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ABSTRACT A novel reconstruction algorithm is presented to address the noise artifacts of path tracing.
SURE (Stein’s unbiased risk estimator) is adopted to estimate the noise level per pixel that guides adaptive
sampling process. ModifiedMLPs (multilayer perceptron) network is used to predict the optimal reconstruc-
tion parameters. In sampling stage, coarse samples are firstly generated. Then each noise level is estimated
with SURE. Additional samples are distributed to the pixels with high noise level. Next, we extract a few
features from the results of adaptive sampling used for the subsequent reconstruction stage. In reconstruction
stage, modified MLPs network is adopted to model a complex relationship between extracted features and
optimal reconstruction parameters. An anisotropic filter is used to reconstruct the final images with the
parameters predicted by neural networks. Compared to the state-of-the-art methods, experiment results
demonstrate that our algorithm performs better than other methods in numerical error and visual image
quality.

INDEX TERMS Adaptive sampling, SURE estimator, MLPs network, path tracing, denoising.

I. INTRODUCTION
Path tracing algorithm can generate realistic images with
lots of visual effects [1]–[4]. But this method relies on
stochastic point samples of an intricate integrand, they often
suffer from noise. This motivates path tracing denoising
approaches, which broadly fall into two categories. One
is Sample-based techniques which almost operate in pixel
space. (e.g. Bako et al. [5], Bitterli et al. [6]). Because
the error per pixel is different from each other in scenes,
the samples number needed is also different. with large error,
such as the object boundary regions and texture detail areas,
need more samples to prevent the loss of the details. On the
country, regions with small error acquire less samples to
accelerate the rendering. Unfortunately, at high sampling
rate, the adaptive sampling methods are not as efficient as
the other methods. The other one makes use of the tradi-
tional image processing methods such as filtering approaches
(e.g. Rousselle [7], [8], Sen and Darabi [9], Li et al. [10]).
However, the major disadvantage is that the images would be
blurred while denoising under low sampling rate.

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .

In order to combine the advantages of two kind of
approaches, we propose a novel algorithm that leverages
the power of neural networks in the following key manners
compared to previous denoising methods:

• Rather than predicting the pixel color, we utilize the
neural network to predict the optimal reconstruction
parameters. Then we can make use of a cross-bilateral
filters to reconstruct the final noise-free images with
these predicted parameters. And the quality of final
images is higher.

• Compared with those methods which used the neural
network to predict the kernel size of the filter, we intro-
duce a set of additional features extracted from the
path tracing rendering process, such as the mean and
deviation of color in the neighborhood around the pixel,
which is computed on each color component, the world
position of the hit-points. And we set them as the input
of neural network. The more the extracted features,
the more accurate relationship between the filter param-
eters and the features. In other words, we can get the
more optimal filter parameters easily.

• To prevent the spike pixels after reconstruction, we use
the statistical methods to handle the spike pixels.
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FIGURE 1. The framework of our major algorithm. As shown in fig, there are two major parts of our algorithm. The one is Adaptive Sampling
based on SURE. And the other one is Reconstruction based on Neural Network. Input is the noisy images rendered by path tracing with low
samples per pixel (spp). Firstly, we make use of the sampling process to deal with the input noisy image. At the same time, we extract a few
features from input. Then we can get a better result than input. Secondly, we utilize the extracted features and the result of adaptive sampling
as the input of neural network. Then with the neural network, we can get the ideal filter parameters. Finally, we use the cross-bilateral filter
with these predicted parameters to reconstruct the final noisy-free images.

Meanwhile, to prevent the visual abrupt change, we con-
verted the color space.

Overall, our major algorithm framework is shown in Fig.1.
We trained our network and extensively tested our algo-

rithm on a variety of scenes, including various lighting phe-
nomena such as distribution effects and diffuse and specular
global illumination. Our method significantly reduces the
error comparing to other methods, especially under the low
sampling rate (e.g. 8 spp or less).

II. RELATED WORK
A. GENERAL IMAGE DENOISING
Image denoising is a classical yet still active topic in low level
vision since it is an indispensable step inmany practical appli-
cations. Over the past few decades, various models have been
exploited for modeling image priors, including nonlocal self-
similarity(NSS) models [11]–[14], sparse models [14]–[16],
gradient models [17]–[19] and Markov random field(MRF)
models [20]–[22]. In particular, the NSS models are popular
in state-of-the-art methods such as BM3D [12], LSSC [14],
NCSR [16] and WNNM [23]. However, most of the methods
can hardly achieve high performance on denoising path trac-
ing rendering, just because the noise of path tracing is with
randomness. Thus, the natural image denoising methods are
seldom used in denoising path tracing rendering.

B. DENOISING FOR PATH TRACING RENDERING
Zwicker et al. [4] present a recent survey of denoising tech-
niques for Monte Carlo rendering. A priori methods char-
acterize the structure of the integrand to derive analytical
sampling rates and filters [2], [24]–[26]. They are often

limited to a specific combination of light transport scenarios,
such as motion blur, global illumination. To overcome these
limitations, a lot of improved methods were proposed to
denoise path tracing rendering.

A fruitful line of research adapted well-known image-
processing filters [27], [28]. Unlike typical neural image
denoising methods, path tracing rendering noise has strong
variations across pixels. These methods often set the param-
eters of the filter according to a statistical estimate of the
error obtained from the noisy images. The most successful
techniques employ auxiliary features such as depth, normal
or albedo. These extra features have been used to drive
anisotropic diffusion or cross-bilateral filters [8], [10]. How-
ever, the reconstruction imageswith thesemethods are always
fuzzy in low sampling rate.

Methods that work directly on the raw radiance samples
often first reconstruct the radiance function using existing
samples, then integrate the reconstructed function to generate
images. McCool [29] use the nearest neighbors of each sam-
ple for reconstruction, which suffers from the curse of dimen-
sionality when the integrand dimension is more than five.
Sen and Darabi [9]’s method stands between the pixel-
based and sample-based approach. However, they still rely on
heuristics based on statistical aggregates. Hachisuka et al. [30]
use 1D color histograms to match pixels that should be
denoised jointly. However, their filter still operates on pix-
els and the histogram parameterization needs to be care-
fully set beforehand to cover the expected dynamic range.
Delbracio et al. [31] extend adaptive manifolds to work
directlywith individual samples. They focus on limited global
illumination and depth-of-field effects, but they do not handle
motion blur.
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FIGURE 2. Our adaptive sampling method based on SURE.

C. NEURAL NETWORK FOR NOISY IMAGE
RECONSTRUCTION
As a pioneer, Bauszat et al. [32] usedmachine learning to esti-
mate the weights of filter automatically. Kalantari et al. [33]
proposed themethods which combined the Gaussian denoiser
and the residual learning of deep CNN and they obtained a
better denoising results. Zhang et al. [34] improved the struc-
ture of networks. They introduced the graph-convolutional
layers in order to exploit both local and non-local similarities
and their architecture outperformed better than other CNN.
However, most of their methods were not suitable for denois-
ing the images generated by path tracing.

As for denoising the path tracing results, Bako et al. [5]
used convolutional neural networks to infer not just the filter
weights but also the form of a more complex filter kernel
itself. Valsesia et al. [35] proposed a strategywhichwas based
on the noisy data only. But the denoise process needed mul-
tiple images with different sampling rate, which took much
more time. Lehtinen et al. [36] utilized a recurrent neural
network to force the temporal coherence, enabling interac-
tive denoising for real-time applications. Bako et al. [5] and
Chaitanya et al. [37] extended the kernel prediction strat-
egy in the work [6] by also considering temporal coherence
at multiple scales. In concurrent works, Vogel et al. [38]
attempted reconstruction for gradient-domain rendering,
while Kettunen et al. [39] utilized raw samples as high-order
statistics and a novel splatting approach to achieve better
results with larger computational cost and storage space
though.

We adopt the sampling strategy and parameters-predicting
reconstruction with two key differences. The one is that we
optimal the samples distribution, instead of unnecessary sam-
ples, so that, our number of samples is lower than other meth-
ods. Especially, compared the reconstruction method [40]
based on SURE adaptive sampling, our method does not rely
on sampling process to denoise the images. So, our method

improve the efficiency a lot. The other one is that our method
builds the relationship between the extracted features from
the rendering and reconstruction parameters, instead of the
features and pixel colors. We also adopt the optimization
strategy of handling the spike pixels to obtain final images
of better quality.

III. ADAPTIVE SAMPLE AND RECONSTRUCTION BASED
ON NEURAL NETWORK
A. ADAPTIVE SAMPLING BASED ON SURE
In this paper, we utilize an adaptive sampling method based
on SURE (Fig. 2).

As shown in Fig.2, our method includes multi-steps iter-
ative adaptive sampling processes. The general steps are as
follows:
Step 1. Coarse sampling. Generate the coarse image

with a small number of samples per pixel by path tracing
algorithm.
Step 2. Extracting features. Extract the features from coarse

image such as the shading normal, depth, texture, visibility
et al.
Step 3. Estimating the noise level. Calculate the variance

in each feature space according to the feature extracted in
Step 2. Then with the variance value, estimate the noise level
per pixel.
Step 4. Distributing samples adaptively. According to the

estimated noise level and the threshold predefined, increase
and distribute corresponding number of samples per pixel.
Then generate the adaptive sampling image by path tracing
algorithm.
Step 5. Termination condition determination. If the noise

levels of all pixels meet the termination conditions, adap-
tive sampling process ends. Otherwise, iteratively repeats the
Step 2 to Step 5.

Next, we will focus on how to use SURE to estimate the
noise level.
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1) SURE AND FILTER WEIGHT
In adaptive sampling process, it is necessary to assess the
accuracy rate of the estimated value. Here, we utilize the
SURE to evaluate the error between the estimated values and
reference values.

The formula of evaluating SURE [10] is as follow:

SURE
(
Pi
)
=
∥∥Pi − Pi∥∥2 + 2σ 2

i
dPi
dPi
− σ 2

i , (1)

where Pi and Pi represent the reconstruction value and coarse
sampling value, respectively. The derivative term could be
computed as follows:

dPi
dPi
=

1
n∑
j=1
ωij

+
1
σc


n∑
j=1
ωijP2i

n∑
j=1
ωij

− Pi
2

 , (2)

where ωij represents the parameter of reconstruction method
based on filter, and the parameter σc represents the stan-
dard deviation of samples in color space. Here we use the
cross-bilateral filter. Therefore, we could get the filter weight
parameters [11] as follows:

ωij = exp

(
−

∥∥pi − pj∥∥2
2σ 2

p

)
exp

(
−

∥∥ci − cj∥∥2
2σ 2

c

)

×

m∏
k=1

exp

− ∥∥fik − fjk∥∥2
2σ 2

k

(
σ 2
ik + σ

2
jk

)
, (3)

where σp, σc, σk represent the standard deviation in the image
space, color space and feature space, respectively. m repre-
sents the number of features extracted from coarse images.
fik represents the samplemean of the k-th features and σik rep-
resents the corresponding sample standard deviation. Here
we utilize three kinds of features, shading normal, depth and
texture.

2) ADAPTIVE SAMPLES DISTRIBUTION
Next, we utilize the SURE to estimate the noise level. For
pixel i, the noise level estimator [10] can be computed by

Li =
SURE

(
Pi
)
+ σ 2

i

P
2
i + δ

, (4)

where, δ is a minimal value to prevent denominator zero.
σ 2
i represents the sample variance at pixel i. Then the noise

level estimated can be used in the adaptive sampling process.
We define four kinds of spatially varying samples number,
which denoted as α = {α1, α2, α3, α4} that goes from less to
more. The choice threshold is accumulated as 8 = {81, 82,
83,84}. Therefore, the samples number is simply chosen by
considering the estimator Li by

if 0 < Li ≤ 81 α = α1

else if 81 < Li ≤ 82 α = α2

else if 82 < Li ≤ 83 α = α3

else α = α4

, (5)

where α represents the number of increase samples per pixel.
With α choice, the images are rendered by path tracing
algorithm. Additionally, to prevent discontinuity(or ringing
artifact) between two neighbor pixels, we set our varying of
samples number as {1, 2, 4, 8} and {1,

√
2, 2, 4}.

B. RECONSTRUCTION BASED ON NEURAL NETWORK
The goal of image reconstruction approaches is to take a noisy
input image rendered with only a few samples and generate
a noise-free image that is like the ground truth rendered with
many samples. Expressed mathematically, the reconstruction
image Î =

{
Îr , Îg, Îb

}
at pixel i is computed as a weighted

average of all pixels in a square neighborhood N (i) (centered
on pixel i) [11]

Î i =

∑
j∈N (i) ωi,jI j∑
j∈N (i) ωi,j

, (6)

where I j represents the noisy pixel color. ωi,j is the weight
between pixel i and its neighbor j as computed by the
formula (3). Here, we modify this formula. Specifically,
we replace the items 1(

σ 2ik+σ
2
jk

) in the formula with Dk , which

represents the parameter of distance in feature domains. Then
the modified formula is as follows:

ωi,j = exp

(
−

∥∥pi − pj∥∥2
2σ 2

p

)
exp

(
−

∥∥ci − cj∥∥2
2σ 2

c

)

×

m∏
k=1

(
−
Dk
∥∥fik − fjk∥∥2
2σ 2

k

)
. (7)

Thus, the quality of the reconstruction image depends on
the parameters of filter σp, σc, σk . The challenge is how
to find the optimal values of filter parameters to produce
the highest-quality results. As the proposed theory [36],
there exists a complex non-linear relationship between
multi-dimensional features and optimal filter parameters.
We use a modified MLPs network to fit the relationship. Our
reconstruction framework is shown in Fig.3.

1) MULTI-DIMENSIONAL FEATURES
Multi-dimensional features are those directly output by the
rendering system. We use seven kinds of features as the input
of neural network, including pixel color, shading normal, tex-
ture values, direct illumination visibility, world position, the
mean and standard deviation of pixel color in the neighbor-
hood around pixels, and the mean and standard deviation of
visibility in the neighborhood around pixels. These features
were also used in reference in reference [8] and we found it to
be useful in our framework. During rendering, for each pixel,
we describe the world position in Cartesian coordinates (x, y,
and z), color in RGB format, shading normal (i, j, and k),
texture values in RGB format, and a single float value for
the direct illumination visibility. Totally, there are twenty-five
float values as the input of our neural network. Additionally,
the mean and deviation of pixel color in the neighborhood
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FIGURE 3. Our reconstruction framework. As shown in Figure, Our reconstruction approach takes the adaptive sampling results as origin images and
extract multi-dimensional features including color, depth, shading normal, texture and position from the adaptive sampling results. The network takes
these extracted features as input and outputs the ideal filter parameters. The filter makes use of these parameters and outputs the reconstructed
result per pixel. When all pixels are reconstructed, we can obtain a final reconstruction image. Besides, our framework supports other derivable filters,
such as the gaussian filter, cross non-local mean filter.

around the pixel are computed on each color component (six
float values total).

2) OUR NEURAL NETWORK
As with any neural network, there are three crucial elements
we should describe: (1) the structure of network, (2) an
appropriate loss function to measure the distance between
the reconstruction result and ground truth images, and (3) an
optimization strategy to minimize the loss function.

a: THE STRUCTURE OF OUR NETWORK
We use a modified MLPs network since it is a simple, yet
powerful system for discovering complex nonlinear relation-
ships between its inputs and outputs. Moreover, MLPs are
inherently parallel and can be efficiently implemented on a
GPU. Our modified MLPs is shown in Fig.4. Illustrated as
Fig.4, four layers are presented in the network. For clarity,
we only show connections for one node at each layer. Each
layer has several nodes fully connected by defined weights,

FIGURE 4. Our MLPs neural network per pixel.

where weight ωij represents connects node at layer i to node
at layer j, and i, j are just the one of the three kinds of
layers, input, hidden, or output. X1, X2, . . . , Xn represent
the multi-dimensional features. θ1, θ2, . . . , θM represent the
predicted parameters of filter. As well, each layer has a bias
item shown in Fig 4. Assume the output of last layer is cl−1t ,
the output of current layer can be computed by [32]

cls = f l
(nl−1∑
t=1

ωlt,sc
l−1
t + bls

)
, (8)

where we present last layer as l − 1, the current layer as l.
ωlt,s represents the weight between two layers and bls rep-
resents the bias item. Here, f l is the activation function.
In order to improve slow convergence and low-accuracy of
general MLPs network, we replace the original sigmoid func-
tion used in hidden layers with the relu-softsign function. The
expression of our activation function is

f (x) =


x

1+ |x|
, x ≤ 0

x, x > 0
. (9)

When x>0, the derivative of the function is a constant. When
x≤0, the derivative of the function decreases slowly, and it
can provide non-zero derivative for the non-positive number
near zero. Therefore, the function can have higher accuracy
than other functions and a faster convergence. As for the
output layer, the softplus function is used as the activation
function. Additionally, the activation function should be the
non-linear function, otherwise the network would degenerate
into a simple linear regression model. Compared with general
MLPs network, we incorporate the filter into the training and
testing process. The ‘‘backpropagate’’ of general MLPs net-
work updates the weights through the results of the network.
And our ‘‘backpropagate’’ is according to the results of the
filter. So, this implies that the filter must be differentiable
with respect to its filter parameters. Fortunately, our utilized
cross-bilateral filter is differentiable.
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Especially, the complexity of neural network depends
on the number of layers and the nodes in each layer. Although
the complex network can fit a complex relationship between
the input and the output, the training process would be too
hard to implement. Besides, the ‘‘over fitting’’ would occur
much easier in complex models. When implementing neural
networks, we set the number of nodes in input layer as twenty-
five. Similarly, we set the number of nodes in hidden layers
as ten. The number of nodes in output layers is seven.

b: OUR LOSS FUNCTION
Next, we describe our loss function, which is the metric
to measure the results error between the reconstructed and
ground truth. Compared with the widely used loss function,
like MSE (mean squared error) and CEE (cross entropy
error), we use a modified RelMSE(relative mean squared
error) proposed by Rousselle et al. [41], which is more suit-
able for our application. Since the human visual system is
more sensitive to color variations in darker regions of the
image, we modify the RelMSE as follows:

Ei =
n
2

∑
q∈{r,g,b}

(
ĉi,q − ci,q

)2
c2i,q + ε

, (10)

where n is the samples number. _ci,q and ci,q represent the
pixel color in qth color component of reconstruction image
and the truth conference image at pixel i, separately. ε is a
small number (10−3 in our implementation) to avoid division
by zero. Here, the division by c2i,q accounts for the perceptual
effect by giving higher weight to the regionswhere the ground
truth image is darker. As for the multiplication by n/2, the
squared error decreases linearly with the samples number in
path tracing rendering. The fewer samples, the greater errors
in images. By multiplying the squared error by n, we cancel
this inverse relationship and force all the images to have an
equal contribution to the error regardless of their sampling
rate. Furthermore, the error is divided by 2 to produce a
simpler derivative [see Formula (12)].

c: OUR OPTIMIZATION STRATEGY TO TRAIN THE NETWORK
In fact, training network is a process of updating weights
between two layers of network to minimize the loss function
value. Therefore, we first need an optimization strategy for
training network. Like most neural networks, we train the
network through an iterative process called backpropagation.
Our BP method include three steps: 1) the weights are ran-
domly initialized to small values around zero (from −0.9 to
0.9 when implementing). Then compute the results of all
nodes with the Formula (8) and this process can be imple-
mented efficiently using a series of matrix multiplications.
2) The error between the computed and desired outputs is
used to determine the effect of each weight on the output
error. This requires taking the derivative of the error with
respect to each weight. Besides, the activation functions also
need to be differentiable. The two steps are performed for
all the data used in training set and the error gradient of

each weight is accumulated. 3) The weights are updated
according to the accumulated error gradient. Carrying out all
above steps iteratively until convergence. We called a single
completed iteration of training as an epoch. And we need
many epochs in whole training process to obtain a converged
set of weights.

Since the backpropagation process need to compute the
derivative of the loss function with respect to the weights
between each two layers. With math symbol, the derivative
can be expressed as ∂E /∂ωlt,s. Then using the chain rule,
we can obtain a formula of computing the derivative [32] as
follows:

∂Ei
∂ωlt,s

=

M∑
m=1

 ∑
q∈{r,g,b}

[
∂Ei,q
∂ ĉi,q

∂ ĉi,q
∂θm,i

]
∂θm,i

∂ωlt,s

, (11)

where M is the number of the filter parameters. The first
item is the derivative of the loss function with respect to
the reconstructed results and it can be computed rapidly as
follows [32]:

∂Ei
∂ ĉi,q

= n
ĉi,q − ci,q
c2i,q + ε

. (12)

Additionally, θm,i is the output of our network, which
represents the optimal filter parameters. So, the middle
item must be differential. Luckily, our filter is the differ-
ential one. Therefore, the middle item can be computed as
follows [32]:

∂ ĉi,q
∂θm.i

=
∂hq

(
sN (i), θ i

)
∂θm,i

, (13)

where the sN (i) represents gather of the features of the
neighborhood around pixel i. And h is our filter function.
θ i represents the gather ofM filter parameters.

3) OUR TRAINING DATA SET
In our training set, we used about thirty scenes with different
distributed effects such as depth of field, motion blur, soft
shadow, and global illumination. Additionally, for strength-
ening network training, we also used the Animation data
set published by Disney [42]. Fig 5 shows some images of
our training scenes. For each scene, we rendered the ground
truth image with many samples (e.g., 4K, 8K, 16K or 32K)
per pixel and trained all the images on the same network.
Moreover, to avoid overfitting to one noise pattern, we ren-
dered each scene five times at each sampling rate (totally
25 images for each scene). To train the network on all images
efficiently, we performed mini-batch training [43], where

FIGURE 5. A subset of our training scenes.
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each iteration of the backpropagation process is performed
on a subset of the training set. Our subset consisted of one
image at each sampling rate from all the training scenes.
Furthermore, we alternated between the five noisy examples
at each iteration.

4) HANDLING SPIKE PIXELS
Since path tracing rendered images could contain spike
pixels, whose color is greater than their neighbors.
Unfortunately, these pixels cannot be spread efficiently just
with the filter reconstruction. Thus, we need to handle the
spike pixels as a post-processing. In our implementation,
we identify these spikes in the reconstructed result by cal-
culating the mean and standard deviation of the colors for all
the neighboring pixels in a block of size 5 × 5. If any color
channel of the center pixel has values more than 2 standard
deviations away from the block average, then it is labeled
as a spike pixel. We remove the color of spike pixel and
fill the pixel with the median block color. Besides, since the
human eyes are sensitive to the abrupt change of color in
RGB color space, we converted the pixel color in RGB space
to the CLE-Lab space in the handling process to avoid the
discomfort of human eyes. Although the handling process is
not expressed as a differentiable one, it does not affect our
training process without the handling process.

IV. RESULTS AND DISCCUSION
We implemented our algorithm in C++ and integrated it
into PBRT2 [44]. All results were obtained on an Intel(R)
Xeon(R) E5-1603 V4 2.8GHz machine with 32GB of mem-
ory and a NVIDIA Quadro K5200 GPU. We used CUDA for
accelerating the reconstruction process.

Note that, we describe the advantages of our algorithm
framework in three ways: (1) compared with other widely
used reconstruction methods based on adaptive sampling and
filter, (2) compared with the LBF algorithm, which also
used the BP network for reconstruction,(3) compared with
the widely used reconstruction methods based on Convolu-
tional Neural Networks (CNN). To describe the quality of the
image, we utilize RelMSE [41], SSIM [45] and PSNR [45].

A. COMPARED WITH THE GENERAL RECONSTRUCTI-ON
METHODS BASED ON SAMPLING OR FILTERING
Fig.6 shows the comparison between our approach and state-
of-the-art sampling methods on two scenes with different
distributed effects. First, we examine the path traced Sibenik
scene with global illumination [shown above Fig.6(a)].
Our average samples number is about 15 spp. And the
other methods are at 16 spp. The images rendered by Low
Discrepancy and Fuzzy suffer serious noise both in low fre-
quency regions (red rectangle and green rectangle) and high

FIGURE 6. We compare our results with baseline methods based on sampling: Low Discrepancy [43], Fuzzy [46] and GEM [41]
on a test set rendered scenes rendered in 16 spp or 32 spp. The sampling rate of ours is the closest value after averaging. And
below the image, we calculate the RelMSE metric for measuring image quality.

116342 VOLUME 8, 2020



Q. Xing, C. Chen: Path Tracing Denoising Based on SURE Adaptive Sampling and Neural Network

FIGURE 7. We compare our results with baseline methods based on filter: NLM [7], RPF [9], SBF [10] and RD [8] on a test
set rendered scenes rendered in 8spp or 32 spp. The sampling rate of ours is the closest value after averaging. And below
the image, we calculate the value of RelMSE and SSIM for measuring image quality.

frequency regions (yellow rectangle). Although the noise of
level of GEM is as good as ours, it does not preserve the
essential details, like the decorative design on the ceiling
(green rectangle) and the image is more blur than ours. Our
approach can not only preserve more details than others, but
it also generates image of better quality (indicated under the
image as RelMSE). The Anim-Blue Sphere scene is a chal-
lenging, path-traced scene containing three balls with mostly
motion-blur [shown below Fig.6(b)]. This scene is rendered
with 32 spp. Our average is about 31 spp. Three balls rotate
with different speed increasing from left to right. The red rect-
angle shows that our method can sample themotive detail bet-
ter than Low Discrepancy and F-divergences, whose image is
noisy. Seen from the detail on the static ball (yellow rectan-
gle), our method can remove the outlier spikes and generate a
clearer image while GEM obviously causes an overly blurred
one. Note that the RelMSE of ours is less than other methods.

Fig.7 shows the comparison between our approach and
state-of-the-art reconstruction methods base on filter on three
scenes with different distributed effects. For completeness,
we perform approximately same sample comparisons to
ensure fairness. First, the examined scene the Art-Studio
[shown above Fig.7(a)] is a path-traced one which includes
direct illumination and soft shadow. The NLM removes
the noise in shadows, but over blurs the geometry of the
easel-legs and the edge between the easel and shadows (red
rectangle). Moreover, although RPF, SBF and RD use addi-
tional features, they often do not have appropriate filter
weights, resulting in either over blurred the edge between
the easel and shadows or residual noise on the texture of
blackboard (green rectangle). Although our RelMSE is a
little higher than RD, our result is smoother and with fewer
artifacts than RD, which can be indicated from the SSIM. The
SAN MIGUEL Doorway [shown in the middle of Fig.7(b)]
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is a path-traced scene with severe noise at 8 spp. Again,
NLM over blurs the texture of the plant (blue rectangle) on
the marble column (red rectangle) and on the stone arches
(green rectangle). Moreover, SBF and RPF produce results
that are over blurred or contain residual noise, for example,
on the marble column (red rectangle) and near the plant (blue
rectangle). Although RD and our method preserve the texture
on the stone arches (green rectangle), RD cannot properly
remove the noise in the smooth regions (indicated by yellow
arrows). Despite having a lowest RelMSE, we produce a rel-
atively noise-free result that is better than the other methods
both visually and in terms of SSIM. The Teapot Room scene
[shown below Fig.7(c)] is a challenging, path-traced scene
containing one glossy and two diffuse teapots with indirect
illumination. Unfortunately, none of the other methods can
effectively remove the strong indirect illumination noise on
the back wall (blue rectangle) in low sampling rate. Note the
ground truth image still has visible spikes at 96K spp, while
we produce a relatively noise-free result. Seen from the SSIM
and RelMSE, our image is the of higher quality than the other
methods.

B. COMPARED WITH THE LBF ALGORITHM
Since LBF algorithm proposed in references [32] also uses
MLPs network to reconstruct the image of MC noise. Our
method modified the reconstruction method based on MLPs
network. Here we compare our methods with LBF algorithm
in some scenes. Although LBF algorithm can remove the
noise of path tracing rendering, but it is not suitable for
low sampling rate, since it does not distribute the samples
optimally. We choose three test scenes for the comparison
between our algorithm and the LBF methods in the low
sampling rate. The results are shown in Fig 8.

FIGURE 8. We compare our results with LBF algorithm on a test set
rendered scenes. Among them, scene a is the Living Room rendered
in 16spp. Scene b is the Vinctorian Style House. Scene c is Yeah Right.
Scene b and Scene c are rendered in 8spp. The sampling rate of ours is
the closest value after averaging.

From the results, the Living Room [shown in Fig.8(a)] is a
path-traced scene that includes global illumination. There are
totally three ambient sources and a glossy wood floor with
high light. From the details on the ceiling (blue rectangle),
the reconstruction image of LBF is noisy and aliasing. Our
image is smoother, visually noise-free and not aliasing. The
Vinctorian Style House [shown in Fig.8(b)] is a path-traced
scene that contains many texture details. Seen from the details
of the columns at the vestibule (yellow rectangle), although
LBF can remove most noise, the result is much aliasing and

over blurred. Our result is smoother and clearer at the part of
details. Yeah Right [shown in Fig.8(c)] is a path-traced scene
with mostly glossy specular reflection effects. The detail
contrast among the LBF and ours shows that the result of LBF
is much over blurred and of lower quality than ours.

C. COMPARED WITH THE RECONSTRUCTION METHODS
BASED ON NEURAL NETWORK
To compare various path tracing denoising algorithms based
on neural networks, we conduct experiments on noisy input
images with different sample per pixel. Fig.9 shows some
results and closeups from three typical scenes, including
Bathroom with mirrors, Pink Room with colorful glasses
under reflection and refraction situations and White Room
that are relatively dim and make global illumination more
difficult to denoise.

Overall, our work performs consistently on a par or better
than the state-of-the-art methods in terms of both perceptual
quality and quantitative metrics. NFOR, one of the best tradi-
tional offline filteringmethods, suffers from splotchy-looking
results and residual noise due to limited filter kernel size.
Learning based methods (KPCN and RAE) generally obtain
better results in low frequency areas but may produce over-
smoothed ones with approximate colors for shading details.
Our approach is satisfactory in both low-frequency and
high-frequency areas and better detail preservation due to the
sampling process.

D. DISCUSSION AND ANALYSIS
In our method, we adaptively distribute the samples per
pixel and estimate the optimal filter parameters by training
a modified network through direct minimization of the error
between the reconstruction and ground truth images. There
are two major differences between other methods and ours.
First, as discussed in Sec IV A, the adaptive sampling based on
SURE provides an optimal strategy of samples distribution,
which can reduce the error caused by noise of samples and in
some cases, a small error might result in obvious noisy pixels.
Second, we apply a different activation function in hidden
layers. Other methods mostly make use of the ReLU function.
To demonstrate the advantages of our function, we compare
the performance of different activation functions on the net-
work of the same structure. Table I shows aggregate numeri-
cal performance of different activation functions. Since the
sampling randomness of path tracing and the influence of
different effects, the RelMSE and SSIM metric is fluctuated.
If the change of the metric is less than 10−3, we consider the
algorithm is convergence. From the result, perceptually and
quantitatively, our function outperforms the state-of-the-arts
especially for small number of training steps.

Aggregate numerical performance of all activation func-
tions over the dataset. Here, we compute the SSIM and the
RelMSE (Here, we use the average of the dataset as the final
calculation result). And all activation functions are used in
our network of same structure.
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FIGURE 9. We compare our results with baseline methods: NFOR [6], RAE [38] and KPCN [5]
on a test set rendered scenes rendered in 8 spp. The sampling rate of ours is the closest value
after averaging. Below the images, we calculate the value of RelMSE and SSIM for measuring
the quality of the image.

FIGURE 10. Overview of our utilized CNN. There are three different part in our CNN: Conv1, Conv 2 and
Conv3. Interpretation of network layer annotations: e.g., k3n64s1 indicates that kernel size is 3, number
of feature channels is 64 and stride is 1.

Of course, the MLPs network used in our algorithm is not
the most optimal one. Inspired by the methods [5], we replace
our network with a deep CNN. Fig.10 shows the structure of
the deep CNN. We compare the results of the replaced CNN

and theMLPs on different scenes including the Living Room,
Vinctorian Style House, White House and Living Room.

Fig.11 shows the compared images with details. Fig.12
shows the quality assessment index of the scenes shown
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FIGURE 11. The comparison of rendered results between the CNN and
MLPs. Shown above fig, the left details (marked as a) is reconstructed by
the network with MLPs structure. And the right details (marked as b) is
reconstructed by the network with CNN structure. From the comparison
of details, we can find the texture of right are enhanced in comparison
with the left.

in Fig.11, including the PSNR and SSIM. The results show
that our experiment obtained significant improvement with
the replaced CNN. This is largely due to that the CNN easily
automatically models the relationship between the input aux-
iliary features of noisy image and the output filter parameters.

E. EXTENSION AND DISCUSSION
Extension. To further improve the accuracy of the network
output, we could employ the GAN(generative adversarial

TABLE 1. Different activation performance comparison.

network) to replace the CNN. Here we utilizes the structure
of networks propose by Xin et al. [47] and divided input of
our networks into 2 categories: diffuse part and specular part.
We set the features including shading normal, world position,
depth, texture of diffuse part and the texture of specular
part as the input of the Encoder-Net and predict the features
of diffuse and specular separately. Next, we can obtain the
output of diffuse part and specular part. Finally, we merge
the results of above two parts, which are our reconstruction
images. The structure of the network is show as Figure 13.

We choose three scenes to test the extension algorithm,
including the Livingroom shown in Fig.8(a), theWhite House
shown in Fig.9(b) and the Vinctorian Style House shown
in Fig.8(b). We compute the SSIM and PSNR of our methods
with deep CNN and our extended method with Encoder-
Net(E-Net). The results can be seen in Table 2. From the
results, the extended method outperforms better.

FIGURE 12. Performance comparison of PSNR and SSIM over three different scenes to between the MLPs structure and CNN structure. The
subfigure (a) is the PSNR comparison results. And subfigure (b) is SSIM comparison results. In each subfigure, the horizontal axis represents
different scenes, from left to right: (i) the Living Room scenes; (ii) the Vinctorian Style House scenes; (iii) White House scenes.
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FIGURE 13. Overview of our utilized Encoder-Network. Conv. = convolutional layer, Pool = max pooling, and Deconv. = deconvolutional layer.

TABLE 2. Comparison between two methods with different network.

Limitation.CNN and the E-Net both limit the effectiveness
of auxiliary features to early layers, especially when the size
of the dataset is small. When denoising, the texture appears
to be erroneously enhanced and the reflected illumination
is weakened just as the Fig 14. The explanation would be
that the diffuse and specular components have different noise
patterns with different characteristics. Thus, we could not get
the most optimal filter parameter with the CNN or E-Net due
to its shared parameter of networks. From the mark of colored
circle in Fig.14, there are some subtle differences, such as
the texture on the ceiling, the specular lighting on the bottle.
The same problem occurred with MLPs structure, such as
in SAN MIGUEL scene shown in Fig.7, the texture on the
marble columns of ours (green rectangle) is not as realistic
as the ground truth image. Similarly, the noise on the back
wall of the TEAPOT ROOM scene shown in Fig.7 and the
blurred texture on the ceiling of the SIBENIK scene shown
in Fig.6 are the problem of one kind. So that, the MLPs, CNN
and E-Net structure are not the most optimal denoiser model.

FIGURE 14. Our failure cases due to the limitations. Among them,
the left details(marked by a) are rendered by our method and the right
ones(marked by b) are reference images.

In the future, our work can be extended in several ways.
First, the current network architecture is far from optimal.
Network designs can be fine-tuned to simplify the model, and
various strategies including activation function and model
pruning can be explored to accelerate the convergence and
improve the performance. Second, in addition to additive and
multiplicative operations, more complex relationships can be
exploited for better performance between the features and
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the filter parameters. Finally, how to achieve comparable
quality for path tracing with ‘‘light-weight’’ learning is worth
exploring, as generating noise-free ground truth on a large
scale is rather expensive [35].

V. CONCLUSION
We have presented a novel reconstruction approach to reduce
noise in path tracing. In order to preserve more details, we use
a metric based on SURE as the noise level estimator to
guide iterative adaptive sampling stage. And for the purpose
of modeling complex relationship between the ideal filter
parameters and a set of features extracted from the rendering
stage, we use a modified network as nonlinear regression
model. We train our network on our own database including
the Disney Animation Database and a set of scenes with a
variety of distributed effects. With the predicted filter param-
eters, we reconstruct final images of different effects, includ-
ing global illumination, motion blur, glossy reflections et al.
Our reconstruction results show that our approach demon-
strates visible improvement and the stronger applicability
at low sampling rate over the state-of-the-art reconstruction
methods.
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