
Received May 14, 2020, accepted May 26, 2020, date of publication June 4, 2020, date of current version June 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2999938

CFRO: Cloudlet Federation for Resource
Optimization
MUHAMMAD ZIAD NAYYER 1,2, IMRAN RAZA 2, (Member, IEEE),
AND SYED ASAD HUSSAIN2
1Department of Computer Science, GIFT University, Gujranwala 52250, Pakistan
2Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan

Corresponding author: Muhammad Ziad Nayyer (ziadnayyer@gmail.com)

ABSTRACT A Cloud computing paradigm augments the limited resources of mobile devices resulting
in increased distance, limited Internet bandwidth, and seamless connectivity challenges between a remote
cloud andmobile devices. Cloudlet computing based solutions are widely used to address these challenges by
bringing the computational facility closer to the user. The ever growing number of mobile devices, Internet of
Things (IoT) sensors and Information Communication Technology (ICT) infrastructure used for smart cities
demand more resources. The existing cloudlet based solutions are unable to manage the ever-increasing
demand for power, storage, and computational resources, and therefore forward the resource extensive tasks
to a remote cloud, limiting cloudlet computing benefits. We present the Cloudlet Federation for Resource
Optimization (CFRO), a federated cloudlet model for resource optimization to address these resource scarcity
challenges. The proposed model exerts the features of scalability, resource collaboration, and robustness.
The underlying scheme for resource optimization has been modeled as a Nested Multi Objective Resource
Optimization Problem (NMOROP) and a novel algorithm has been proposed to solve it. The detailed analysis
and comparative results show that the proposed model offers improved performance and more resource
elasticity as compared to the conventional cloudlet model.

INDEX TERMS Cloudlet computing (CC), cloud federation (CF), fog computing (FC), Internet of Things
(IoT), mobile cloud computing (MCC), mobile edge computing (MEC), smart cities (SC).

I. INTRODUCTION
Mobile devices are considered resource constrained due
to limited computational, energy, and storage resources.
On the other hand, resource intensive applications being
developed regularly add more to the problem. Additional
requirement of resources leads to the necessity of resource
rich environment to offload compute intensive tasks. The
cloud computing paradigm has addressed this necessity
by offering extensive computational, energy and storage
resources [1]–[3]. However, challenges such as distance,
bandwidth, and seamless connectivity between remote cloud
and mobile devices faced by conventional Mobile Cloud
Computing (MCC) model limit its usage [4]. Mobile Edge
Computing (MEC) [5], [6], Fog Computing (FC) [7], [8], and
cloudlet computing [9] overcome these challenges bymoving
the computational facility at the edge of the core network
and in the closer proximity of the user [10], [11]. This paper
is focused on cloudlet based solutions as these offer more

The associate editor coordinating the review of this manuscript and

approving it for publication was Jing Bi .

diversified features and generalized services with less depen-
dency over the Internet [12]. Cloudlet is a mini cloud in the
closer proximity of the user preferably in the same Local Area
Network (LAN) at one hop distance with a stable Internet
connection [13]. Mobile devices in the nearby vicinity can
get an advantage from this mini cloud by offloading compute
intensive tasks over Wireless Fidelity (WiFi) without Internet
dependency.

The diversified features and generalized services make it
more attractive for IoT devices and SC infrastructure [14].
However, with the increasedworkload, number of queries and
devices, the cloudlet based solutions face resource scarcity
challenges. The request is forwarded to a remote cloud
to cope with the resource demand thus inducing the chal-
lenges of distance, limited bandwidth, and latency like the
mobile cloud computing model. Hence, resource scarcity
challenges at a cloudlet need to be addressed in a way
that fewer requests are forwarded to the remote cloud [15].
The optimal solution must consider workload placement
and load balancing to achieve resource optimization and
scalability.

106234 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6014-4397
https://orcid.org/0000-0003-3118-4634
https://orcid.org/0000-0002-4610-0141


M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

In this paper, we present the Cloudlet Federation for
Resource Optimization (CFRO) model that offers scalability
and resource optimization considering workload placement
and load balancing. In the proposedmodel, the cloudlets form
a federation to share the load and resources. The concept of
federation that exists in cloud computing is entirely different
from the cloudlet computing. Currently, most of the liter-
ature covers different topics in cloud federation [16]–[19].
The detailed architecture of the federation provided by
NIST [20], [21] is also for cloud, where different cloud
providers form a federation for resource sharing and a central
broker that belongs to a third party acts as an intermediator.
However, cloudlets have different challenges than cloud, and
formation of a federation at the cloudlet level demands a dif-
ferent design and control mechanism. The proposed federated
model is based on cloudlets that exist in closer proximity
(Local Area Network orMetropolitan Area Network), and the
broker exists on the cloud being part of the same federated
model. The broker maintains the resource information of all
the participant cloudlets. Using the aggregated information,
the optimal placement, load balancing, and resource sharing
decisions are taken. The proposed model considers resource
optimization as a nested resource optimization problem,
where an already placed Virtual Machine (VM) [22], [23]
is also considered for re-optimization triggering a migration
operation while enhancing the optimal solution space for new
VM placement. Hence, both the placement and migration
operations are considered as a part of the single bigger prob-
lem of resource optimization.

The proposed model has been evaluated using a live
production environment consisting of a datacenter with
around 20 physical servers, 65 Virtual Machines (VMs) and
4 Amazon EC2 instances. The datacenter has 3 Internet links
from different ISPs. The results show that the proposedmodel
can achieve better performance in terms of maximizing the
resources and minimizing the total delivery time as compared
to the conventional cloudlet model.

The major contributions of this paper are as follows:
- To the best of our knowledge, the concept of cloudlet
federation has not been reported in the literature so
far that addresses the resource scarcity challenges at
a cloudlet with the objective of resource optimization
while considering both the placement and migration
operations as a part of the single problem.

- A time-aware allocation model called CFRO has been
proposed to address the resource scarcity challenges at
a cloudlet. CFRO offers scalability and load balancing
features to provide resource optimized solutions.

- This paper then presents an implementation of a testbed
namely ClPyZ that is available online [24]. It is built
using an open source library called PsUtil. The under-
lying infrastructure is based on real time physical com-
puters using Ubuntu Linux that can be easily modified
and used for further research and development purposes.

The rest of the paper is organized as follows. Section II
discusses the related work, followed by the systemmodel and

problem formulation in Section III. The proposed time-aware
placement and migration algorithms are discussed in
Section IV. Performance evaluation of the proposed CFRO
model is presented in Section V. Section VI concludes the
paper with open research challenges and future directions.

II. RELATED WORKS
This section provides an insight into the existing cloudlet
based mobile augmentation approaches with the intent to
evaluate possible solutions addressing resource scarcity
challenges at the cloudlet level. The schemes presented
in [25]–[29] are focused on the improvement of perfor-
mance by reducing delay, CPU load and energy consumption.
For delay improvement, the assumptions of static node and
maximum hop count of two hops have been considered.
However, if these two assumptions are not fulfilled, the pro-
posed schemes perform poorly compared to cloud based
scheme thus limiting their scope. For performance improve-
ment, a queue based network scheme is introduced that
addresses the following two challenges, 1) user to cloudlet
assignment, and 2) K cloudlet placement, where K is an
integer having the conditionK ≥ 1. Forminimization of CPU
load, a middleware platform has been proposed. It has the
capability to deploy, remove, and change different software
components on runtime. Thus, only required components
are deployed reducing the load on CPU. However, the solu-
tions offered by these approaches require some fundamental
changes in the network design that are hard to realize due to
cost and adaptability challenges.

The schemes presented in [30]–[32] are focused on the
optimization of VM based cloudlet solutions. The factors of
speedy VM instantiation, hand-off, and keeping the VM in
the closer proximity of the user have been considered in
these schemes. The closer proximity is achieved with an
adaptive VM handoff technique that compares the existing
VM state at the destination with the updated state at a
source. The difference is evaluated and encodedwith the delta
approach [33]. For closer proximity, an integrated mobile
network solution (MobiScud) based on Software Defined
Networks (SDNs) and cloud has been proposed. The cloud
is established in the closer proximity of a Radio Access
Network (RAN) where customer’s VMs are instantiated.
Control messages between mobile devices and SDNs are
monitored byMobiScud which are used to move the VMwith
the user to keep it in the closer proximity. However, the solu-
tions offered by these schemes lack in providing support for
some important aspects such as movement from RAN to
WiFi, workload sharing and load balancing.

The techniques presented in [34], [35] are focused on Peer-
to-Peer (P2P) communication based ad-hoc cloudlets. Factors
of bandwidth consumption, offload latency, and resource
constraints have been considered in these papers. Ad-hoc
cloudlets enable amobile device, having computational tasks,
to access other devices in the closer proximity for resources.
This cooperative scheme of workload sharing provides bet-
ter results in terms of reduced bandwidth consumption,

VOLUME 8, 2020 106235



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

offload latency, and resource constraint as compared to
traditional cloud computing. However, these techniques are
unable to cover diversified use cases such as sharing between
more than two mobile devices thus limiting their scope.

In [36], [37], the utilitymaximization of participant devices
is focused to form a cloudlet. A point system or virtual
currency system is used to quantify incentives based on credit
and reputation. Points are given to a device when its resources
are utilized by other devices. A device may lose points when
using community resources. However, these approaches have
not been practically tested, hence their adaptability and effi-
ciency cannot be determined.

The solutions presented in [38], [39] have the objective of
providing seamless connectivity. Features of Wireless Mesh
Networks (WMN) and context awareness have been used to
achieve the objective of seamless connectivity. WMN offers a
redundant path to reach a certain cloudlet and context aware-
ness provides adaptability to a changing environment thus
delivering seamless services to the users. However, the size
of the mesh is very limited and context awareness works
on closer proximity principle, hence these solutions are not
suitable for larger networks.

The approaches in [40], [41] aims to minimize the cost
in terms of energy and resource consumption. The objective
of cost minimization is achieved through a cloning based
scheme where each mobile device has a software clone
in the cloud to offload compute intensive data. The other
approaches include task partitioning and offloading the only
part that is compute intensive or selection of most energy
efficient access point, route, and cloudlet [42].

An overview of the capabilities offered by these solutions
leads to the following conclusions:

- The resource scarcity challenge at cloudlet due to the
increased number of devices, workloads, IoT sensors,
and Smart City infrastructures has not been addressed.

- Resource brokerage required to work in a transparent
manner considering fair resource sharing for cloudlet
based solutions is not available.

- There is no such scheme that facilitates the entire cycle
of resource management among participants for better
assessment, allocation, and optimization.

- The resource optimization problem has not been viewed
as a nested resource problem.

These findings are indicators of the necessity to devise a
novel framework to address the resource scarcity challenges
at the cloudlet for performance improvement.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION
A. SYSTEM MODEL
In the proposed federated cloudlet model shown in Figure 1,
cloudlets form a federation with the intent to scale resources
while minimizing offloading, request processing, execution,
and migration time. Hence, the proposed model has the
strengths of both MCC and cloudlet based models i.e. closer
proximity and scalability. The users get the advantage of
federated resources without the need to worry about the delay,

FIGURE 1. Federated cloudlet model.

resource constraints and dependency over the Internet as they
get services from the immediate cloudlet present in the same
WiFi network, preferably one hop away.

A central broker manages all the cloudlet federation oper-
ations of cloudlet membership, resource information man-
agement, and optimal selection. The request is forwarded to
the broker by an immediate cloudlet and optimal decision
is sent back consisting of a target cloudlet present in the
federation. As only the request is forwarded and not the data,
the effect on offloading time is negligible. On the other hand,
the target cloudlet is present in the same Metropolitan Area
Network (MAN) reducing offloading and migration time.

B. SYSTEM ARCHITECTURE
The high-level architecture of the proposed federated cloudlet
model uses a modular approach for the performance opti-
mization of mobile cloud computing. There are four partic-
ipants in the proposed federated cloudlet model as shown
in Figure 2.

FIGURE 2. CFRO architecture.

Two of these are external i.e. i) Mobile Device ii) Remote
Cloud and the other two are internal i.e. i) Cloudlet
ii) Broker. The broker contains three modules i.e. i) Cloudlet
Registration Module (CRM): Responsible for the registration
of cloudlet ii) Decision Support System (DSS): Responsible
for the selection of optimal cloudlet and VM for migration

106236 VOLUME 8, 2020



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

and iii) InformationManagement System (IMS): Responsible
for recording resources, performance parameter values and
decision information.

The Cloudlet contains three modules i.e. i) Resource
Management Module (RMM): Responsible for resource
allocation and deallocation ii) Task Management Module
(TMM): Responsible for task initiation, execution and com-
pletion, iii) User Registration Module (URM): Responsible
for the registration of the user, and an auxiliary broker-agent
acting on behalf of broker for the synchronization of informa-
tion with broker stored by IMS. Each module is controlled by
a module manager responsible for all activities within that
module. Every module consists of different components that
are invoked by incoming or outgoing requests. Inter-module
communication is handled by module managers, whereas
Intra module communication is handled directly by the
services.

C. PROBLEM FORMULATION
Let’s assume a user with T tasks bundled as a VM on a
mobile device and needs to offload the VM on the cloudlet.
The set of users is represented as U = {u1, u2, u3, . . . um},
set of VMs to be placed as V= {v1, v2, v3, . . . vg}, set of
cloudlets as C = {c1, c2, c3, . . . cn}, set of required resources
for VMs to be placed as R = {r1, r2, r3, . . . rl}, and class
of required resources as R′. The set of already placed
VMs are represented as V ′ = {v′1, v′2, v′3, . . . v′p}, set
of required resources for already placed VMs as R ={
r ′1, r ′2, r ′3, . . . r ′q

}
, and class of required resources as R′.

The set of available resources on a cloudlet are represented
as A = {a1, a2, a3, . . . as} and class of available resources
as A′. The set of total resources on a cloudlet are represented
asR = {t1, t2, t3, . . . ty} and class of total resources asR′. The
set of occupied resources at a cloudlet are represented asO =
{o1, o2, o3, . . . oz}, set of tasks as X = {x1, x2, x3 . . . xh} , and
class of tasks as X ′. A union set that contains all the VMs is
defined as V ′′ = V ∪ V ′.
Definition 1: A relationship U → V is said to be one to

many if an element of U is related to two or more elements of
V. In MCC, a user to VM and further VM to task relationship
of one to many can be defined as V → X
A user may have multiple VMs and each VM vf can have

multiple tasks xi defined by the following condition

vf =
{∑k

i=1
xi|i = 1 to k

}
(1)

such that

∀ users ui, if ui ∃ some VM vij
where ui 6= uj

for i, j, k = 1, 2, 3, . . . , n

Please note that the converse of the above conditions
does not hold. An undirected graph G(V ,E) as presented in
Figure 3 represents a connection between the mobile user
and cloudlets. An edge E represents a connection between a

FIGURE 3. User to cloudlet graph.

user ui and cloudlet ci such that (ui, ci) ∈ E . There are three
kinds of vertices in V. A vertex representing a mobile user ui,
a vertex representing cloudlet with insufficient resources ci
and a vertex representing sufficient resources cj, where both
ci, cj ∈ C . A tuple (αi, βi, γi) represent a request where αi
represents a user ui ∈ U , βi represents the set of required
resourcesRi ∈ R′, and γi represents a VM vi ∈ V . Rest of the
notations used throughout the paper are presented in Table 1.

TABLE 1. Table of notations.

It is assumed that the capacity of a cloudlet to host several
VMs can be calculated by comparing available resources
to the required resources. However, the status of available
resources changes every time a VM is launched or removed.
A resource set occupied by a VM represents a slot and mul-
tiple slots can be available on a single host. Let’s consider a

VOLUME 8, 2020 106237



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

scenario where there are k VMs with R′ required resources
and n′ available slots on cloudlets. Since, there are multiple
cloudlets in the federation and to offload a VM, an optimal
cloudlet ci is selected such that it meets all of its resource
demands while keeping the total delivery time Tdt minimum.
Hence, the first objective function to minimize Tdt for all
VM placements with constraints can be formulated as follows

∀ VMs vk ∈ V

minTdt
(∑n

i=1
vi
)

for i, k = 1, 2, 3, . . . , n (2)

Constraint 1: A VM can only be placed on a cloudlet, if the
available resources on a cloudlet meet the required resources.

∀ resources ai ∈ A and ri ∈ R

Place VM vz if
∑n

i=1
ai ≥ ri

then ∃ some cloudlet ck to host the VM vz
for i, k, z = 1, 2, 3, . . . , n (3)

Constraint 2: Total required resource capacity of all the
VMs must not exceed the total resource capacity of the
cloudlet.

∀ resources r ′i ∈ R and ti ∈ R∑n

i=1
r ′i ≤ ti

for i = 1, 2, 3, . . . , n (4)

However, it has already been shown that both placement
and migration operations are interdependent and the first can
trigger the second. Hence, the ultimate decision is forecasted
by re-optimizing the whole objective function. Let’s take an
example scenario where there are k VMs vi to be placed with
R required resources and k ′ VMs v′j already placed with R
required resources and n′ available slots on cloudlets. There
are multiple cloudlets in the federation and to offload a VM,
an optimal cloudlet ci is selected such that the total delivery
time Tdt is minimum. The Optimal Cloudlet Selection (OCS)
process considers to migrate an already placed VM on ci
closer to its source cloudlet thus creating room for the new
request for VM placement. If such a possibility exists such
that it re-optimizes the objective function for both already
placed VM and new requests for VM placement, both migra-
tion and placement operations are executed. Hence, the nested
objective function to minimize Tdt for all VM placements and
migrations with constraints can be formulated as follows

∀ VMs vk , v′j ∈ V
′′

minTdt
(∑

i,j
vi + v′j

)
for i, j, k = 1, 2, 3, . . . , n (5)

Constraint 3: Re-optimization of VM placement decision
for a new request is only possible if an already placed VM can
be migrated in such a way that it re-optimizes both decisions

for already placed VM and new VM.

∀ resources ai ∈ A, ri ∈ R and r ′i ∈ R

Migrate VM v′j if
∑n

i=1
ai ≥ r ′i

then ∃ some cloudlet ck to host the VM v′j∧

Place VM vz if
∑n

i=1
ai ≥ ri

then ∃ some cloudlet cito host the VM vz
for i, j, k, z = 1, 2, 3, . . . , n (6)

Constraint 4: A VM with hop-count h′ ≥ 2 satisfying
the resource demand of a new VM is only considered for
migration, since VMs with h′ < 2 are assumed to be already
placed nearest to the user with minimum Tdt and cannot be
further optimized. The hop-count for new VM and an already
placed VM is represented by h and h′ respectively.

∀ resources ai ∈ A and r ′i ∈ R

if
∑n

i=1
ai ≥ r ′i ∧ h

′
j ≥ 2

then ∃ some VM v′j for migration (7)

IV. TIME-AWARE RESOURCE OPTIMIZATION
The proposed approach offers a resource-aware collaborative
scenario in which there are multiple options for offloading
sites. The optimal site is the one that provides minimum total
delivery time Tdt considering the resource demand. These
options may include local cloudlet, neighboring cloudlets,
and remote cloud. The collaborative approach requires to
share resource information of each cloudlet to filter eligible
cloudlets for a particular request, and then selects the opti-
mal cloudlet based on available resources and total delivery
time. On the other hand, this approach also keeps track of
the cloudle’s resource level for load balancing and optimal
VM selection for migration. A simple flow of information is
shown in Figure 4.

FIGURE 4. CFRO data flow.

A user α1 initiate a request requiring β1 resources and
offload VM γ1 to the cloudlet. The request is forwarded to the
broker for optimal cloudlet decision. Broker keeps track of all
member cloudlets and pushes the decision back to a source
cloudlet. The VM is on the optimal cloudlet and is executed.

106238 VOLUME 8, 2020



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

An ideal condition is where the source cloudlet is the optimal
one, thus not requiring any further calculation.

A. RESOURCE CALCULATION
Le’s assume that a request is received by c1 and forwarded
to the broker. The total, available, occupied, and required
resources at cloudlet c1 can be defined as follow

R(c1) =


r ′′1
r ′′2
r ′′3
r ′′4

 , A(c1) =


a1
a2
a3
a4

 , O (c1) =

o1
o2
o3
o4

 ,

R =


r1
r2
r3
r4


These resource matrices are pushed to broker from time to

time and the broker maintains a record of all these resources
for every member cloudlet. For example a tuple (t1, a1, o1)
represents the quantity of total, available, and occupied CPU
resource, (t2, a2, o2) represents the quantity of total, avail-
able, and occupied memory resources, (t3, a3, o3) represents
the total, available and occupied hard disk drive resource,
and (t4, a4, o4) represents the total, available and occupied
bandwidth resource. The total resources of a cloudlet can be
calculated as follow

R(ci) = A(ci)+ O(ci) (8)

and

A(ci) = R(ci)− O(ci) (9)

There can be two cases of a request for VM placement
Case 1: If c1 has enough resources to execute the request

such that

∀ resources ai ∈ A, ri ∈ R
if ai > ri then ∃ some cloudlet ck

for i, k = 1, 2, 3, . . . , n (10)

Case 2: If c1 does not have enough resources to execute
the request such that

∀ resources ai ∈ A, ri ∈ R
if ai < ri then @ some cloudlet ck

for i, k = 1, 2, 3, . . . , n (11)

The probability that c1 has adequate resources to execute
the job is p and inverse of this condition can be formulated
as 1-p. The case of not having enough resources is signif-
icant as it leads to the choice of forwarding the request to a
remote cloud. So, the probability that c1 does not have enough
resources to execute the job and can forward the request
to the remote cloud can be defined in terms of conditional
probability problem.

P (B |A) =
P(A ∩ B)
P(A)

(12)

where P is the probability function, A is the probability
that c1 does not have adequate resources to execute the job
and B represents the probability pc that c1 can forward the
request to the remote cloud. The probability that c1 is not
connected with the remote cloud is ignored as there is no
other option for the request to wait for available resources
at the cloudlet c1. Hence the conditional probability can be
formulated as follows

P (B |A) =
P(1− p ∩ pc)
P(1− p)

(13)

B. TIME CALCULATION
The total delivery time is dependent upon latency L, offload-
ing time to, migration time tm, and request processing
delay tprd . Latency is measured as Round Trip Time (RTT)
and is directly dependent upon hop-count. Offloading time to
refers to the time required for offloading the VM frommobile
device to the cloudlet and is the combination of transmission
time ot tr and propagation delay otpd . Transmission time
is dependent upon file size § and bit rate ∅. There is an
inverse relationship between file size and bit rate. However,
the link condition, capacity, and receiving devic’s capability
to receive a transmitted signal often reduces the transfer rate
and thus maximum achievable rate is defined in terms of
throughput τ and can be calculated by replacing bit rate ∅
with throughput τ . Propagation delay tpd is the amount of
time required by the signal to travel distance d with velocity v
from source to destination. There is an inverse relationship
between distance d and velocity v. Migration time tm is the
amount of time required by the VM to migrate from source
cloudlet to optimal cloudlet and can be calculated in a similar
way as offloading time in Equation (17).

Request processing delay tprd is the amount of time
required by the cloudlet to process the request including the
time spent in the wait queue tw and execution time te. The
wait time spent in the queue is dependent upon the task arrival
rate that can be obtained by the statistical analysis of the
host server and follows a poison distribution, identified by λ.
A single cloudlet can serve a single request at a time, there-
fore, given the number of cloudlets ci, the average task arrival
rate 3 is given by the sum of arrival rate at all individual
cloudlets [43]. Each cloudlet have k processers and every pro-
cessor executes the task following an exponential distribution
with an average execution time te= 1/µ. These assumptions
leads to a M/M/k queue model [43]. The occupation rate Or
per processor is λ/(k × µ). Now the probability that a task
has to wait in the queue is as follows

p =
(k × Or )k

k!

×

(
(1− Or )×

∑k−1

m=0

(k × Or )m

m!
+
(k × Or )k

k!

)−1
(14)

VOLUME 8, 2020 106239



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

As per probability p, the average waiting time for a task in
a queue is as follows

tw = p× (1− Or )−1× (k × µ)−1 (15)

The total average processing delay per task is the sum of
wait time and execution time, and is formulated as follow

tprd = p× (1− Or )−1× (k × µ)−1 +
1
µ

(16)

Hence, the total delivery time can be formulated as follows

Tdt = ot tr + otpd + mt tr + mtpd + tw + te
Tdt = o

(
ttr + tpd

)
+ m

(
ttr + tpd

)
+ tw + te

Tdt = o
(
§

∅
+
d
s

)
+ m

(
§

∅
+
d
s

)
+ p× (1− Or )−1

× (k × µ)−1 +
1
µ

Tdt = o
(
ψ

τ
+
d
s

)
+ m

(
ψ

τ
+
d
s

)
+ p× (1− Or )−1

× (k × µ)−1 +
1
µ

(17)

C. OPTIMAL CLOUDLET SELECTION
The Optimal Cloudlet Selection process is divided into two
phases. In the first phase, eligible cloudlets having adequate
resources for the requested job are filtered using the following
conditio

f (x) =



1, if R [ri] ≤ A
[
aij
]

∀



i = 1, j = 1, 2, 3 . . . n
i = 2, j = 1, 2, 3 . . . n
i = 3, j = 1, 2, 3 . . . n

.

.

.

i = n, j = 1, 2, 3 . . . n

0, Otherwise

(18)

The value of ‘‘1’’ represents eligible cloudlets having ade-
quate resources and ‘‘0’’ represents non-eligible cloudlets
without adequate resources to execute the task. In the second
phase, total delivery time Tdt for each cloudlet is calculated
using Algorithm 1.

The optimal selection algorithm returns optimal cloudlet cO
with minimum hop-count h and Tdt . The value of hop-count
is observed to see if a VM is already placed at Hop-count 1,
this means that it is already placed nearest to source and its
placement cannot be further optimized. The time complexity
of algorithm 1 is O(n3).

D. NESTED OPTIMIZATION
The next step in NMOROP is nested optimization presented
as Algorithm 2 with a time complexity of O(n5).

Algorithm 1 Optimal Cloudlet Selection (OCS)
Input: List of requests at a broker, List of required

resources for each request, list of cloudlets, list
of available resources at cloudlet, list of cloudlet
hop-count for each request

Output: Optimal cloudlet cO, Hop-count h and Tdt
1Begin:
2 Let optimal cloudlet co be NULL
3 for each request in request list at broker do
4 check status SD
5 if SD = ‘‘Decision Pending’’
6 for each cloudlet ci in cloudlet list do
7 for each resource ai and ri in available and

required resource list do
8 if ai ≥ ri
9 push cloudlet ci in eligible cloudlet list

10 end if
11 end for
12 end for
13 for each cloudlet in eligible cloudlet list do
14 calculate h and Tdt
15 end for
16 end if
17 cO = ci with minimum Tdt
18 end for
19 return cO, h(cO),Tdt (cO)
20 end:

The nested optimization process can be divided into four
phases. In the first phase, it receives a request and optimal
decision parameters from OCS, and tries to identify a VM in
the closest proximity whose resource requirement matches
with the one in this request. The identified VM must not
already be placed at the source cloudlet with a hop-count
of 1. If that is the case, then it is already placed at the
nearest location and its total delivery time cannot be further
optimized.

In the second phase, it sends the identified VM’s list to
OCS for a second iteration and get results. It further compares
the results returned by OCS against each VM in the list sent
to OCS to see if a VM can be migrated to its source cloudlet
or near to source thus re-optimizing total delivery time.

In the third phase, by following a greedy approach if it
finds such VM in the closest proximity that can be migrated,
it removes the resources occupied by this VM and add them to
the available pool. The operation of removing resources and
adding them to the available pool is only at the information
level used for the forecasting process.

In the fourth phase, it resends the new request for the
second iteration to OCS and check if removing the resources
occupied by already placed VM re-optimizes the decision and
can the same cloudlet be selected as optimal cloudlet for a
new request. The proposed time-aware approach based on

106240 VOLUME 8, 2020



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

Algorithm 2 Nested Optimization (NO)
Input: List of requests at the broker, List of required

resources for each request, list of cloudlets, list
of available resources at cloudlets, list of
cloudlet hop-count for each request, list of
running VMs, list of occupied resource by each
VM, list of optimal cloudlet hop-count, list of
optimal Tdt for each request

Output: request, decision
1Begin:
2 Let decision 2 be NULL
3 for each request in request list at broker do
4 check status SD
5 if SD = ‘‘Decision Pending’’
6 for each cloudlet ci in cloudlet list do
7 if h ≥1 and < h(co)
8 push cloudlet ci in eligible cloudlet list
9 end if

10 end for
11 end if
12 for each cloudlet ci in eligible cloudlet list
13 for each VM in running VM list do
14 for each resource ri and r ′i in the required

resource list for new VM and required
resource list for already placed VM do

15 if ri ≤ r ′i and h(v
′
i) ≥ 1

16 push VM in eligible VM list
17 end if
18 end for
19 end for
20 for each VM in eligible VM list do
21 send VM v′i to algorithm 1 for the second

iteration
22 get results
23 if (h(v′i) < new h(v′i) ∧ Tdt (v

′
i) < new Tdt (v′i))

24 remove resources and send new VM vi for
the second iteration to algorithm 1

25 get results
26 if (h(vi) < new h(vi) ∧ Tdt (vi) <

new Tdt (vi))
27 2 = migrate VM

(
v′i
)
on co∧ place

VM (vi) on ci
28 SD = ‘‘Decision Complete’’
29 end if
30 else
31 2 = place VM (vi) on co
32 end if
33 end for
34 end for
35 return request,2
36 end:

cloudlet federation ensures optimal results i.e. min delivery
time as compared to the conventional approach.

V. PERFORMANCE EVALUATION
In this section, performance analysis of the resource-
aware allocation heuristic presented in Section IV has been
discussed.

A. NESTED OPTIMIZATION
The testbed used to conduct the experimentations is ClPyZ as
shown in Figure 5.

FIGURE 5. ClPyZ architecture.

It is an open-source virtualization platform developed as
a part of this research. The reason for the development of
this novel platform is the unavailability of a suitable envi-
ronment to execute the proposed federated cloudlet model.
The major requirements to execute a federated cloudlet envi-
ronment include management of multiple clouds, client side
resource monitoring and VM migration between cloudlets.
The server-end of ClPyZ is developed in Python 2.7 language
using the Eclipse PyDev extension and PsUtil library. The
client-end has a web interface built-in PHP and the back-
end database is developed using MySQL. It introduces a
centralized brokerage system to manage multiple cloudlets
belonging to different clouds.

ClPyZ addresses the heterogeneity problems of cloudlets
by offering platform independent, flexible, and generalized
features that can be customized or redefined as per need.
It supports diversified virtualization file and disk formats and
more can be added. ClPyZ has been extensively tested and
is ready for production. It can be installed on any Linux
distribution supporting standard shell programming for OS
level operations.

The main features of ClPyZ include:

- Custom Orchestration: Any standard VM template can
be used supporting Open Virtualization Format (OVF).

- Resource Tracking: The available resources for the
federation environment are automatically tracked for
resource provisioning.

VOLUME 8, 2020 106241



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

- Monitoring: The resource monitoring and alert system
is available for cloudlets to indicate under-provisioning
or over-provisioning of resources.

- GUI for clients: Provides easy manageability for user
requests and status monitoring.

- Multi-cloud management: Cloudlets belonging to differ-
ent clouds can be added to the federation.

- Centralized Control and Visibility: The server side dash-
board provides explicit monitoring, logging, and event
based triggers for easy administration.

- Scalability and Recourse Sharing: The cloudlet federa-
tion resources can be scaled up by havingmoremembers
and hence more possibility of resource sharing.

- VMMigration: AVMcan bemigrated from one cloudlet
to another to optimize the resource utilization.

B. PERFORMANCE METRICS
To compare the efficiency of the proposed algorithms several
performance metrics have been selected. The first metric is
the latency L between source and destination. There are two
cases, one is cloudlet-to-cloudlet and the second is cloudlet-
to-cloud, where the cloud is a distant remote cloud. The sec-
ond metric is throughput τ . The third metric is hop-count h
between source and destination. The fourth metric is migra-
tion time tm from the source to destination. The fifth metric is
number of requests Nr before the worst case, where the worst
case is when a cloudlet has to offload the task to the distant
remote cloud due to the unavailability of the resources at a
local or neighbor cloudlet.

C. EXPERIMENTAL SETUP
Since the proposed system is ready to work in a production
environment, this gives an edge to use it for real time requests
and take practical values of different observable parameters.
A test-bed for both the conventional cloudlet model and
the proposed federated cloudlet model has been set up. The
conventional cloudlet model as shown in Figure 6 comprises
a remote cloud and a cloudlet node in the closer proximity of
the user, at one-hop distance.

FIGURE 6. Conventional cloudlet setup.

Remote cloud instance has been created on the Amazon
EC2 cluster and the cloudlet node is created in a virtu-
alized environment. The virtualized environment has been
deployed in a datacenter on HP DL360 G6 server with quad-
core 2.8GHz Xeon processor, 64GB of RAM, 250GB of

SAS drive, quad 1Gbps NICs having 32Mbps of bandwidth
available for Internet interface. The virtualized environment
has been developed using VMware ESX 6.0 server. Each
cloudlet node is configured with a single CPU, 8GB of RAM,
30GB of storage, and Ubuntu 14.04 LTS operating system.

The proposed model has been developed using 7 nodes as
shown in Figure 7. One broker node and 6 cloudlet nodes.
Cloudlet nodes have been deployed at 3 different locations
within the same city, two at each location. Cloudlet nodes are
configured with 2 different ISPs. One node at each location
belongs to an ISP, while the second node at each location
belongs to other ISP. The use of two different ISPs enable
us to observe the parameters for both MAN and WAN envi-
ronments. The same virtualized environment and parame-
ters have been used for both experimental setups. Moreover,
the parameters presented as performance metrics are manda-
tory and do not hold any preference, sequence or weights as
mentioned in equation (17).

FIGURE 7. Proposed federated cloudlet setup.

A user gets registered at a cloudlet and forwards offloading
requests. The user offloads the OVA file to the connected
cloudlet. Tiny Core Linux (TCL) configured with 1 CPU,
48MB of RAM, 45MB of storage having a size of 15MB has
been used for experimentations. The sample metric values for
both experimental setups have been presented in Table 2.

TABLE 2. Sample metric values for study cases.

In the conventional cloudlet model, if there are ample
resources, the request is executed on a connected cloudlet.
Otherwise, the request is forwarded to the remote cloud and
this decision is taken by the cloudlet. In the proposed model,
the request is forwarded to the broker by a cloudlet for optimal
decisions using a resource-aware algorithm. The request is
either executed on a connected cloudlet or any other cloudlet
in the cloudlet federation. The place of decision does not

106242 VOLUME 8, 2020



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

FIGURE 8. Analysis of latency, hop-count, migration time and throughput for conventional and CFRO models.

matter as the request latency is negligible. However, the
request execution place is important due to VM size, required
resource, and migration latency. The best case is the same
for both setups as the request is executed on the connected
cloudlet. However, the average and worst-case for both setups
are different. In the conventional cloudlet model, the request
is forwarded to the remote cloud in the worst case, whereas
in the proposed model the worst case is never executed unless
the whole cloudlet federation is out of resources which is hard
to realize.

The main objective is to overload the system beyond avail-
able resources on a single cloudlet to observe the behavior
of both conventional and federated cloudlet models. The
overloading process is independent of the type and nature of
the workload since only the required resources are consid-
ered. The experiments have been conducted in two phases.
In the first phase using a conventional cloudlet model, some
requests are initiated in the form of VMs until a cloudlet
starts forwarding requests to the remote cloud due to the
unavailability of resources. In the second phase, the same
number of requests are initiated on the proposed model for
comparative results. The process of initiating requests contin-
ues even after reaching the worst case to observe the behavior
of both models.

D. TESTBED RESULTS
All tests were repeated at least three times for both con-
ventional and proposed models. The values of performance
parameters are summarized in Table 3 using average, stan-
dard deviation, and confidence (Cd) for a significance value
of 0.05.

A VM using the Amazon EC2 instance has been instanti-
ated that serves as a remote cloud for the conventional model.
Two network use cases are used for the proposed model;
1) using the same ISP for source and destination cloudlets,
2) using different ISPs for source and destination cloudlets.
The detailed results and findings in terms of different param-
eters and their relationship for the conventional and proposed
model are as follows

1) Latency and Hop-count: These parameters have been
evaluated for conventional and the proposed model
under the worst case, where the connected cloudlet is
out of resources. The results shown in Figure 8 indicate
an elevated level of latency for the conventional model
due to increased distance and hop-count as compared to
the proposed model. Fixed bandwidth and VM size has
been considered to observe the migration time. In the
case of the same ISP, the reduction in terms of overall
latency is 97% and in terms of hop-count it is by 91%.

VOLUME 8, 2020 106243



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

TABLE 3. Overview of parameters values for both models.

FIGURE 9. Average effect of latency over hop-count and migration time; and average effect of transfer size and rate over migration time.

In the case of different ISPs, the latency is reduced by
36%, and hop-count is reduced by 53%.

2) Migration Time and Throughput: The results shown
in Figure 8 indicate an elevated level of migration time
for the conventional model due to increased distance,
latency and inconsistent throughput as compared to
the proposed model. In the case of the same ISP,
the migration time is decreased by 39% and in the case
of different ISPs, the migration time is decreased by
15% due to reduced distance, hop-count, and latency.
The results show an increased throughput for the pro-
posed model as compared to the conventional model.
In the case of the same ISP, the throughput is enhanced
by 97% and in the case of different ISPs, the throughput

is enhanced by 36% due to reduced distance, hop-
count, and latency.

3) Average Effect of Latency Over Hop-count and Migra-
tion Time: The average effect of latency over hop-count
and migration is shown in Figure 9. In the case of the
same ISP, the average effect of latency per hop-count
is lowered by 67% and the average effect of latency
over migration time is lowered by 96%. In the case
of different ISPs, the average effect of latency per
hop-count is decreased by 25%, and the average effect
of latency over migration time is decreased by 36%.

4) Average Effect of Transfer Size and Rate Over Migra-
tion Time: The average effect of transfer size and rate
over migration time have been presented in Figure 9.

106244 VOLUME 8, 2020



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

FIGURE 10. Comparison of conventional and CFRO model for the number
of requests before worst case.

In the case of the same ISP, the effect of the trans-
fer size over migration time shows a linear trend as
maximum throughput is gained due to reduced dis-
tance, latency, and hop-count. In the case of different
ISPs and conventional models this trend shifts towards
exponential. An improvement of 96% is observed in
the case of the same and different ISPs, an improve-
ment of 25% is recorded. The results show a 39%
improved transfer rate for the same ISP scenario and a
15% improved transfer rate for different ISPs scenario
as compared to the conventional model. The reasons
for this improvement include stable and maximized
throughput, decreased distance, latency, and hop-count.

5) Number of Requests Before Worst Case: This param-
eter is completely dependent upon available compu-
tational resources at a cloudlet. Figure 10 shows an
increased number of requests avoiding the worst case
to be reached due to federated resources as compared
to the conventional model. An improvement of 34% is
recorded with a two-member federation. The resource
pool increases as more members are added to the
federation.

VI. CONCLUSION AND FUTURE DIRECTION
This work plays a pivotal role in the performance improve-
ment of mobile cloud computing. The new model is capable
of utilizing untapped resources offered by neighbor cloudlets.
This gives an equal opportunity to every service provider
for resource and user management as these both are the key
elements of a resource federation.

Further, resource-aware resource allocation algorithms for
efficient resource management are presented in this study.
The experimental results show that the proposed technique
brings significant improvement in terms of latency, hop-
count, migration time, and number of requests, thus improv-
ing the cloudle’s performance. The independent nature of the
proposed model allows it to be integrated with any third party
solution provided by Xen, KVM, VMware, Amazon’s Elastic
Compute Cloud (EC2), Simple Storage Service (S3), and
Microsof’s Azure. The potential applications of the proposed

cloudlet federation are not only limited to mobile computing
but also include the areas of autonomous vehicles, image
recognition systems, cyber-physical systems, disaster recov-
ery systems, and missile control systems etc. [44]–[46]. The
time-aware federated cloudlet model can further be enhanced
by considering the parameters of energy and task awareness.

REFERENCES
[1] W. Liu, W. Gong, W. Du, and C. Zou, ‘‘Computation offloading strategy

for multi user mobile data streaming applications,’’ in Proc. 19th Int. Conf.
Adv. Commun. Technol. (ICACT), 2017, pp. 111–120.

[2] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, ‘‘TTSA: An effective
scheduling approach for delay bounded tasks in hybrid clouds,’’ IEEE
Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov. 2017.

[3] M. H. Ghahramani, M. Zhou, and C. T. Hon, ‘‘Toward cloud comput-
ing QoS architecture: Analysis of cloud systems and cloud services,’’
IEEE/CAA J. Automatica Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017.

[4] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Mobile cloud computing:
A survey,’’Future Generat. Comput. Syst., vol. 29, no. 1, pp. 84–106, 2013.

[5] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, ‘‘Mobile-
edge computing architecture: The role of MEC in the Internet of Things,’’
IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91, Oct. 2016.

[6] Q. Fan and N. Ansari, ‘‘On cost aware cloudlet placement for mobile edge
computing,’’ IEEE/CAA J. Automatica Sinica, vol. 6, no. 4, pp. 926–937,
Jul. 2019.

[7] I. Stojmenovic and S. Wen, ‘‘The fog computing paradigm: Scenarios
and security issues,’’ in Proc. Federated Conf. Comput. Sci. Inf. Syst.,
Sep. 2014, pp. 1–8.

[8] P. Zhang, M. Zhou, and G. Fortino, ‘‘Security and trust issues in fog
computing: A survey,’’ Future Gener. Comput. Syst., vol. 88, pp. 16–27,
Nov. 2018.

[9] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, ‘‘Cloudlets: Bringing
the cloud to the mobile user,’’ in Proc. 3rd ACM Workshop Mobile Cloud
Comput. Services, 2012, pp. 29–36.

[10] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, ‘‘Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data
centers,’’ Comput. Netw., vol. 130, pp. 94–120, Jan. 2018.

[11] S. Yi, C. Li, and Q. Li, ‘‘A survey of fog computing: Concepts, applications
and issues,’’ in Proc. Workshop Mobile Big Data, 2015, pp. 37–42.

[12] K. Dolui and S. K. Datta, ‘‘Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing,’’ in Proc.
Global Internet Things Summit (GIoTS), Jun. 2017, pp. 1–6.

[13] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, ‘‘Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,’’
J. Netw. Comput. Appl., vol. 59, pp. 46–54, Jan. 2016.

[14] D. P. Abreu, K. Velasquez, M. Curado, and E. Monteiro, ‘‘A resilient Inter-
net of Things architecture for smart cities,’’ Ann. Telecommun., vol. 72,
nos. 1–2, pp. 19–30, Feb. 2017.

[15] M. Z. Nayyer, I. Raza, and S. A. Hussain, ‘‘A survey of cloudlet-based
Mobile augmentation approaches for resource optimization,’’ ACM Com-
put. Surv., vol. 51, p. 107, Nov. 2018.

[16] A. Kertesz, ‘‘Characterizing cloud federation approaches,’’ in Cloud Com-
puting. Cham, Switzerland: Springer, 2014, pp. 277–296.

[17] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda,
L. Fong, S. Masoud Sadjadi, and M. Parashar, ‘‘Cloud federation in a lay-
ered service model,’’ J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1330–1344,
Sep. 2012.

[18] R. Buyya, R. Ranjan, and R. N. Calheiros, ‘‘Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,’’ in Proc. Int. Conf. Algorithms Architectures Parallel Process.,
2010, pp. 13–31.

[19] E. Carlini, M. Coppola, P. Dazzi, M. Mordacchini, and A. Passarella,
‘‘Self-optimising decentralised service placement in heterogeneous cloud
federation,’’ in Proc. IEEE 10th Int. Conf. Self-Adaptive Self-Organizing
Syst. (SASO), Sep. 2016, pp. 110–119.

[20] C. A. Lee, R. B. Bohn, and M. Michel, ‘‘The NIST cloud federation
reference architecture 5,’’ NIST Special Publication, Gaithersburg, MD,
USA, Tech. Rep., 2020, vol. 500, p. 332.

[21] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ NIST
Special Publication, Gaithersburg, MD, USA, Tech. Rep., 2011, vol. 800,
p. 145.

VOLUME 8, 2020 106245



M. Z. Nayyer et al.: CFRO: Cloudlet Federation for Resource Optimization

[22] M. Z. Nayyera, I. Razab, and S. A. Hussainb, ‘‘Revisiting VM perfor-
mance and optimization challenges for big data,’’ Adv. Comput., vol. 114,
pp. 71–112, 2019.

[23] P. Zhang and M. Zhou, ‘‘Dynamic cloud task scheduling based on a two-
stage strategy,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 772–783,
Apr. 2018.

[24] M. Z. Nayyer. Testbed for Edge Computing. Accessed:
May 2, 2020. [Online]. Available: https://lahore.comsats.edu.pk/Research/
Groups/CNRC/QuickLinks.aspx

[25] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, ‘‘Impact of cloudlets on
interactive mobile cloud applications,’’ in Proc. IEEE 16th Int. Enterprise
Distrib. Object Comput. Conf., Sep. 2012, pp. 123–132.

[26] M. Jia, J. Cao, and W. Liang, ‘‘Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,’’ IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct. 2017.

[27] S. Bohez, J. D. Turck, T. Verbelen, P. Simoens, and B. Dhoedt, ‘‘Mobile,
collaborative augmented reality using cloudlets,’’ in Proc. Int. Conf.
MOBILe Wireless MiddleWARE, Operating Syst., Appl., Nov. 2013,
pp. 45–54.

[28] X. Sun andN.Ansari, ‘‘Green cloudlet network: A distributed greenmobile
cloud network,’’ IEEE Netw., vol. 31, no. 1, pp. 64–70, Jan. 2017.

[29] Y. Jararweh, L. Tawalbeh, F. Ababneh, A. Khreishah, and F. Dosari,
‘‘Scalable cloudlet-based mobile computing model,’’ Procedia Comput.
Sci., vol. 34, pp. 434–441, 2014.

[30] K. Ha, Y. Abe, Z. Chen, W. Hu, and B. Amos, ‘‘Adaptive vm hand-
off across cloudlets,’’ CMU School Comput. Sci., Pittsburgh, PA, USA,
Tech. Rep. CMU-CS-15-113, 2015.

[31] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der Merwe, and K. Webb,
‘‘Mobiscud: A fast moving personal cloud in the mobile network,’’ in Proc.
5th Workshop Things Cellular: Oper., Appl. Challenges, 2015, pp. 19–24.

[32] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEEPervas. Comput., vol. 8, no. 4,
pp. 14–23, Oct. 2009.

[33] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, ‘‘Just-in-time
provisioning for cyber foraging,’’ in Proc. 11th Annu. Int. Conf. Mobile
Syst., Appl., Services (MobiSys), 2013, pp. 153–166.

[34] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, ‘‘On the computation
offloading at ad hoc cloudlet: Architecture and service modes,’’ IEEE
Commun. Mag., vol. 53, no. 6, pp. 18–24, Jun. 2015.

[35] S. Bohez, T. Verbelen, P. Simoens, and B. Dhoedt, ‘‘Discrete-event sim-
ulation for efficient and stable resource allocation in collaborative mobile
cloudlets,’’ Simul. Model. Pract. Theory, vol. 50, pp. 109–129, Jan. 2015.

[36] H. Flores, R. Sharma, D. Ferreira, V. Kostakos, J. Manner, S. Tarkoma,
P. Hui, andY. Li, ‘‘Social-aware hybridmobile offloading,’’Pervas.Mobile
Comput., vol. 36, pp. 25–43, Apr. 2017.

[37] Y. Wu and L. Ying, ‘‘A cloudlet-based multi-lateral resource exchange
framework for mobile users,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 927–935.

[38] K. A. Khan, Q. Wang, C. Grecos, C. Luo, and X. Wang, ‘‘MeshCloud:
Integrated cloudlet and wireless mesh network for real-time applications,’’
in Proc. IEEE 20th Int. Conf. Electron., Circuits, Syst. (ICECS), Dec. 2013,
pp. 317–320.

[39] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya, ‘‘A
context sensitive offloading scheme for mobile cloud computing service,’’
in Proc. IEEE 8th Int. Conf. Cloud Comput., Jun. 2015, pp. 869–876.

[40] X. Guo, L. Liu, Z. Chang, and T. Ristaniemi, ‘‘Data offloading and task
allocation for cloudlet-assisted ad hoc mobile clouds,’’ Wireless Netw.,
vol. 24, no. 1, pp. 79–88, 2018.

[41] M. V. Barbera, S. Kosta, A.Mei, and J. Stefa, ‘‘To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing,’’ in Proc.
IEEE INFOCOM, Apr. 2013, pp. 1285–1293.

[42] H. Mazouzi, N. Achir, and K. Boussetta, ‘‘Dm2-ecop: An efficient compu-
tation offloading policy for multi-user multi-cloudlet mobile edge comput-
ing environment,’’ ACMTrans. Internet Technol. (TOIT), vol. 19, pp. 1–24,
2019.

[43] I. Adan and J. Resing, Queueing Theory, ed. Eindhoven, The Netherlands:
Eindhoven Univ. Technology, 2002.

[44] L. Chen, X. Hu, W. Tian, H. Wang, D. Cao, and F.-Y. Wang, ‘‘Parallel
planning: A new motion planning framework for autonomous driving,’’
IEEE/CAA J. Automatica Sinica, vol. 6, no. 1, pp. 236–246, Jan. 2019.

[45] G. Bhatnagar and Q. J. Wu, ‘‘A fractal dimension based framework for
night vision fusion,’’ IEEE/CAA J. Automatica Sinica, vol. 6, no. 1,
pp. 220–227, Jan. 2019.

[46] S. M. Rahman, ‘‘Cyber-physical-social system between a humanoid robot
and a virtual human through a shared platform for adaptive agent ecology,’’
IEEE/CAA J. Automatica Sinica, vol. 5, no. 1, pp. 190–203, Jan. 2018.

MUHAMMAD ZIAD NAYYER received the
M.S. degree in computer science from the Govern-
ment College University (GCU), Lahore, Pakistan,
in 2011, and the Ph.D. degree in computer science
from COMSATS University Islamabad–Lahore.
He is currently serving as an Assistant Professor
with the Department of Computer Science, GIFT
University, Gujranwala, Pakistan. He is an Active
Member of Advanced Communication Networks
Lab. He has numerous publications on his account,

including impact factor journal publications and book chapters. His research
interests include cloud computing, VM migration, mobile cloud comput-
ing, cloud federation, mobile edge computing, fog computing, and cloudlet
computing.

IMRAN RAZA (Member, IEEE) received the
B.S. (CS) and M.Phil. degrees in computer
science from Pakistan. He has been working
as an Assistant Professor with the Department
of Computer Science, COMSATS University
Islamabad–Lahore, since 2003. He has authored
and coauthored more than 40 journal and con-
ference papers. He has been actively involved in
simulating CERNO2/FLP upgrades. He has super-
vised and co-supervised many funded projects

related to ICT in Healthcare. His research interests include cloud computing,
mobile edge computing, SDN, NFV, wireless sensor networks, MANETS,
QoS issue in networks, and routing protocols. He has been member of ACM.

SYED ASAD HUSSAIN received the mas-
ter’s degree from Cardiff University, U.K.,
and the Ph.D. degree from Queen’s University
Belfast, U.K. He was the Head of the Com-
puter Science Department, COMSATS University
Islamabad–Lahore, Pakistan, from August 2008 to
August 2017. He has been serving as the Dean of
Faculty of Information Sciences and Technology,
since 2015. He is currently leading communi-
cations and networks research with COMSATS

University Islamabad–Lahore. He is supervising Ph.D. students at CUI
and split-site Ph.D. students at Lancaster University, U.K., in the fields of
cloud computing and cybersecurity. He was funded for his Ph.D. by Nortel
Networks UK Ltd., at Queen’s University Belfast. He has taught at Queen’s
University Belfast, the Lahore University ofManagement Sciences (LUMS),
and the University of the Punjab. He was awarded prestigious endeavour
research fellowship for his post doctorate at The University of Sydney,
Australia, in 2010, where he conducted research on VANETs. He regularly
reviews IEEE, IET, and ACM journal articles.

106246 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORKS
	SYSTEM OVERVIEW AND PROBLEM FORMULATION
	SYSTEM MODEL
	SYSTEM ARCHITECTURE
	PROBLEM FORMULATION

	TIME-AWARE RESOURCE OPTIMIZATION
	RESOURCE CALCULATION
	TIME CALCULATION
	OPTIMAL CLOUDLET SELECTION
	NESTED OPTIMIZATION

	PERFORMANCE EVALUATION
	NESTED OPTIMIZATION
	PERFORMANCE METRICS
	EXPERIMENTAL SETUP
	TESTBED RESULTS

	CONCLUSION AND FUTURE DIRECTION
	REFERENCES
	Biographies
	MUHAMMAD ZIAD NAYYER
	IMRAN RAZA
	SYED ASAD HUSSAIN


