB; and (2)
based on the generalization ability of the DL model, online
prediction is conducted using time series data obtained by the
InfluxDB client.

The equipment status is labeled into three categories.
The predicted results of the three types are given by Y =
〈good, fair, fault〉. The historical data set used for training is
referred to by DHis = {x1, x2, x3, . . . , xn, y}. For the intro-
duction of equipment reliability evaluation mechanism, the
prediction results are quantified asQ = {−1, 0, 1}. Real-time
data DLive = {x1, x2, x3, . . . , xn} is imported into the trained
deep supervised learning model, which is used to monitor the
equipment status in real-time. The training process is shown
as algorithm 1.

B. EVALUATION STRATEGY FOR EQUIPMENT RELIABILITY
As it is well known, aging or wearing out of components in an
equipment leads to an increase in the equipment’s action time.
This degradation is gradual when the equipment is in use.
We propose an evaluation strategy for equipment reliability
based on time series data. A DL model is used to evaluate
the running state in real time with live data. The equipment
reliability is analyzed using the statistic of the sequences run-
ning status during continuous functioning. The output data
of the equipment is random and obeys a certain distribution.

For instance, the action time of the cylinder including rising,
falling and resetting is normally distributed. Therefore, a sin-
gle moment of abnormal state cannot be used to judge opera-
tion reliability of the equipment.The uniformity of equipment
working hours is introduced in (7).

Algorithm 1Real-Time ConditionMonitoringModel for
Equipment
Input_1: DLive denotes live data set of

equipment from InfluxDB client
Input_2: DHis denotes historical data set of equipment

from InfluxDB
Output_1: Neural network parameters for condition

monitoring model
Output_2: Multi-classification results for equipment

operation states
1 Begin
2 Online data prediction for equipment operation status
3 Initialization
4 Input DLive
5 Offline data fusion model for equipment opera-

tion status
6 Initialization
7 Input DHis← {DTrain + DTest }
8 Step 1: Data preprocessing
9 One-hot encoding for Q = {−1, 0, 1}
10 Standard Scaler

D̄His = {x1, x2, x3, . . . , xn}
11 Step 2: Define the DNN model
12 Build fully connected layer
13 Choose ReLU for activation function,

cross entropy for Loss, and simple_adam
for optimizer

14 Step 3: Training the model
15 Set the batch size Nsize and the iterations
16 Fitting the training data set DTrain
17 Step 4: Evaluation the model
18 Evaluate the loss and accuracy of DT est
19 If (obtain the satisfied evaluation results):
20 Return the data fusion model
21 Else:
22 return to the Step 1
23 End if
24 end
25 Return Multi-classification results qi ∈ Q
26 end

In (7), qi denotes the predictive value of DNN model. No
denotes the number of forecasting instants of DNN model
in a given time interval T. ϕT denotes the uniformity of the
equipment in a given time interval T.

ϕT =
1
No

No∑
i=1

qi. (7)
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The evaluation period of the equipment working time is
divided into different time intervals, and the time window
is 1 hour. Let8T be defined as the collection of long working
intervals,8(n)

T = {D1,D2,D3, . . . ,Dn}. To ensure the equip-
ment reliability, the minimum reliability measure is selected
in the same prediction sequence as min(ϕT )→ Dτ . As shown
in (8). τ denotes the input value of the equipment operation
duration. Dτ denotes the maximum value of event prediction
in time series. M denotes the number of input characteristics
for collected operation duration.

Dτ =
1

NoM

No∑
i=1

M∑
j=1

τij. (8)

The data acquired from the equipment are discrete, how-
ever, the decay of the running state of the equipment is con-
tinuous. Therefore, a single time interval cannot accurately
reflect the degree of the decay. Liu et al. [22] proposed weight
coefficients ci,t of the probability estimation in the past time,
which satisfy (9) and can be calculated by (10). However,
it is difficult to use the equipment status from past time
windows for equipment evaluation, especially when those
past intervals are far from the current time.

ci,t ≥ ci,t−1 ≥ 0, t = 1, 2, . . . , ni − 1 (9)

ci,t = ci,1 + (t − 1)
2− 2ci,1ni
(ni − 1)ni

, t = 1, . . . , ni (10)

The weight coefficient is adjusted according to the differ-
ence between the previous time and the current time interval.
We evaluate the current status of equipment based on the pre-
viouswork time in (11). As a result, the influence of long-time
interval data is reduced on the running state transformation
of equipment. In (11), TN denotes the current forecast time of
working time. Ts denotes the start time of the working time. Ti
denotes the i th time interval from the start time. DT denotes
the operation duration for the condition assessment in time T.

DT =
Ho∑
i=1

(exp(−
TN − Ti
TN − Ts

) · D(i)
τ ). (11)

We have retrieved the maintenance records of the equip-
ment and obtained the working hours when the equipment
should be maintained by using systematic sampling method.
The threshold D1 is used to decide whether the equipment is
reliable or not. We calculate the real-time maintenance value
RTM (t) in (12).

RTM (t) = 1− exp(DT − D1). (12)

The calculated RTM value is then compared with the main-
tenance boundary of the time interval, as shown in (13).
PTM in denotes the lower limit of the preventive maintenance
value, and PTM lim denotes the upper limit of the preven-
tive maintenance value. R(t) denotes the best position of all
swarm particles. The prediction results of real-time interval
are divided into three levels, namely, normal, alarm, and fault.
If the current maintenance value is between predefined lower

Algorithm 2 DNN-Based Cylinder Reliability Analysis
and Evaluation
Input: XTt = [τσ1, τσ2, τσ3, τσ4] in a given time

interval from InfluxDB
Output: Y Tt = R(t) evaluation results for cylinder

operation states
1 Begin
2 Initialization // on a continuous working day
3 for i← 1 to Ho
4 Qsum← Qsum = 0
5 for j← 1 to No
6 qj← DNN (XT

t = [τσ1, τσ2, τσ3, τσ4], qσ )
7 Qsum← Qsum + qj
8 end for
9 ϕi← Qsum / No // calculate the uniformity
10 end for
11 for i← 1 to Ho // get the minimum uniformity
12 ϕT , η← (ϕT = ϕ0, η = 0)
13 if ϕT < ϕi:
14 ϕT = ϕi
15 η = i
16 end if
17 end for
18 while (i == η)
19 Dsum = 0
20 for j← 1 to No
21 for l ← 1 to 4
22 Dτ+ = τj,l
23 end for
24 end for
25 Dτ = Dsum/No
26 end while
27 for i← 1 to Ho
28 DT+ = exp(-(TN − Ti)/(TN − TS )) · D

(i)
τ

29 end for
30 RTM (t) = 1− exp(DT − D1)
31 R(t) ∝ P(PTM in,PTM lim) // get the range of R(t)
32 end

and upper maintenance limits, the system will be at alarm
level. If it is below the lower maintenance boundary, it is at
normal level. Failure occurs when the maintenance value is
above the upper limit of maintenance threshold.

R(t) = P(PTM in
≤ RTM (t) ≤ PTM lim). (13)

The core algorithm is shown in algorithm 2.

V. CASE STUDY
In this section, we evaluate the reliability of a cylinder based
on the proposed technique. The cylinder is an important part
of a small trolley in the automobile assembly line, as shown
in Fig. 3. The cylinder is marked by the red arrow. Reliable
operation of the cylinder guarantees that the trolley functions
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FIGURE 3. The data collecting site with a cylinder on the trolley.

TABLE 1. Details of data samples in verification.

in a stable state, which directly affects the stability of long-
term operation of the whole automobile production line.

During the long-term operations, insufficient lubrication
can lead to a wear off in the cylinder, and the ageing rubber
seals lead to leaks in the cylinder. The action time of the
cylinder, including rising, falling and resetting is an important
reference to indicate an aged cylinder.

A. TENSORFLOW-ENABLED DNN MODEL
As shown in Algorithm 1, the proposed DNN model con-
sists of three layers: input, hidden and output layers, and a
SoftMax function. The input layer consists of four neurons,
which correspond to four features in the InfluxDB data set.
We present the part of the labeled sample data through pre-
defined threshold from the InfluxDB as shown in Fig. 4,
which includes 1000 training data. We choose ReLU as the
activation function, cross entropy as the loss function, and
Adam as the iterative optimizer. The connection weights and
biases of each layer are initialized randomly. In table 1.

We set the maximum number of epochs as 20 and recorded
the accuracy and loss of training set, and the accuracy and loss
of test set in each epoch.

As shown in Figs. 5(a) and 5(b), the accuracy of the training
set improved from 0.607 to 0.9929, and the loss reduced
significantly from 0.9406 to 0.0666. The results with test set
given in Figs. 5(c) and 5(d) show similar trends as well. The
increase of accuracy shows the effectiveness of the training
process, and the decreases of loss underlines the DL model
nearing convergence.

FIGURE 4. Part of the labeled sample data from the InfluxDB.

FIGURE 5. Training results: (a) training set accuracy; (b) training set loss;
(c) test set accuracy; and (d) test set loss.

B. MODEL RESULTS
The degradation process of the equipment follows a
monotonous attenuation trend. We conducted the equipment
reliability analysis based on the action time of the cylinder.
In Fig. 6, the blue curve shows that the reliability value of
cylinder operation decreases with the running time of the
cylinder. For instance, themore total time the cylinder costs in
service, the lower its reliability value becomes. The cylinder
has a long total service life, and its performance decay is a
slow process.Wemonitored the condition of the cylinder over
two months to verify the proposed model. At the end of two
months, the cylinder was almost non-functional. The yellow
curve shows that the operation time of the cylinder increased
with the degradation of the cylinder.

The maintenance boundary is an important parameter for
characterizing the state transition the functional status to the
non-functional status. We select the intersection of the curves
representing the cylinder operation time and its reliability as
the maintenance boundary, as shown in Fig. 6. The relevant
formulas are given in (8)-(12).
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FIGURE 6. The reliability threshold of cylinder related to its operation
duration.

FIGURE 7. The discrete predicted results for the decay process of the
cylinder.

In Fig. 7, the colored boxes represent the three conditions
of cylinder operation, namely, normal, warning, and fault.
Since the action time of the cylinder including rising, falling
and resetting is normally distributed. Statistics over a certain
time can eliminate the effect of abnormal fluctuations. Based
on the running time of the cylinder, which is at least 10 hours
a day, the working state of the cylinder is predicted using
the time series data. The predicted results approximate the
decay process of the cylinder. As shown in Fig. 7, cylinder
failure occurred nearly 20 days after the decay started. Once
a scientific active maintenance plan is made based on the pre-
dicted cylinder states, sudden shutdowns of the automobile
production line caused by cylinder failure can be avoided.
This mitigates the production capacity decline caused by
failure of the components in the production line.

C. MODELS EVALUATION
We identify the hidden state changes of the equipment by
monitoring the multi-temporal observation sequence. Based
on these identifications, we distinguish the reliability level
of the equipment operation, such as failure, maintenance,
replacement of parts or switching operation from the state
transition process. In an intelligent manufacturing environ-
ment, the state transition of equipment failure is usually
considered as a memoryless random process. Under specific

FIGURE 8. Prediction results of the five trials using the PCA, HMM and
the proposed method.

conditions, the stochastic process describing system evo-
lution can be described by a Markov process. The most
well-known equipment reliability analysis method is based
on the hidden Markov model [1], [23]. However, traditional
reliability analysis methods are often limited by poor data
sets, and there is less knowledge available to evaluate the
equipment reliability.

The shallow learning models cannot effectively reflect
the complex mapping relationships between signals and the
equipment health status in big data. Similarly, simple linear
fitting method of expert systems cannot accurately predict the
dynamic performance degradation of equipment.

We used principal component analysis (PCA), hidden
Markovmodel (HMM) and deep learning to map the relation-
ship between the action time and reliability of the cylinder.
PCA and HMM have been widely applied to failure pre-
diction. They are also the current mainstream classification
algorithm behind the fault prediction application. In the ver-
ification, we took them as the standard approach as contrasts
for the proposed methods. The three algorithms are tested in
order to evaluated the accuracy of the status of the cylinder.
Five sets of 10-hour statistical data are given to predict the
result as shown in Fig. 8. Traditional preventive maintenance
methods focus on the dynamic working state and the change
of parameters in complex systems. There is a critical need for
a better solution to multi-source heterogeneous data process-
ing. The development of intelligent equipment had led to high
speed, high precision and high efficiencymanufacturing. This
leads to the factors influencing the reliability of equipment
operation very complex.

Currently there are sufficient data sets available for equip-
ment reliability evaluation. Although the multi-source sens-
ing data collected by large-scale industrial processes are
increasing rapidly, it is still difficult to model the complex
performance degradation process. In the context of indus-
trial big data, data-driven algorithms of equipment reliabil-
ity prediction are of great significance in both academic
and engineering environments. The deep prediction model
for equipment reliability analysis can realize a composite
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evaluation method with multi-type data. It can get rid of the
dependence on signal processing technology and diagnostic
experience such as data standardization and data normaliza-
tion. For instance, DL can used to build a multi-sensor data
model based on current, temperature, vibration, etc.

VI. CONCLUSION
With the acceleration of industrial 4.0, equipment data col-
lected in the industrial field have grown at unprecedented
rates. Data bring opportunities for innovative industrial appli-
cations. However, there are also challenges toward new theo-
ries and the related optimization algorithms for data process-
ing. As a new research achievement in the field of pattern
recognition and machine learning, deep learning theory is
seldom applied to the reliability analysis of equipment.

In this paper, we used deep learning theory to achieve the
reliability analysis with a deep neural network model, which
explored the deployment of advancedmachine learningmeth-
ods for the preventive maintenance of industrial equipment.
The main work can be concluded in bullet points: (1) we
proposed a TensorFlow-enabled deep neural networks model
using time series data for equipment reliability analysis.
(2) we used Keras to rapidly deploy the DNN framework
and conducted the reliability evaluation of a cylinder with
the industrial database InfluxDB. and (3) We validated the
performance of our proposed method based on measured data
and further showed its superior performance compared to
the related algorithms. Considering that the present data type
only contains the cylinder action time, in future, recurrent
neural networks will be more suitable for constructing the
life cycle equipment model by using multi-type time series
data. The new deep prediction model will be further applied
to enhance the data analytics in industrial 4.0.
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