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ABSTRACT Convolutional neural networks (CNNs) based deep learning algorithms require high data flow
and computational intensity. For real-time industrial applications, they need to overcome challenges such
as high data bandwidth requirement and power consumption on hardware platforms. In this work, we have
analyzed in detail the data dependency in the CNN accelerator and propose specific pipelined operations
and data organized manner to design a high throughput CNN accelerator on FPGA. Besides, we have
optimized the kernel operations to obtain a high power efficiency. The proposed CNN accelerator supports
image classification and real-time object detection with high accuracy. The evaluation results show that our
CNN-based FPGA accelerator can achieve 740 Giga operations per second (GOPS) at 200 MHz with kernel
power of 12.2 watts on Intel Arria 10 FPGA. For object detection tasks, our system can achieve 105 fps with
56.5 mAP or 25 fps with 73.6 mAP on VOC dataset. Since we use the mixed fixed-point data representation,
the detection accuracy is comparable with the GPU-based YOLO V2 framework. The power efficiency of
our system is ~ 3.3 better than Titan X GPU and ~ 418x better than Intel E5-2620 V4 CPU.

INDEX TERMS Deep neural network accelerator, FPGA, pipeline architecture, parallel computing, mixed
fixed-point, object detection, low power.

I. INTRODUCTION
Convolutional neural networks (CNNs) based deep learning Operation time consumption percentage
techniques are applied in wide fields such as traffic tracking,
speech recognition, medical diagnosis, etc. However, The B Activate
computational complexity of CNN is a heavy burden and Copy
hard to be implemented on devices with limited computa- m Add_bias
tional resources. The standard convolution layers are imple- BMAC
mented by using the multiply-accumulate (MAC) operations. u im2eol
As shown in FIGURE 1, there is 92% [1] of execution = Scale bias
time spent on MAC during forward inference in YOLO Normaline
V2 framework [2].

To cope with such heavy burden computation, most of the Marpoo!

deep learning applications are based on the graphics process-
ing unit (GPU) since GPU has large scale single instruction

FIGURE 1. Forward inference time consumption in YOLO V2 framework.

multiple data (SIMD) fabric in a chip and high band-

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

width memory and local memory. We call the cross-vendor
architecture of the central processing unit (CPU) and
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other specifications (e.g., GPU, FPGA, DSP) heteroge-
neous systems. For execution across heterogeneous systems,
the general way is to use open computing language (OpenCL)
[3] as a bridge to connect between different specifications.
Some GPU vendors such as NVIDIA provide specific GPU
programming language CUDA [4] and deep learning neural
network (DNN) library cuDNN [5] which have a better per-
formance than OpenCL but can only be applied on NVIDIA
GPUs. Even though high-end modern GPU has a high com-
putational throughput on DNN performance, it also costs high
power dissipation, and collaborating with the workstation
is too heavy to carry, which reduces the practicality in the
industrial field. FPGA is one of the solutions to replace GPU,
which has large processing elements, low power consump-
tion, reconfigurable, and portable characteristics. However,
there are some drawbacks to FPGA. Different from GPU,
the memory on FPGA does not have a cache structure, and the
bandwidth is two generations older than high-end GPU (e.g.,
the DRAM on FPGA Arria 10 is DDR3, but the memory on
GPU Titan X is GDDRS). The design challenges such as data
dependency and memory bandwidth make it hard to work in
real-time as fast as high-end GPU, especially on low power
devices. Furthermore, the limited size of on-chip memory is
a bottleneck on FPGA. Data movements between on-chip
memory and off-chip (e.g., DRAM) will introduce large
power consumption and delay. Our motivation and aim are
going to build a high throughput and low power CNN-based
FPGA computation system.

This work has the following contributions:

1) We analyze in detail the data dependency in the CNN
accelerator and present a high throughput CNN-based
FPGA accelerator. Specifically, we use a pipelined
MAC operation structure to remove loop-carried data
dependency. We also propose the zigzag fetch unit to
remove line data dependency.

2) To achieve a high power efficiency, we propose the
offline pre-processing and combination of batch nor-
malization (BN) and scale/bias (SB) and approximation
expression for kernel computation.

3) We have applied the CNN accelerator on advanced
multi-object detection frameworks such as tiny YOLO
V2 and full YOLO V2 [2]. To acquire a high accuracy,
we use 8-16 bits mixed fixed-point data representation
in the object detection task and achieve comparable
accuracy compared with Titan X GPU. The demo can
be found in [39].

4) Our CNN accelerator provides a definable interface to
reconfigure the new CNN model easily, and it supports
the Caffe framework [6].

The rest of the paper is organized as follows. In Section II,
we introduce the background, which includes previous
related work, FPGA implementation methodologies, and pre-
liminary analysis of CNN. In Section III, we present the
parallel and pipeline modeling of CNN-based accelerator,
and analyze the data dependency in pipeline structure. The
high-speed pipeline structure design process is presented
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in detail in Section IV. Section V describes the bandwidth
optimization for power-efficient CNN accelerator. Section VI
introduces OpenCL based FPGA implementation and our
system. The performance and experimental results are pre-
sented in Section VII. Finally, Section VIII concludes the

paper.

Il. BACKGROUND

A. RELATED WORK

With the success of CNN in the field of computer vision, more
and more researchers focus on deploying the CNN imple-
mentation on different computational architectures. While
considering the power efficiency of the implementation archi-
tectures, CNN-based FPGA accelerators have achieved a
further step in recent years [7]-[29]. These designs can
mainly be divided into three categories. The first category
copes with the optimization in the computational kernels
[10], [13], [14]. Zeng et al. [10] used optimized frequency
domain (fast Fourier transform or FFT) convolution instead
of standard convolution and got the throughput of 669 Giga
operations per second (GOPS) on VGG16 net. FFT based
convolution is fast for large filters, but state-of-the-art CNN
uses small filter sizes such as 3 x 3. Cong and Xiao [13]
proposed an algorithmic modification to reduce the general
matrix multiplication (GEMM) computational workload by
22% on average. However, this work only focused on the
GEMM part and ignored the bandwidth design on exter-
nal memory. Some works [14], [28] have applied Winograd
convolution to replace the traditional convolution operation.
Aydonat et al. [14] used Winograd transformation to boost
the performance on FPGA, which could achieve peak per-
formance of 1.3 trillion floating-point operations per second
(TFLOPS) in fully connected (FC) layer. But in modern
DNN applications especially for object detection, the FC
layer has a low working efficiency which might cause over-
fitting. Moreover, this work [14] only evaluated the most
basic CNN structure, AlexNet [30], and the scalability may
not satisfy the current deeper neural network. The second
category is to deal with bandwidth optimization to improve
throughput [15]-[21]. Suda et al. [15] used quantized 16-bit
fixed-point operation to improve the throughput. However,
the throughput was only 117.8 GOPS which was still far
less than the real-time requirement. Li et al. [16] applied
parallel operation on convolution layers and a batch-based
computing method on FC layers to process multiple input
images in parallel. However, this method is not suitable
for video sequences application which has a temporality
input order. Motamedi et al. [17] provided a way to develop
a method to obtain a feasible weight file for FPGA, and
Nurvitadhi et al. [18] used special I/O between CPU and
FPGA to accelerate the detection process. Farabet et al. [19]
placed some data processing tasks on DSP to speed up
the processing. Some works [17], [20] applied roofline
model to design the trade-off between computing through-
put and required memory bandwidth to maximize the uti-
lization of FPGA resources, but the performances were

VOLUME 8, 2020



S. Li et al.: Novel FPGA Accelerator Design for Real-Time and Ultra-Low Power Deep CNNs Compared With Titan X GPU

IEEE Access

only 61.62 GFLOPS in the work of Zhang et al. [20] and
84.2 GFLOPS in the work of Motamedi et al. [17], respec-
tively, which were far less than real-time application. Gokhale
et al. [21] proposed a CNN accelerator that could achieve
a peak performance of 200 GOPS. The architecture only
included three modules: convolution, sub-sampling, and
non-linear functions. Guo et al. [29] proposed a CNN design
with a data quantization strategy and compilation tool which
could get 137 GOPS throughput on Zynq XC7Z045 FPGA.
Geng et al. [8] proposed a quantitative model for map-
ping CNNs on multi-FPGAs to improve the throughput.
However, the power consumption will increase greatly by
using an FPGA cluster. Guan et al. [27] proposed an
end-to-end framework that generated the hardware imple-
mentation with RTL-HLS hybrid templates. Ma et al. [7]
analyzed and optimized the memory access of the CNN
accelerator based on multiple design variables to achieve high
throughput. The third category is the model optimization
[9]1, [22], [23]. Recently, Fujii et al. [22] used the prun-
ing technique on the FC layer to reduce 39.8% of parame-
ters in FC layers. Even though the technique does increase
the speed of FC layers somehow, it does not improve the
throughput. In fact, due to the low efficiency of the FC layer,
it is abandoned in most advanced modern CNN models.
Hailesellasie ef al. [23] implemented a reduced parameter
CNN on Xilinx ZYNQ FPGA, but it still existed a large
gap between structure optimization and cross-platform trans-
plantable. Iandola et al. [31] proposed SqueezeNet to reduce
the number of parameters by using 1 x 1 kernels and con-
catenated structure. However, less parameters do not always
guarantee a fast speed. For example, standard convolution
layers have fewer parameters compared with FC layers, but
the processing speed of FC layers is much faster than convo-
lution layers. The convolution time depends on the compu-
tation method, e.g., the depthwise convolution [32] is faster
than standard convolution. Bai et al. [9] adopted depthwise
separable convolution to replace the standard convolution for
embedded platforms, which could reduce the operations and
parameters.

B. FPGA IMPLEMENTATION METHODOLOGIES

The CNN-based FPGA methodologies can be divided into
two categories. The first category is high-level synthesis
(HLS) methodology, which refers to C/System C-like syn-
thesis, including the OpenCL method (for Intel/Xilinx FPGA
both) or Vivado HLS (for Xilinx FPGA only), and most
of the CNN FPGA designs [14], [15], [24] use HLS. This
method can accelerate the design and simulate easily, and
automatically generate Verilog/VHDL code. Xilinx ZYNQ
dramatically changes the development step for FPGA, as each
FPGA connected with a computing processing unit (ARM).
The communication between the processing system (PS) and
FPGA logic is very convenient. For Xilinx Vivado HLS,
it supplies some advanced HLS tools such as HLS DNN
intellectual property (IPs), HLS linear algebra, and HLS
DSPs, which makes the design of CNN FPGA accelerator
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much easier. Thus more and more designs are based on Xilinx
FPGA. On the contrary, the HLS implementation on Intel
FPGA is still a challenge. The second category is traditional
register-transfer level (RTL) design method, e.g., [25],
[26]. This method will cost a longer development period but
can make good use of the FPGA resources without any redun-
dancy, and have a better sequential logic control in cycle-wise
level. In our work, since our platform is Intel FPGA, we use
OpenCL based methodology combined with register-transfer
level (RTL) math intellectual property (IP) to design our CNN
FPGA accelerator.

C. YOLO V2 FRAMEWORK FOR OBJECT DETECTION
Object detection includes two tasks: classification and regres-
sion. Classification gives the class which the object belongs
to. Regression tells the information for each object’s coordi-
nate in an image.

Output:
Classification +

i
Input: Convolution + Pooling

Image/Video CNN Localization

Bounding box

regression

FIGURE 2. YOLO V2 framework for object detection.

We have applied the CNN-based FPGA accelerator on the
YOLO V2 framework [2] for object detection. There are two
models for YOLO V2: full YOLO V2 and tiny YOLO V2.
Full YOLO V2 network consists of 23 convolution layers
with a high detection rate, whereas tiny YOLO V2 is a
simplified network that consists of 9 convolution layers with
arelatively low detection rate but very high speed. As shown
in FIGURE 2, YOLO V2 consists of feature extraction part
in the first several layers and classification and localization
part in the last several layers. Compared with YOLO V1,
V2 resizes the input resolution to 416 x 416 because it wants
an odd number of locations in the feature map, so there is
a single-center cell. YOLO V2 down-sampled the input size
by 32 times, and the size of the final OFM is 13 x 13 (since
416/32 = 13). YOLO V2 abandons the FC layer and use
anchor boxes to predict bounding boxes (BB). To obtain bet-
ter anchor boxes, YOLO V2 uses k-means dimension clusters
to train the BB.

The feature extraction part extracts W x H x (B x 5+ C)
features, where W and H are the width and height of output
feature map (OFM) in the last layer, respectively. In other
words, the image is divided into W x H cells, and for each
cell, the feature extractor extracts (B x 5 4+ C) features.
B is the number of BB, C is the number of classes. There
are five parameters for each BB: {1, ty, t, t4, 15}, each BB
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represented by {by, by, by, by, b,} can be calculated as [2]:

by = o(ty) +cx
by =o(ty) +cy

by, = pwetw
by = pre"t
b, = o(t,) (1

where{cy, ¢y} is the top left corner of the cell, and {%, %} is
the center of BB relative to the whole image. o (e) denotes
sigmoid function.

1

ow = I+e™

@

{bw, hy} is the size of BB relative to bounding box prior
{pw, pn}. b, can be expressed as Pr(object) x IOU (b, object).
Where Pr(object) is the confidence of the object, and
10U (b, object) is the intersection over union (IOU) between
predicted BB and ground truth BB.

The loss function can be described as:

W—-1H-1B-1
.
1oss: = hnoobj Y, D Y L boy
i=0 j=0 k=0
W—1H—-1B~-1
.
thoj ) DD 1OUBByred. BBe)jy! (1= boji)*
i=0 j=0 k=0
W—-1H-1
.
hetass 3 DT
i=0 j=0
W—-1H-1B-1
.
+Acoord Z Z 2(2 - Wgthgt)]lg'k]((bx - b;)z

i=0 j=0 k=0
+(by — D)* + (ty — 1,)° + (th — 1)) 3)

Z MSE(C)

ceclasses

There are four terms calculated in the loss function: no-
object, object, class, and coordinates loss. ]IZZMJ denotes that
the k™ BB in location (i, J) will be penalized if the IOU
is lower than a threshold value T. Hg.ij denotes that the k™
BB in location (i, j) is responsible for that prediction. H?b !
denotes if the object is in location (i, j). IOU (BBped, BBg:)
is the IOU between predicted BB and ground truth BB. Mean
squared error (MSE) loss is used for classification in location
(i, 7). The last term uses the sum of square error (SSE) to
calculate the coordination loss with the location information.

{Wgr, hgr} is the ground truth value of the BB relative to

the whole image. {%, %} is the ground truth of the center
coordinate for the BB. {t/,, 7, } is the natural logarithm of the
ground truth size relative to the bounding box prior. In YOLO
V2, we use the default parameter A,pop; = 1, Ao = 3,
Melass = 1, Acoord = 1, and the threshold T = 0.6.

D. PRELIMINARY ANALYSIS OF CNN
There are some restrictions on the challenge for designing the
architecture of CNN-based FPGA accelerator:
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1) Fetch data latency from global memory (DDR3) to
FPGA on-chip memory is a bottleneck in the design.

2) Hardware resources on FPGA are limited.

3) Data dependency.

The first limitation is communication between FPGA and
CPU. The bandwidth of FPGA is two generations older than
the high-end GPU. The data transfer latency between GPU
and CPU is orders of magnitude less compared with FPGA,
which means directly translate the CNN software from GPU
to FPGA without considering the data transfer speed is unac-
ceptable. We need to design a methodology to overcome this
drawback in FPGA.

The second limitation comes from the hardware limitation
during the design of parallel and pipeline structure. It needs
to make a trade-off between the pipeline throughput and
hardware cost. Most of the FPGA devices still have a lim-
ited on-chip memory size. The highly parallel structure will
increase the usage of on-chip memory significantly.

The third limitation is data dependency. Different data
dependency types exist inter and intra layers, which affect the
throughput heavily. It requires a well-scheduling process to
reduce the effect of data dependency.

We need to deal with these restrictions to design the CNN
accelerator.

For explanation convenience, we assume each input feature
map (IFM) and kernel are in square shapes (as shown in
FIGURE 3, the width/height of the IFM is Dp, and the
width/height of the kernel is Dk ). M IFM combining generate
a 3D cube with size of D x Dp x M. N filters processing
each input 3D cube can be abstracted as a 4D hypercube
Dg x Dg x M x N, and the first 3D cube Dx x Dg x M
is corresponding to input 3D feature maps Dr x D x M.
These two 3D cubes result in a 2D output feature map (OFM)
Dy x Dg, where Dy is the width/height of the OFM. The 4th
dimension N means there are N groups of such Dg x Dg x M
3D filters, which results in 3D OFM D, x Dg x N.

Output features
Max degree of OFMP=N

OFMP |
1

Input features Filters
Max degree of IFMP=M

Iy: g

KPP FMPP
Max degree of KPP=D_X D, Max degree of FMPP=D_ X D,

FIGURE 3. Feedforward of convolution and parallelism.
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The basic idea of achieving high computation throughput is
utilizing parallelism and pipeline mechanism. There are five
concurrent mechanisms exist in MAC operations.

1) Input feature maps parallelism (IFMP): There are M
IFMs in each layer, and each feature map is indepen-
dent of the others. We can fetch and compute the feature
maps in MAC operation parallel in the M dimension.

2) Output feature maps parallelism (OFMP): There are N
groups of 3D filters in each layer, and each filter group
is independent of the others and corresponding to N
independent OFMs. We can fetch and compute the N
filters parallel in MAC operation in the N dimension.

3) Feature map plane-parallel (FMPP): For each indepen-
dent OFM plane, the Dy x D, output pixels can be
computed concurrently.

4) Kernel plane parallelism (KPP): The 2D convolution
requires D x Dk times MAC operations. These MAC
operations can be implemented concurrently.

5) Layer parallelism (LP): The data dependency exists
between two consecutive layers. However, the next
layer can start in a pipeline manner before the previous
layer complete.

The ideal case is fully exploiting all the concurrent mech-
anisms. However, it is impossible to unroll all the five mech-
anisms simultaneously because of the hardware resources
limitation on FPGA. Usually, the on-chip memory on FPGA
is not enough to store the weights, IFMs, and intermediate
OFMs. Moreover, the number of LUTs and registers can-
not afford fully exploited loop unroll instances. To address
this problem, it needs to design the parallel structure using
the limited hardware and reuse the parallel structure in a
pipeline manner. For KPP, the kernel size Dk determines
the parallelism. This parameter may vary in different layers
(e.g.,1x1,3x3,5%x5,11x11,etc). Todesign a general CNN
accelerator with an uncertain kernel size, we use a pipeline
scheme instead of the parallel structure in the kernel plane.
For FMPP, the parallelism is given by Dy x Dg. Usually,
it is decided by the minimum output feature size since we
hope the accelerator can be applied to all the convolution
layers (e.g., the minimum output feature size is 13 x 13 in
AlexNet or YOLO V2, whereas in VGG16 or YOLO V1 it
is 7 x 7). The maximum degree of IFMP and OFMP is M
and N, respectively. Due to the limitation of resources, it is
impossible to use M and N for parallelism. Usually, we use a
value that achieves the maximum throughput but not excess
hardware resources.

E. GENERAL CNN COMPUTATION PROCESS
To get the final OFM, the CNN accelerator has to perform
different operations such as fetch data/weights unit (FU),
MAC, batch normalization (BN), scale/bias operation (SB),
activation (ACT), pooling (PL), and write data back (WB).
As shown in FIGURE 4, there are seven stages in
each layer. The solid blocks are mandatory modules which
include FU and MAC operation, and the dashed blocks are
optional operations such as BN, SB, ACT, PL, and WB.
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re

Current Layer Next Layer

L (|

Optional Mandatory

FIGURE 4. Overview of the CNN accelerator computation process and
each module.

The configuration decides whether each module works or not
in the host program.

1) FU: It fetches the weights and feature maps by using a
sliding window and arrange them in a convolution pair
to prepare for MAC operation.

2) MAC: The traditional input weights can be viewed
as a 4D hypercube, the 1¥ and 2" dimensions are
horizontal and vertical directions in the same weight
plane. We can apply the parallel mechanism IFMP and
OFMP in the 3" and 4" dimensions on FPGA.

3) BN: This module will receive the convolution results
and do batch normalization operation.

4) SB: This module will receive the result after BN, mul-
tiply it with the parameter scale, add it with bias, and
then send the data to the next module.

5) ACT: This module will receive the result after SB
and do the activation operation. In this acceler-
ator, we use leaky rectified linear unit (LReLU)
function.

X if x>0

0.1x otherwise

fx) = “)

6) PL: Which is used to down-sampling the input data.
The popular idea uses line buffers to store and process
the input data line by line. A switch is used to control
this module works or not on FPGA.

7) WB: Write back the output data to external memory.

Ill. PARALLEL AND PIPELINE MODELING OF CNN-BASED
FPGA ACCELERATOR

A. PROPOSED HIGH-SPEED PARALLEL DESIGN FOR 3D
CONVOLUTION OPERATION

As shown in FIGURE 5, the MAC operation convolves the
IFMs with filters and generates the OFMs. 3D convolution
can be expressed as:

V{fo,y,x} € [1,N] x [1,Dg] x [1, Dy]
M /vector_depth Dy Dy
Do(fo.y. %)= Y > Wilfo. fir ky. ki)
£=0 ky=0 ky=0
“Di(fi, y + ky, x + kx) (%)
where D,(f,, v, x) and D(f;, y, x) are neurons at (x, y) in OFM
and IFM, respectively. Wi (f,, fi, ky, kx) denotes the weights in

1" Tayer. The kernel size is Dy x Dy. f, is the output feature
value, and f; is the intput feature value.
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vector_depth -~

Input features Filters Output features

FIGURE 5. The vectorized 3D convolution operation.

L1: for(n = 0;n < N; n++){// output feature map loop
L2:  for(m =0, m <M; m++){// input feature map loop
L.3: forth = 0; h <H; h++){// row in feature map loop

L4: for(w =0; w <W; w++){// column in feature map loop
Ls: for (k1 =0; k1 <K; k1++){// row in kernel loop
Lé6: for(k2 = 0; k2 <K; k2++){// column in kernel loop

sum[n][h][w]+=data[m][h+k1][w+k2]*weight[n][m][k1][k2];
} // end of column in kernel loop
} // end of row in kernel loop
} // end of column m feature map loop
} /! end of row in feature map loop
} // end of input feature map loop
} // end of output feature map loop

FIGURE 6. Pseudocode for MAC operation.

FIGURE 6 illustrates the pseudocode for basic MAC oper-
ation. There are six loops totally, the time complexity of
convolution operation is:

Co% = O(Dg -Dg - M - N - Dy - Dy) (6)

conv

Date vectorize factor vector_depth is applied in M
IFMs. Thus, the total convolution operation can be reduced
vector_depth times. The vectorize factor vector_width is
applied in N OFMs to generate multiple instances of different
kernels. The overall convolution operation can speedup by
vector_depth x vector_width times.

M N
vector_depth vector_width

Dy - Dy)

@)

To finish all the MAC operations in 1 cycle, a Dy x Dy
(e.g., 3 x 3) weight matrix with three IFMs requires 27
(e.g., 3 x 3 x 3) multipliers and 27 adders. Implementing this
in parallel will cost a large amount of digital signal proces-
sor (DSP) blocks and Look-up tables (LUTs), which is unac-
ceptable for limited hardware resources to fully exploit the
parallelism. There is a trade-off between processing capacity
and hardware resources or design area. The high paralleliza-
tion will exhaust a large number of computing units. The fetch
unit has to load large data in parallel and store on-chip mem-
ory, which makes the place and route congestion. To solve this
problem, we applied pipeline architecture to achieve higher
throughput.

CI" = O(Dy - Dy

cony
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(a) Sequential operation of M assignments

S
F 3 r
Sk 1 2 3 M-1 M
1 2 3 M-1 M
52 1 2 3 M-1 M
51 1 2 3 M-1 M
» T

S
t
S 1|21 3 M-1| m
1|23 M1| m
Sz 1l 2|3 . |M1|Mm
sl 123 |mi|m T

(c) An ideal pipeline structure with k stages and M assignments

FIGURE 7. General parallel structure vs. pipeline structure.

B. PARALLEL AND PIPELINE MODELING OF CNN
ACCELERATOR

As shown in FIGURE 7a, which is the basic loop with M
assignments and k iterations If each assignment of this loop
takes one clock cycle, the whole loop has a latency of M x k
cycles. This structure uses the least resources but costs the
longest execution time. FIGURE 7b depicts the fully unrolled
loop with M assignments and k iterations. The total loop has
a latency of M cycles. However, it replicates each assignment
k times in hardware. This structure has the fastest speed but
costs the largest resources which are usually unbearable in the
design.

FIGURE 7c is an ideal pipeline structure with k stages.
The pipelined loop can work concurrently but there is no area
trade-off. As shown in FIGURE 7c, the throughput can be
described as:

- M ®)
Tiowr S KM=14 )

i=1

Throughput;, =

where k is the number of stages, M is the total number of
assignments, Ty, 1S the total time for all the assignments.
tmax(i) is the maximum processing time in the i assign-
ment. However, the CNN accelerator cannot achieve the ideal
pipeline structure due to data dependency. In the next section,
we will analyze the data dependency and optimize our
design.
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S
& PL | wB
4\6@ M x kx W x H Stages
o PL | WB —l) 666 606
. +
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o o BN | sB | AcT PL | wB
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N / 3
X
& + BN | SB | ACT PL | WB
N A /
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FIGURE 8. K-stage pipeline diagram for CNN accelerator.

C. DATA DEPENDENCY IN PIPELINE STRUCTURE

Data dependency refers to a situation that a variable relies on
the previous status. There are three types of data dependency
exists in the pipeline design: loop-carried data dependency,
line data dependency, and inter-layer data dependency.

The launch frequency of a new loop iteration is called the
initial interval (I). I indicates the number of clock cycles for
which the pipeline has to wait before it can process the next
loop iteration. In the pipeline structure, we expect that the
best I value should be as small as possible. An /I = 1 means
that each clock cycle can process one new loop iteration.
However, some complicated operations in the loop cannot
finish in one clock cycle which introduces a large 7. We can
estimate the total latency of a loop by using (9).

latencyy = (N — 1) x II + latency, )
where latency, is the overall cycle to execute the loop. N is
the number of iterations, and latency,, is the latency of a single
loop iteration.

FIGURE 8 shows a k-stage pipeline diagram for the CNN
accelerator. We assume that there are M compute units to
fetch data/weight in parallel. After the MAC operation, there
is an interruption before BN because BN has to wait for
k* MAC operations to get one convolution ready, where k
is the kernel size. Between ACT and PL, there is the 2"¢
interruption since the pooling operation requires line data
ready (assume the length of a line is W). The 3" interruption
occurs between the WB and the next layer’s FU because,
in traditional CNN operation, FU will wait for the entire
OFMs ready before the next layer’s operation. In the next
section, we will design the CNN accelerator to deal with these
three interruptions.

IV. OPTIMIZATION OF PIPELINE STRUCTURE DESIGN
FOR HIGH SPEED CNN-BASED FPGA ACCELERATOR

A. LOOP-CARRIED DATA DEPENDENCY

In FIGURE 8, the pipeline will be interrupted for k x k
(k is the kernel size) MAC operations to wait for one con-
volution output to finish.
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The loop-carried data dependency exists because the outer
loop iteration (LS in FIGURE 6) requires the multiplication
from the previous iteration to finish before the inner loop
iteration (L6 in FIGURE 6) can start. For example, it requires
four cycles (II = 4) to finish multiplication and accumula-
tion operation which means each inner iteration has a delay
of 4 cycles.

H Dol”i\-' A ——>

L ¥ (0 P O *[Final Result

Data
W=
o W2
11 1 W
] W
Weight
(a) Original MAC

Final Result

in o D "m0
Data
I 11 Wz
L H W
L W
T We
Weight
(b) Pipelined MAC

FIGURE 9. Original MAC operation vs. FIFO MAC operation.

FIGURE 9a is the traditional MAC tree operation. Without
optimization, it has to wait for [(N — 1) x 4 + latency,]
cycles to get a result. We can remove loop-carried data depen-
dency by increasing the dependence distance as shown in
FIGURE 9b. In this new MAC structure, (1) Declare multiple
empty buffers (arranged in FIFO structure). (2) Initialize

105461



IEEE Access

S. Li et al.: Novel FPGA Accelerator Design for Real-Time and Ultra-Low Power Deep CNNs Compared With Titan X GPU

#11
4
3
2
[ NS —
Depth of FIFO
0 : : : ‘ ‘ : »

FIGURE 10. 1l vs. depth of FIFO.

all the buffer values as zero. (3) Use the last buffer (left-
most in FIFO) in the array to store the multiplication value.
(4) Perform the shift operation by using shift registers to pass
the value in the last buffer into previous buffers in each clock
cycle. (5) Add the value in the first buffer and multiplication
result in the next clock cycle. (6) Write the final value to the
result.

The proposed FIFO MAC structure can remove
loop-carried data dependency because it is using buffers to
store the temporary accumulate values to avoid write after
write (WAW) problem and alleviate pipeline stalls. We find
that the /I can be reduced to one by using four buffers.
As shown in FIGURE 10, with more than four buffers, there
is no improvement but wasting hardware resources.

By using (9), we can estimate the latency of MAC opera-
tion.

MACoptimized_lalency
MACoriginal_latency
(K= 1) X ey + @new

B (k% — 1) x original + Poriginal

where Il is one and I yyigina is four. Since we use a FIFO
with a depth of four, @y, is four, and @, iginas is one.
According to (10), the original MAC operation will take
(4k? — 3) cycles, whereas the FIFO MAC operation only
takes (k2 + 3) clock cycles. Since kernel size k is larger
than 3, the new pipeline MAC operation takes less than
0.36 times clock cycles compared with the original MAC
structure, which means the loop-carried data dependency can
be reduced below 36% compared with the original design.
In the next section, we will optimize the line data dependency.

MA Clatencyjatio =

10)

B. LINE DATA DEPENDENCY

In tradition, it uses a K x K sliding window from left-up
to right-bottom progressive scan line-by-line (as shown in
FIGURE 12) to fetch input feature data in each clock cycle
and prepare for convolution operation. Since the input data
are line-by-line scanned, the order of computation thereafter
is also followed line-by-line. This data fetch manner will
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(a) 2 x 2 pooling size (b) 3 x 3 pooling size

FIGURE 11. Line data dependency in pooling operation.
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FIGURE 12. Scan manner in the fetch unit.

introduce line data dependency during the assignment of
pooling. Equation (11) describes the pooling operation:

V{fo»y’x} E [laN] X[laDg] X [I’Dg]
DIty v, x) = maxp ger1:P/(Do(for y + P x + ) (11)

The OFM is sub-sampled to }, of the original feature map
size, where P is the pooling size.

As shown in FIGURE 11, to do a P x P pooling operation,
the first (P — 1) line OFMs have to be ready and stored in
line buffers, which will introduce line data dependency and
on-chip memory consumption.

latencypool_org = [(P — 1) x W + P] x latency, (12)

Equation (12) describes the line data latency of pooling
operation by using traditional linear progressive FU. Where
latencyy is the MAC latency, and W is the length of line
buffers (W > P). We have to wait for latencypooi_org Cycles
to do the first pooling operation.

To solve this problem, we propose the zigzag scan manner
in FU. As shown in FIGURE 12b, weuse a (K + P — 1) x
(K + P — 1) sliding window to fetch the data from the global
memory to FPGA local memory with a step size of P. Inside
the sliding window, we use a zigzag order to rearrange the
input data to P2 K x K sub-blocks.
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FIGURE 13. Zigzag fetch unit (as an example of P=2).

(a) 2 X 2 pooling size (b) 3 x 3 pooling size

FIGURE 14. Data dependency in pooling operation after applied ZFU.

FIGURE 13 depicts the details of the zigzag fetch unit
(ZFU). In this example, we assume the kernel size is 3 x 3,
stride step size is 1, and the pooling size is 2. We use a
4 x 4 sliding window to fetch the input data. In each sliding
window, we use a zigzag scan to fetch four 3 x 3 blocks and
do convolution operation. For the pooling operation, we use
a comparator to get the maximum value among the four input
MAC results. ZFU not only reduces the line data dependency
during pooling but also reduces the power consumption since
this fetch manner utilizes the strategy of data reuse. One
sliding window can fetch p? blocks. The reduction of reading
external memory can reduce power dissipation on global
memory.

latencypool_zigzag = P? x latencyy (13)

After applied ZFU technique, the data dependency of pool-
ing is optimized to (P? x latencyy) cycles (as shown in
FIGURE 14), which is less than the original latencypoor_org-

C. INTER-LAYER DATA DEPENDENCY

In FIGURE 8, interruption 3 refers to inter-layer data depen-
dency. Normally there are dozens of layers in modern
advanced large CNN models. To process CNN in the next
layer, it usually has to wait until all the current layer’s feature
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maps have been finished. The data dependency between WB
and the next layer’s FU is W; x H; x latencypoor. Wy and H;
are the width and height of OFM in each layer, respectively.
It will introduce a large delay after dozens of such layers, and
this is one of the reasons the CNN-based FPGA accelerator
is hard to run in real-time. In fact, there is no need to wait for
the entire OFMs to be completed. The inter-layer data depen-
dency can be reduced to (K41 + P11 —1) x Wy x latencypoor,
where (Kj41+ Pi4+1 — 1) is the length of sliding window in the
next layer. K; is the kernel size in the next layer, and P4
is the pooling size in the next layer. The overall inter-layer
dependency is far less than W; x H; x latencypoor.

V. BANDWIDTH OPTIMIZATION FOR POWER EFFICIENT
CNN-BASED FPGA ACCELERATOR

A. MIXED FIXED-POINT DATA REPRESENTATION

FPGA supports a substantial amount of logic for implement-
ing floating-point operations. The original data type is a
single-precision floating-point (32-bit) CNN forward compu-
tation, which costs plenty of hardware resources to implement
MAC operation. The fixed-point representation of the data
can save the number of hardware resources. The purpose
of fixed-point data type is not only to reduce the hardware
resources such as on-chip memory and DSPs but also to
increase the data transfer speed since the size of transferred
data is reduced. Besides, it can help to reduce the power
dissipation on memory. For example, the 16-bit fixed-point
data type will halve the memory cost compared with 32-bit
floating-point data type.

The conversion between floating-point and fixed-point
data can be presented as below:

1

f=Nx 7 (14)
where N is a fixed-point integer value (in decimal format)
which can be represented with n-bit length (in binary format),
and m is the quantization factor of fractional length. The
larger value of m will introduce the more accurate of the
fractional part but with a narrow represent range. We use
<n, m> pair to represent the converted fixed-point. For exam-
ple, in a fixed-point <8, 1> representation, we can represent a
signed number within [-64, +63.5], and our fractional part is
only precise to a quantum of 0.5. In a <8, 2> representation,
we can convert a signed number within [—32, +31.75] with
a quantum of 0.25. We can represent 0.75 with fixed-point
<8, 2>, but using <8, 1> format will cause a decrease in
precision.

In some CNN frameworks (such as YOLO V2), different
parameters have a significant different numerical range. For
example, there are four different parameter types (weights,
IFMs/OFMs, scales, and biases). The scales/biases have a
much larger numerical range than weights and IFMs/OFMs.
If we use the same bit length (e.g., 8-bit), the scales/biases
will introduce a considerable loss in precision. To solve
this problem, the bit-width of scales/biases is expanded to
use 16-bit instead of 8-bit to keep the precision. Luckily,
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the number of parameters for scales/biases only takes 0.09%
of all the parameters, and 16-bit operation increased on-chip
memory cost very slightly. The advantage of this mixed
fixed-point design is to save on-chip memory for weights
without compromising the precision of computation results
in 16-bit.

B. COMBINATION OF BN AND SB OPERATION

Batch normalization (BN) allows us to use higher learning
rates to speed up the training process and avoids the gradient
vanishing problem and gradient exploding problem. It also
acts as a regularizer to eliminate the need for dropout [33] and
get a better detection rate. In the BN layer, we normalize each
scalar feature independently. For a layer of d-dimensional
input x = (x(...x@), we will normalize each dimension
as:

(k) (K)
. xW — E[X
o _ (X 5]

15
Var[x®] + ¢ (1)

The parameters expectation E[X )] and variance Var [x(k ]
are statistic acquired during the training process, ¢ is a hyper-
parameter. As shown in (15), to calculate a batch normal-
ization operation it will use two adders (or subtractors), one
divider, and one square root operation in hardware. The oper-
ation does not only cost DSPs and LUTs on FPGA resources
but also increases latency. Besides, the parameters of expec-
tation and variance transferred between external memory and
FPGA on-chip memory will introduce a large delay. There
are two ways to solve this problem, the 1* method is merging
BN/SB into MAC operation [34]. The 274 method is combin-
ing BN and SB operation [35] to simplify the computation.

In SB layer, we introduce a pair of parameters (y(k), ,B(k)),
which scale and shift the normalized value:

y(k) — y(k))’e(k) + ﬂ(k) (16)
We can combine these two equations as:

w _ X —EX® g

y
Var[x®] + ¢
_® y® Ly {ﬂ(k) _ E[x®)1y®
Var[x®] + ¢ Var[x®] + ¢
= x(k)qb + 6 (17)
where ¢ = y® and 6 = g0 — E[x®)y®

SVar[x®]4e’ Var[x®]+e

Since all of the parameters (such as variance, expectation,
scale, and bias) are collected in the training process, we can
pre-compute ¢ and 6 offline, which can greatly increase the
speed of CNN-based FPGA accelerator. Besides, the offline
pre-processing can reduce the DSPs and LUTSs resources
and arithmetic logic unit (ALU) power consumption during
inference.

There are two reasons we combining BN and SB instead
of merging BN/SB into MAC operation. (1) We use 8-bit
weights and 16-bit scales/biases mixed fixed-point data repre-
sentation. If we fuse BN/SB and weights, the merged weights
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FIGURE 15. Overview pipeline architecture of CNN-based FPGA
accelerator.

can only be in 16-bit otherwise the accuracy of 8-bit rep-
resentation is unacceptable. However, we cannot give up
8-bit weights since its benefit for on-chip memory resource
and data transfer bandwidth. (2) Compared with BN/SB
combination, the help of merging BN/SB into MAC is very
limited. We know that to get one output neuron, it has to
compute (Cj;, x K x K) MAC operations (where Cj, is the
number of input channels, K x K is the kernel size), and then
apply one BN/SB computation on this MAC output. It needs
(Cin x K x K + 1) MAC operations totally. While merging
BN/SB into MAC can only save one MAC operation which
is not significant.

The overall pipeline architecture of the CNN-based FPGA
accelerator is shown in FIGURE 15. There are five stages in
this architecture. We combined BN and SB in the 3 stage.
The ACT is also concatenated after SB in this stage. In the
MAC stage, the input weights are represented in 8-bit, and
the output of MAC is 16-bit to guarantee high accuracy. The
output of BN/SB/ACT (also the input of pooling) is in a 16-bit
data type.

C. CNN ACCELERATOR FOR OBJECT DETECTION

As shown in FIGURE 16, our CNN-based FPGA accelerator
has five pipeline stages, the 1% stage is ZFU which uses the
zigzag scan to fetch the data and weight in parallel from
global memory to FPGA on-chip buffer. The data are captured
from a video camera and resized to a fixed input size (e.g.,
416 x 416). The 2"¢ stage is the MAC operation combined
with a FIFO structure to leverage the loop-carried data depen-
dency. In the 3 stage, we combined BN, SB, and ACT
together. In particular, we pre-process the BN and SB offline
and reduce the operations to multiplication and addition. For
LReLU operation, we get the approximate activation value by
using:

X x>0
fo = x>4) 4+ x>5) otherwise (18)

Since shift operation does not cost hardware resources on
FPGA, and adder only takes one cycle, which can reduce the
area and save power. Equation (18) is equivalent to (4) since:

X X
x>+ (>3 =7+ 5~ (19)

X
25710
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FIGURE 16. The architecture of hardware CNN accelerator system.

In this approach, the precision loss can be neglected. In the
4™ stage, we use a comparator to get the maximum value
between two inputs. We set a counter to control the output of
the pooling result. If the counter reaches P, the output will
be written to an output buffer. Otherwise, the comparator will
continue to work. In the 57 stage, the output data will be sent
back to global memory.

D. CNN ACCELERATOR WITH CAFFE INTERFACE

Our CNN-based accelerator supports Caffe [6] interface,
which means the CNN accelerator can cooperate with the
Caffe framework. As shown in FIGURE 17, our system can
load the configuration and weights in Caffe format. The users
can easily modify the models in the configuration file, e.g.,
the size of IFM/OFM, the kernel size, stride step, and the
number of layers, etc. On the host side, our system can
transfer the configuration and weight to our FPGA format
and load the data to the DRAM. The data will load to FPGA
on-chip memory through the PCI-E bus. After we finish
the processing on FPGA, final results will be written to the
DRAM in the host side, and output the classification and
regression results.

m

Captured Output
Figure Figure

Configuration Weight Image Resize Classification
Transformation Transformation & Regression
Write weight Write image Write final results
to DRAM to DRAM to DRAM
HOST
PCIE PCIE PCIE PCIE

FPGA

FIGURE 17. CNN-based accelerator with Caffe interface.

VI. EXPERIMENT SETUP

A. OPENCL BASED FPGA IMPLEMENTATION AND SYSTEM
INTEGRATION

In this work, we use OpenCL based methodology combined
with RTL math IP to design our CNN accelerator on Intel
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Applications

OpenCL

CNN models
o Host program + Kernels

VGG16
YOLO V2

Kernels

ZFU MAC Poolin§ """ main()
1

Read_data_from_file():
Manipulate_data();

__kernel void gemm(int M, int N. int K,
__global int *A,
__global int *B,
__global int *C)

clEnqueueWriteBuffer();
IEnqueueKernel();
clEnqueueRead Buffer();

{
int col = get_global_id(0); display_result to_user():

int row = get_global_id(1);

FIGURE 18. OpenCL system overview.

TABLE 1. FPGA system information.

CPU with FPGA system H/W S/W co-design
CPU Xeon E5-2620 V4
FPGA Intel Arria 10
Operating System CentOS 7

FPGA. As shown in FIGURE 18, the OpenCL framework
constants of two components: (1) The host program and
host compiler. (2) OpenCL kernel and offline compiler. The
host program is working on CPU for managing tasks such
as input/output (I/O) and display, and kernels are executed
on FPGA to process intensive computation. When the host
program sends a command to the kernel, the OpenCL runtime
system will copy data from the host to FPGA and create an
index space. Each instance of executing kernel runs in a work-
item. We can apply any CNN applications on FPGA, e.g.,
AlexNet, VGG16, YOLO V2, etc.

We build up the FPGA system which uses PCI-E port,
the system details listed in TABLE 1.

105465



IEEE Access

S. Li et al.: Novel FPGA Accelerator Design for Real-Time and Ultra-Low Power Deep CNNs Compared With Titan X GPU

Prototype of CNN-bas

FIGURE 19. The prototype of CNN-based testbed overview.

As shown in FIGURE 19, our testbed integrated CPU,
FPGA, and GPU. In Section VII, we will evaluate the per-
formance of speed and power for different CNN-based appli-
cations on GPU, CPU, and FPGA, respectively.

B. EVALUATION CRITERIA

1) BANDWIDTH

There are two kinds of bandwidths in our program. One is for
fetching data from DRAM to on-chip memory, and the other
one is for writing back data from on-chip memory to DRAM.
We can get these two functions as follows:

Data,iqn x Datagize
wr =

20
kernelse (20

B;q = (Datagize x Datayigsh
+Weightsize x Weightyigm
+Biassize X Biasyiam
+Scalegize x Scaleyigm)/kerneliime 21

By + B
Efficient bandwidth (GOPS) = % (22)

B, is the writing bandwidth which only needs to write
the computed output data to the DRAM. B,y is the reading
bandwidth, which includes data such as input data, weight,
bias, and scale. The efficient bandwidth is the total of B,,,
and B,,. Since we use Giga operations per second (GOPS) to
represent the unit of bandwidth, it is divided by 10° in (22).

2) PRECISION

Average Precision (AP): For a given task and class, we use the
precision/recall curve to evaluate the performance of output.
Precision is the proportion of relevant instances among the
retrieved instances. The recall rate is defined as the proportion
of all positive examples among the total amount of relevant
instances. The average precision [36] is used to evaluate the
precision over several equally spaced recall levels.

Pinterp(r) (23)

where Piyerp(r) is the precision at each recall level 1, and
normally we set N = 11.
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Mean average precision (mAP) is used to evaluate the
average precision of C classes.

1

i€{0,1,2,...,C}

AP(c)) (24)

where AP(c;) is the average precision for class c;.

Bounding box evaluation: For the object detection task,
intersection over union (IOU) is an evaluation metric to mea-
sure bounding box overlap. To be considered a correct detec-
tion, the area of overlap ap between the predicted bounding
box B, and ground truth bounding box B, must exceed 0.5
(50%) by (25):

. area(By N Bg;)

= (25)
area(B, U Bg;)

Bp, N By, denotes the intersection of the predicted BB and
ground truth BB, and B, U By, is the union of predicted BB
and ground truth BB.

3) NUMBER OF FIXED-POINT OPERATIONS (OPs)
According to [37], to compute the number of fixed-point
operations (OPs) for standard convolutional kernels, we have:

OPs = 2HW (CiK? + 1)Cous (26)

where H, W, and Cj, are height, width, and the number of
channels in IFM, respectively. K is the width/height of kernel
(we assume the kernel is a square shape), and C,,; is the
number of channels in OFM.

For fully connected layers, we compute OPs as:

OPs = (2I — 1)O 27)

where [ is the input dimensionality, and O is the output
dimensionality.

VII. EXPPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

A. TRAINING
Data Path
e GPU-CPU
Internal CPU
a/ ———o FPGA-CPU
—® PCle
Camera
Training  |petetses  jemteey Inference s Host

e ” .Tweight :
? ) yolo s m = 5170\,'(7\() .
] ; Model .

PCle Switch

Current Our Object Recognition System Dataflow

FIGURE 20. System dataflow.

As shown in FIGURE 20, we use Titan X GPU to train the
weights. FPGA is used for inference, and CPU is working as
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TABLE 2. Hardware usage on FPGA.

Component (total) Percentage (%)

Logic utilization (427,200) 82
LUTs (707,600) 51

FFs (1,415,440) 37
RAMs (2,531) 54
DSPs (1,518) 27

a host to communicate with GPU or FPGA. In the first stage,
we train the pre-train model with a fixed input size of 448 x
448 on the ImageNet dataset for 80 epochs and get the top-1
accuracy of 72.5% and top-5 accuracy of 91%, respectively.
In the second stage, we use the pre-train model for transfer
learning on the VOC dataset. We want YOLO V2 to be robust
on different image sizes, so we change the image size every
ten batches randomly during training instead of fixed input
image size. We use 300,000 batches to train the model on the
VOC dataset. The initial learning rate is set to 0.001. After
70,000 batches, we change the learning rate to 0.0001. After
140,000 batches, the learning rate changes to 0.00001 for
fine-tune. Finally, the accuracy achieves 73.6 mAP on the
YOLO V2 model for 416 x 416 input image size. Since
our model is trained for different input resolutions, there is
a trade-off between the speed and accuracy which is suitable
for different applications.

B. HARDWARE USAGE ON FPGA

TABLE 2 lists the hardware usage of our CNN accelerator on
FPGA when we set the parallelism factors vector_depth = 32
and vector_width = 16. Specifically, the vector_width of

TABLE 3. CNN-based FPGA implementation for classification.

the first IFM is three because there are three channels for
the input image. DSPs have dedicated floating/fixed-point
arithmetic operation units such as multiply and accumulators.
Since we use part of RTL math IP, the synthesis tool (Quartus
in Intel FPGA) consumes LUTs instead of DSPs. Our design
only costs 27% DSPs. Block RAMs are embedded memory
systems on FPGA. LUTs and Registers can build and route
arbitrary topologies for programmable logic.

C. RESULTS FOR IMAGENET CLASSIFICATION

We compare our design with the state-of-the-art CNN-based
FPGA accelerators listed in TABLE 3. We improved the
throughput and power efficiency for the proposed design
without compromising the other parameter such as the use of
hardware. The peak throughput of our accelerator is achieving
736.9 GOPS on the VGG16 net, and the power efficiency is
reaching 27.09 GOPS/watt, which outperforms all the previ-
ous works [7], [10], [27], [29].

We have used only 27% DSP resources without compro-
mising the throughput and power efficiency compared with
the state-of-the-art design [7]. The power dissipation is also
reduced with less use of DSP resources. The power efficiency
is 3.27 x more than the most advanced multi-FPGA structure-
based design [8]. We have also compared our result with
MobileNet V2 on Intel Arria 10 SoC FPGA [9], which used
more BRAM and DSP than our design.

Through TABLE 3, we find that the throughput of AlexNet
is lower than the VGG16 model. The reason is that some
kernel sizes of AlexNet are larger than regular size, e.g.,
11 x 11 and 5 x 5 compared with 3 x 3. The irregular kernel
sizes make the accelerator performance inconsistent among
different layers. On the contrary, VGG16 has a regular shape

[10] [9] [29] [8] [27] [7] Our work
Year 2018 2018 2018 2018 2017 2018 2019 2019
CNN model VGG16  MobileNetV2 VGGI6 VGG16 VGG19 VGG16 AlexNet VGG16
FPGA sg;éiAX;, Inlt(e)lsAO réia Xg7y£8 45 \\il)r(tg;z)z S(;rsag/l[)]()\; Intel Arria 10 Intel Arria 10 Intel Arria 10
Clock (MHz) 200 133 150 150 150 200 200 200
BRAMs (36Kb) 1377* 1,844* 486 1,220 919* 2,232 1,366* 1,366*
DSPs 256 1,278 780 2,160 1,036 1,518 410 410
LUTs - - 182.6K - - - 360K 360K
FFs - - 127.7K - - - 523.7K 523.7K
GOP 30.95 0.64 30.95 30.95 39.26 30.93 1.46 30.95
Precision (bits) 16 16 16 16 16 16 8-16 8-16
Latency (ms) 46.3 3.75 226 106.6 107.7 432 3.7 42
legg%g;ut 669.1 170.6 137 290 364.4 715.9 394.6 736.9
Power(W) - - 9.63 35 25 - 272 272
Pofégfgf&j’;lcy - - 14.2 8.28 14.57 - 14.51 27.09

* Intel FPGA: the size of BRAM refers to 20Kb
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TABLE 4. Comparison among CPU, GPU, and FPGA designs for CNN object detection.

CPU CPU GPU GPU (1] [12] Tr[ad? 2 Tr[a‘:k] 3 Our work
Year - - - 2018 2018 2018 2018 2019 2019
. . . . . eSSD- Tiny
Tiny Tiny Lightweight Tincy . YOLO
CNN model YOLO V2 YOLO V2 YOLO V2 YOLO V2 YOLO V2 YOLO YOLO V2 MotilllfNet Y(\)/LZO Va2
Intel E5S Intel ES Zynq Zynq Jetson Jetson Intel Intel
Device Titan X Titan X UltraScale+ UltraScale+ . .
2620 V4 2620 V4 ZCU102 XCZU3EG X2 X2 Arria 10 Arria 10
Clock (MHz) 2,100 2,100 1,400 1,400 300 850 850 200 200
BRAMs * *
(36Kb) - - - 1,706 - - 1,366 1,366
DSPs - - - 377 - - 410 410
LUTs - - - 135K - - 360K 360K
FFs - - - 370K - - 523.7K 523.7K
GOP 6.97 34.9 6.97 34.9 14.97 4.5 - - 6.97 29.6
Weights
(WB) 60.5 193 60.5 193 - - - 15.8 44.2
Precision B - 4 .
(bits) 327 324 32% 327 1-32 1-3 16 16 8-16 8-16
38.988/ 18.32¢/
mAP 57.1 76 57.1 76 67.6 48.5 430 65.8 56.5 73.6
fps 0.67 0.16 207%/ 105 67%/ 33 40.8 16 - - 105 25
Throughput 1,442.8%/ 2,338%/
(GOPS) 4.67 5.6 731.9 11517 610.9 72 - - 731.9 740
Power(W) 80 80 219.1 219.1 - 6 - - 27.2 27.2
Power
efficiency 0.06 0.07 058 10 ; 12 ; ; 269 272
(GOPS/W) ) ’
1.06%/ 3274/
Energy (J) 119.4 500 .09 6.64 - 0.375 1.54 0.41 0.26 1.09
53.95%/ 23.24%/ 25.318/ 44478/
mAP/energy 0.478 0.152 27 36 1145 - 129.3 279 159.7 218.1 67.65

* Intel FPGA: the size of BRAM refers to 20Kb
T Floating-point
1 The data is tested when cuDNN is on

§ The accuracy is tested on ImageNet [38] dataset

in each layer, which makes the performance of the CNN
accelerator more stable and promising than AlexNet.

D. RESULTS FOR CNN-BASED OBJECT DETECTION

TABLE 4 lists the results for object detection tasks based
on our FPGA accelerator on the YOLO V2 framework. The
results show that our work can achieve 105 fps on the tiny
YOLO V2 network with 56.5 mAP and 25 fps on the full
YOLO V2 network with 73.6 mAP on the VOC dataset,
respectively. The accuracy and speed are better than the state-
of-the-art works [11], [12], [34]. For the Titan X GPU case,
we have tested the data when cuDNN is on and off, respec-
tively. cuDNN is a deep learning library to speedup NVIDIA
GPU. Compared with Titan X GPU, the power efficiency of
our FPGA accelerator can get 26.9~27.2 GOPS/watt, which
is 4.08x better for tiny YOLO V2 and 2.55x better for
full YOLO V2, respectively. The average power efficiency
is ~3.3x better compared with Titan X GPU. Compared
with Intel ES 2620 CPU, the power efficiency of our FPGA
accelerator is 448 x better for tiny YOLO V2 and 388 x better
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for full YOLO V2. The average performance is ~418 x better
compared with CPU.

Literature [34] summarized the 2018 winners’ solution for
Low-Power Image Recognition Challenge (LPIRC). There
are three tracks in LPIRC. The 1% track is for ImageNet
classification on Google Pixel 2 XL phone. The 2"¢ track is
an online competition for object detection on NVIDIA Jetson
TX2 GPU, and the 3" track is onsite competition for object
detection without restriction on hardware or software. Track 2
and track 3 use the term mAP/energy as a criterion to evaluate
the performance combining accuracy, speed, and power. The
winner of track 2 applied several techniques on the YOLO
V2 framework such as pipelining, tucker decomposition,
16-bit quantization, merging BN, and input size reduction,
etc, and it achieved 27.9 mAP/energy. The winner of the
3" track used eSSD-MobileNetV1 framework and achieved
159.7 mAP/energy. This structure extracted additional fea-
tures with depthwise convolution and 1 x 1 convolution
and predicted classification and BB with 1 x 1 convolution,
which reduced computational resources. Our FPGA design
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can achieve 218.1 and 67.65 mAP/energy for tiny YOLO
V2 and YOLO V2, respectively. The performance is 7.8 x
and 2.4 x better compared with winner of track 2 in [34]. The
value in terms of mAP/energy for YOLO V2 is smaller than
the winner of track 3 [34] because the criteria mAP/energy is
alinear analysis among accuracy, speed, and power. However,
the empirical case shows that speed and accuracy is a nonlin-
ear relationship. E.g., when the speed is halved, the accuracy
cannot improve twice. For the tiny YOLO V2 framework,
our performance is still 1.37x better the winner of track 3.
According to the results, our FPGA accelerator outperforms
the most advanced Titan X GPU, mobile Jetson TX2 GPU,
and CPU respect to power efficiency. Compared with the
other FPGA designs [11], [12] for the YOLO framework, our
design not only achieves the highest throughput but also has
the highest accuracy and power efficiency.

E. POWER DISSIPATION
Power Analysis

mwW

28000

Device Static Power
23000

18000 » Kernel Dynamic Power

» 1/O Dynamic Power

1/0 Standby Power
Transceiver Dynamic Power
Transceiver Standby Power

13000

8000

Work [1] Our work

*Note: Measured by ‘QUARTUS’ Intel Power Analysis Tool

FIGURE 21. Power consumption comparison between [1] and our CNN
accelerator.

FIGURE 21 depicts the power comparison between
work [1] and our CNN-based FPGA accelerator. There
are three components dissipated in the power consump-
tion: transceiver power, I/O power, and kernel power. The
transceiver power comes from the high-speed serial inter-
face (HSSI) such as the PCI-E interface. The I/O power is
mainly costed by the input/output data transferred between
external memory (DDR3) and local memory/registers. The
device uses SSTL-15 I/O standard (DDR3 I/O standard). The
kernel power comes from the kernel computation part of the
accelerator, which includes static and dynamic power. The
total power is reduced from 29 W to 27.2 W which is a 6.2%
reduction in power. The kernel power is reduced from 15.4 W
to 12.2 W, which is reduced by 20%. The power reduction
is mainly due to three reasons. (1) Data movement between
on-chip memory and off-chip (e.g., DRAM) is reduced by
using an optimized pipeline structure. (2) Computational ker-
nels optimization reduces hardware resources. (e.g., offline
pre-processing BN/SB and approximation expression reduce
DSPs, LUTs, and ALU, etc) (3) Mixed fixed-point data width
helps to reduce the power consumption on memory.

VIil. CONCLUSION
In this paper, we present a highly efficient CNN-based FPGA
accelerator combined parallel architecture and pipeline
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structure which supports the Caffe framework on Intel FPGA.
For the ImageNet classification task, it can achieve the
throughput of 736.9 GOPS on the VGG16 net. Furthermore,
we have applied the CNN accelerator on complex advanced
multi-object detection frameworks and get the real-time
speed of 105 fps for tiny YOLO V2 with 56.5 mAP and
25 fps for full YOLO V2 with 73.6 mAP on VOC dataset,
respectively. The power efficiency of our system is ~ 3.3 x
better than Titan X GPU and ~ 418x better than Intel
Xeon E5 CPU on average. The CNN-based FPGA accelerator
can save kernel power by 20%. Our system can be applied
to the industrial field, such as road object recognition for
autonomous vehicles or drones. In the future, more studies
will be conducted on high-speed and low power applications
on the embedded FPGA.
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