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ABSTRACT To meet the challenges of manufacturing smart products, the manufacturing plants have been
radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation
is assisted by employment of machine learning techniques that can deal with modeling both big or limited
data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel
intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent
algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our
approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value
Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective
optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update
the coefficient of the deterministic model and increase its robustness against data uncertainties. The
effectiveness of the proposed method is examined on a set of real industrial measurements.

INDEX TERMS Industry 4.0, big data modeling, limited data modeling, multi-objective optimization.

NOMENCLATURE
AC Actor-Critic
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Networks
D&PL Distributed and Parallel Learning
DBN Deep Belief Networks
DDPG Deep Deterministic Policy Gradient
DOE Design of Experiences
DQN Deep Q-Network
DT Decision Tree
GMDH Group Method of Data Handling
GA Genetic Algorithm
GPR Gaussian Process Regression
IL Incremental Learning
JK JackKnife
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KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
MAB Multi-Armed Bandit
ML Machine Learning
MCS Monte Carlo Simulation
NN Neural Networks
NSGA Nondominated Sorting Genetic Algorithm
PCA Principal Component Analysis
PDF Probability Density Function
PCA Principal Component Analysis k-Means
PG Policy Gradient
QDA Quadratic Discriminant Analysis
ResNet Residual Network
RNN Recurrent Neural Network
RF Random Forest
RL Reinforcement Learning
RVM Relevance Vector Machine
SARSA State-Action-Reward-State-Action
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SVD Singular Value Decomposition
SOM Self Organised Maps
SVM Support Vector Machine
SVR Support Vector Regression
TL Transfer Learning
UKF Unscented Kalman Filter

I. INTRODUCTION
Current key challenges of manufacturing processes can be
summarized as (i) adoption of advanced manufacturing tech-
nologies, (ii) growing importance of manufacturing of high
value-added products, (iii) increasing process complexity,
uncertainty and dynamism, (iv) utilizing advanced knowl-
edge, data science, and AI systems [1]–[3]. Among their
challenges, the process of data collection could be more
challenging and resource intensive, due to being costly, time
consuming and compute–intensive. As such, the amount of
data needed to build accurate models is often limited. Sys-
tem identification, decision making, and predictive analytics
based on limited data, may reduce the production yields,
increases the production costs or decreases enterprise com-
petitiveness. In the case of limited data, the size of the dataset
is not enough to train a reliable model. For example, when the
size of the training dataset is less than the number of unknown
parameters of the model, e.g. the unknown weights of an
artificial neural network architecture, we face the limited data
challenge and conventional learning tasks might not property
work. In such case, one still needs to develop appropriate
data models with small variance of forecasting error and good
accuracy based on these small data sets.

On the other hand, in some cases one has to deal with
big data, where the data produced by the system has big
volume, variety, veracity and velocity. Big data is an ambigu-
ous term to define in data sizes that are difficult to manage,
observe, acquisition, store, process and analyses, using preva-
lent database tools. These processes are often too complex
with highly dynamical uncertainties, demanding heavy com-
putational effort to find a simple model. Machine Learning
(ML) offers effective solutions to solve challenging issues
in various industrial applications [4]. ML includes computer
algorithms and statistical methods required for data-driven
control, estimation, prediction, classification, or clustering.
Although ML is effective in many ways, some of the existing
ML techniques have some limitations, such as over-fitting,
under-fitting due to the nature of the data, poor generaliz-
ability and poor long-term prediction ability [5], [6]. Hybrid
ML technique can potentially capture more characteristics
of complex systems to overcome these limitations. Hybrid
ML works based on developing algorithms to couple model-
based and data-driven learning system. Despite research in
hybrid data-driven ML techniques, they are not yet widely
used mainly because of high computational complexity [7],
[8]. This manuscript aims to provide a review of common data
modeling techniques for limited and big data based on ML
approaches with list of advantages and disadvantages. It also
provides an overview of some recent research works on data

FIGURE 1. Common modeling techniques for limited or big data
scenarios.

modeling techniques with limited or big data constraint for
various industrial applications as illustrated in Fig.1.

Based on the advantages and limitations of the ML,
the paper introduces an intelligent hybrid data-driven algo-
rithm that is robust against limited and big data constrains
to reduce the computational cost and increase the estimation
accuracy. This manuscript has two main parts. The first part
provides brief review of some well-known ML techniques.
Then, we introduce a hybrid algorithm and apply it to a
modeling task with limited data constraints.

This manuscript is organized as follows. Section 2 and
3 present modeling techniques for limited and big data sce-
narios. Section 4 introduces a novel intelligent algorithm for
robust modeling of nonlinear process. Section 5 shows an
industrial case study that can be modeled by the proposed
intelligent algorithm. Conclusion remarks are provided in
section 6.

II. MACHINE LEARNING TECHNIQUES TO MODEL
LIMITED OR BIG DATA
One of the distinctions of industry 4.0 concept is data-
informed decision making. In some applications, data col-
lection can be a challenging and expensive task, leading to
limited data problem. The level of required modeling accu-
racy depends on sample size. Tomake a reliable statistical test
under small sample size, Design of Experiments (DOE)meth-
ods have been proposed, such as Response Surface, Taguchi
and Factorial [9]. Development of DOE based on Taguchi
methods to reduce industrial experimental tests requires
reliable data modeling [10], [11]. In some other industrial
applications, large-scale data is produced, and sophisticated
machine learning needs to be employed to process the data.
In the following sections, we review a number of machine
learning techniques, from conventional to recent, that are
often used in industrial applications.

To process, analyze, predict and support decision-making
based on limited or big data, Machine Learning (ML) tech-
niques can be used. ML techniques are able to observe, store
and model data with high nonlinearity and uncertainty. ML
can easily identify trends and patterns associated with black-
box (or gray-box) in complex systems. There are different
techniques in ML, and the choice of the method depends on
factors, such as the nature of the dataset, the scope of problem,
and the desired outcomes. UsualML tasks include regression,
modeling, prediction, classification and clustering. Generally,
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there are three major ML categories: supervised, unsuper-
vised and reinforcement learning. Recently, semi-supervised
learning methods are also increasingly developed and used in
many applications.

Supervised learning works in preparing a model through
labeled training data until the model achieves a desired
level of accuracy on the training data. Supervised learning
is usually performed when the final values of the output
variable or the class labels are known, and one can produce
an error function between the output of the model and that
of the system. Supervised learning is used in classification
(predicting a label) or regression classification (predicting
a quantity). Some supervised learning techniques are: rule-
based systems, regularization, Bayesian, ensemble, Neural
Networks (NNs), instance-based, decision tress and explicit
regression. Many of these supervised learning techniques are
used in both regression and classification in industry cases.

Unsupervised learning is used to find patterns or hid-
den structures in datasets that have not been catego-
rized or labeled. Unsupervised learning typically focuses
on exploratory analysis, dimensionality reduction methods,
and feature extraction. Examples of unsupervised learning
include: Principal Component Analysis (PCA), k-Means,
Linear Discriminant Analysis (LDA), Quadratic Discrimi-
nant Analysis (QDA), and Self Organized Maps (SOM).
Reinforcement Learning (RL) differs from supervised and
unsupervised learning and it works with data from a dynamic
environment. The goal of reinforcement learning is to find the
superlative sequence of actions that will generate the optimal
outcome and controlling but not to cluster or label data.
The way reinforcement learning solves this problem is by
allowing a software called agent to explore, interact with, and
learn from the environment (system). The idea is a trade-off
between exploration and exploitation. Within the agent, there
is a function that takes in state observations (the inputs) and
maps them to actions (the outputs). This is the single function
that will take the place of all of the individual subcomponents
of the control system. In the RL nomenclature, this function
is called the policy. Given a set of observations, the policy
decides which action to take. The policies in RL algorithms
can be divided by off-policy: PG, SARSA and on-policy:
DQN, AC, DDPG and MAB.

Some of popular techniques of clustering, classification,
regression and advanced machine learning are discussed in
the following.

A. CLASSIFICATION
Classification is one of the most popular methods in ML
with many potential applications in industry settings. Clas-
sification is a data mining technique to predict categorical
class labels based on the observations. Appropriate models
need to be constructed to define imperative data classes in
classification. In order to build a classifier, one often divides
the data into three parts: training data, test and validation. The
training dataset is used to find unknown parameters of the
model, which is verified using test data and validated using
validation data.

If X = XNi=1 ⊂ Rq and a corresponding set of labels Y =
YNi=1to ⊂ R, then {(x1, y1) , . . . , (xN , yN )} is training set of q
dimensional patterns.

The classifier can assign an appropriate label to all unla-
beled patterns, i.e. allocate them to the most appropriate
class. In order to improve the classifier robustness and gen-
eralizability, a number of approaches have been developed.
Dimensionality reduction through feature selection is an
effective technique to improve generalizability of classifica-
tion tasks. Linear Discriminant Analysis (LDA) and Principal
Component Analysis (PCA) are two frequently used feature
extraction methods [12], [13]. There are many classification
approaches each with their own pros and cons. One of the
frequently used simple yet powerful classification methods
is K-Nearest Neighbor (KNN) classifier [14]. Support Vec-
tor Machine (SVM) is a novel supervised machine learning
which can be used for both classification or regression chal-
lenges. SVM builds a separating hyperplane that maximizes
the margin between the two classes [15]. SVM have high
prediction accuracy, non-parametric, robust to outliers and
low prediction time [5]. However, some limitation of SVM
are: high computational cost, poor uncertainty management
ability and requires cross validation procedure to determine
hyper-parameters [5]. Relevance Vector Machine (RVM)
employs a Bayesian framework to infer the weights, with
which the Probability Density Function (PDF)s of the outputs
instead of point estimates can be obtained. RVM provides
performance comparable to SVM, while utilizing arbitrary
kernel functions with high sparsity and offering probabilis-
tic predictions [16]. High sparsity means that a significant
number of weights are zero, leading to more computation-
ally efficient models. Advantages of RVM include ability of
generating PDF directly, being non-parametric, and ability of
realizing high sparsity and avoiding cross validation process.
It has however some limitations including large volumes of
data is required for modeling, huge time and memory are
consumed during the training process, easily falling into a
local optimum and potentially causing over-fitting [6].

A Decision Tree (DT) has a tree structure (flowchart)
with numerous nodes and branches. It is a fast and easy
methodwith decent performance inmany classification tasks.
Bayesian classification is a statistical model and learns the
distributions of instance to predict class membership proba-
bilities.

B. REGRESSION
The regression technique is very close to classification tech-
nique and the difference is to find a pattern to determine
numerical values. The regression modeling tries to find the
relationship between a response or dependent variable y and
independent variables x1, . . . , xk . In other words, the regres-
sion modeling aims is to develop a model to create a pre-
diction of the response variable(s), based on independent
variables. Linear regression has been massively used in the
literature for fitting a measurable response variable as a func-
tion of one or more independent predicator variables. The
least square regression [17] method is the most commonly
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used approach for fitting a regression line. NNs, as a tool
for nonlinear regression, is considered as a well-developed
technique that can be applied to all kinds of areas in process
identification, control, and model prediction [18]. Support
Vector Regression (SVR) is an extension of SVM to build a
nonlinear regression model [9]. SVR transfers the data into
a higher dimensional feature space and fits it to a linear
function with minimum complexity to the feature space [19].
Kernel-based probabilistic and nonparametric models such as
Gaussian Process Regression (GPR) can create a stochastic
function as the regression output with some advantages: pro-
vide covariance to generate uncertainty level, non-parametric
and being flexible [20]. However, some ofGPR limitation are:
performance is highly affected by kernel functions and high
computational cost [21]. Thin Plate Spline (TPS) is a preva-
lent technique and insensitive to noise that can be used in data
fitting and prediction. TPS choose a function that minimizes
an integral that represents the bending energy of a surface
[22]. The advantages to using TPSs, do not require any a
priori knowledge of the functional form of the data or the
relationship of interest. Just as complex data visualization is a
key strength, it is also a limitation of using thin plate splines.
The three-dimensionality of thin plate splines makes for the
inclusion of confidence intervals difficult as the visual may
become too complex for interpretation [23]. A popular non-
linear model that is appropriate technique in interpolation and
extrapolation curve fitting is Taylor Polynomial (TP) [22].

C. CLUSTERING
Clustering technique can segment data into groups, based
on data similarity. It is using to identify outliers and result-
ing groups may be the matter of interest. Clustering can be
achieved by various algorithms and it is an iterative pro-
cess (involving trial and error). Some of popular techniques
clustering are: K-means, Fuzzy K-means, Hierarchical, NN,
Gaussian Mixture. K-means is a partitioning method to par-
titions data into K exclusive clusters. Each cluster has a cen-
troid (or center) and sum of distances from all objects to the
center is minimized. Example neural network architectures
for clustering are: (i) self-organizing maps, (ii) competitive
layers. GaussianMixture is good when clusters have different
sizes and are correlated and assume that data is drawn from a
fixed number K of normal distributions. In general, clustering
technique: (i) dose no method is perfect for data modeling
(depends on data), (ii) process is iterative; explore different
algorithms, (iii) beware of local minima (global optimization
can help).

D. ENSEMBLE TECHNIQUES
Ensemble techniques are mixture of numerous models to cre-
ate a novel learning method with better performance than the
individual classifiers. In this technique, the unseen data (test
data) is passed to individual classifier, returning some votes.
The ensemble technique revenues the final class prediction
based on the popular of classification models votes (Fig. 2).
This technique is appropriate when there is not enough data

FIGURE 2. An example of ensemble learning [26].

available for presenting the data distribution. The technique is
a decent option for uncertainty of selecting the computational
model. Ensemble techniques are also used when the classi-
fier is not able to solve complex problems. The technique
is used in many industrial applications, such as intrusion
detection, malware fraud and remote sensing, speech, and
identity recognition. Random Forest (RF) is a well-known
ensemble technique that is a cluster of many decision trees
that any tree is built by sampling with replacement [24], [25].
A recently proposed ensemble technique is Adaptive Boost-
ing (AdaBoost) algorithm that can be used for regression
and/or classification regression industrial problems.

E. RESAMPLING TECHNIQUES
Resampling techniques are very prevalent methods because
of their accuracy, robustness, simplicity and high generaliz-
ability.

Resampling generate new data by using difference meth-
ods without being correlated to theoretical distribution.
This method used when data distribution is very lim-
ited or unknown [8]. Resampling generate many times new
data with or without replacement. Bootstrapping and ran-
domization methods are examples of resampling technique
with and without replacement, respectively. Some popular
resampling techniques are JackKnife (JK), Monte Carlo Sim-
ulation (MCS) and exact test methods. MCS is a repeated
random sampling based on many possible scenarios to obtain
numerical results and estimation.

F. REPRESENTATION LEARNING
Representation learning is a technique to predict or clas-
sify unstructured data, which is useful in various ML tasks,
such as dimensionality reduction. Representation learning
determines a lower dimensional representation of capturing
several input configurations from original dataset. It can
offer a solution for big data through facilitating significant
improvements in statistical and computational efficiency. The
hidden representations of representation nodes inside the
dataset search to recall core information for ML statistical
processes to model full properties of the data, such as vertex
content and topological structure. Following this, modeling
and analytics tasks can be effortlessly used through vector-
based and conventional machine learning algorithms.

G. DEEP LEARNING
Deep Learning (DL) can automatically find hierarchical rep-
resentations of data sets, whichworks on deep architectures in
supervised and/or unsupervised learning strategies. By using

111384 VOLUME 8, 2020



H. Khayyam et al.: Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling With Application in Industry 4.0

these strategies, DL has the potential to capture compli-
cated patters and highly nonlinear big data with large feature
spaces. Different DL architectures, such as Deep Neural Net-
works (DNNs) and Recurrent Neural Networks (RNNs), can
characterize the multi-layering of commonly narrow algo-
rithms to contain numerous processing data layers [27].

DNN requires much more parameters than traditional sys-
tems, which brings huge cost during online evaluation. A new
effort on DNN aiming at reducing the model size while
keeping the accuracy improvements is using Singular Value
Decomposition (SVD). SVD works on the weight matrices
in DNN and then restructure the model based on the inherent
sparseness of the original matrices. After restructuring we
can reduce the DNN model size significantly with negligible
accuracy loss [28].

Recent architectures proposed for DL, such as Convo-
lutional Neural Networks (CNNs), Deep Belief Networks
(DBNs) and Group Method of Data Handling-type Neural
Networks (GMDH-type NN) can process difficult learning
algorithm for classification and regression tasks. Different
improvements in CNN architecture can be categorized as
parameter optimization, regularization, and structural refor-
mulation. Depending upon the type of architectural modifi-
cation, CNN can be broadly categorized into seven different
classes namely; (i) spatial exploitation, (ii) depth, (iii) multi-
path, (iv) width, (v) feature map exploitation, (vi) channel
boosting, and (vii) attention as shown in Fig.3. [29]. Some
other DL include Inception [30], deep Residual Network
(ResNet) [31], and VGG16 [32]. Szegedy et al. [30] proposed
Inception-v4 that combine Inception architecture with resid-
ual connection to accelerate the network training. The core
idea of ResNet is recommending a so-called ‘‘identity short-
cut connection’’ that skips one or more layers [31]. Moreover,
VGG16 is a convolutional neural network model proposed by
Simonyan and Zisserman [32] to improve AlexNet by replac-
ing large kernel-sized filters with multiple smaller kernel-
sized filters one after another. GMDH is a family of inductive
algorithms for computer-based mathematical modeling of
multi-parametric datasets that features fully automatic struc-
tural and parametric optimization of models. GMDH-type
NN is a way of using self-organizing networks and shown to
result in successful applications in a broad range of areas [33].

H. DISTRIBUTED AND PARALLEL LEARNING
Distributed and Parallel Learning (D&PL) technique uses
a parallel processing through distributed network, assigning
learning processes to be efficient ofML algorithms. The tech-
nical limitation of classical ML can be addressed by D&PL
technique, which naturally need the whole datasets to be set
within a local memory. D&PL techniques use the divided data
in vertical (by features within the training set) or horizontal
(by instances within the training set) fashions. In most of the
cases the division are worked based on horizontally, as it is the
furthermost natural selection of the applications. Although
D&PL architectures can be leveraged in classification and

FIGURE 3. Recent taxonomy of deep CNN architectures [29].

FIGURE 4. Transfer learning technique: (a) model with a higher initial
performance, (b) improvement with a greater rate of performance (c) a
faster training timeframe [28].

regression tasks, classification has found further wide-spread
application due to simply way for implementation.

I. TRANSFER LEARNING
Transfer Learning (TL) influences heterogeneity of the
dataset, which is typical for big data processing and analytics.
This is determined by velocity characteristics of big data, and
training of new models can use important resource and time.
A wide range of models can be trained using TL in a more
efficient manner through classifying a group of domains.
This approach can be used for regression, classification or
clustering tasks. Fig. 4 shows a typical set of training perfor-
mance accuracy, for ML models with and without TL. The
model with TL not only starts at a higher performance, also
shows faster converges towards an optimal solution. This can
be attributed to the old model being closer to the solution
as a starting point, rather than using random initializations,
so that through the process of updating via gradient descent
through back-propagation, or other applicable algorithms,
fewer iterations are required to converge to the solution for
the new task.

J. ACTIVE LEARNING
Active Learning (AL) searches to shift ML strategies for big
data from huge volumes of unlabelled data, to that which
uses labelled data. AL can be used for broad applications
of supervised and semi-supervised ML scenarios. Obtaining
labelled data is time consuming, and AL can reduce the cost
associated through classifying a subsection of points in the
original data distribution. Fig. 5 provides an intuitive example
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FIGURE 5. Active learning technique: (a) class 1 (red) labelled instance
belonging, with the other points depicted in grey. By using active learning,
two points are recognized in (b) white circles and labelled as class 1 (red)
and class 2 (blue). (c) using k-Means machine learning techniques is used
to more easily classify the other points.

FIGURE 6. Kernel mapping process.

diagram of AL. The process of AL classifies key points in a
dataset, which if labelled. Similar techniques approaches can
be taken for regression modeling.

K. KERNEL-BASED LEARNING
Kernel-based learning techniques use some nonlinear kernel
functions, along with well-known methods such as SVMs, to
transfer the input-space of a dataset to a higher-dimensional
feature-space. This method permits for better expressive
power and better chance to perform various analyses with
the same dataset [34]. However, this often requires signif-
icantly higher computational complexity as compared with
the cases with linear kernels. It may appear counterintuitive
to make a higher dimensional illustration for a big dataset.
However, these methods have been shown successful in many
applications. One oftenmust make a trade-off for maximizing
the computational efficiency and minimizing the impact of
increasing the size of the dataset. Fig. 6 illustrates the kernel
mapping process to simple prediction models.

L. MULTI-OBJECTIVE LEARNING
Learning algorithms in ML can be divided into three cate-
gories: single-objective learning, scalarized multi-objective
learning, and Pareto-based multi-objective learning [35].
There are two main weaknesses of scalarized multi-objective
learning: (i) the determination of an appropriate hyperpa-
rameter λ that properly reflects the purpose of the user is
not trivial, and (ii) only a single solution can be obtained,
from which little insight into the problem can be gained [36].
Most of the efforts on solving multi-objective ML problems
can be solved using Pareto-based multi-objective optimiza-
tion methodology particularly due to the great success of
multi-objective optimization using evolutionary algorithms
and other population-based stochastic search methods [37].
Pareto-based multi-objective learning approaches are more

powerful compared to learning algorithms with a scalar cost
function in addressing various topics of ML tasks [36].
One gains a deeper insight into the learning problem by
analysing the Pareto front composed of multiple Pareto-
optimal solutions [38]. Unlike single objective optimization,
multi-objective optimization reduces the chances of falling
in a local minimum. In other word, in multi-objective opti-
mization framework, improving one of the objective func-
tions might worsen the other objective function(s); thus,
there is not an optimum point to optimize all the objective
functions. Multi-objective optimization algorithms based on
evolutionary algorithms [39] have been proposed in the lit-
erature, e.g. NSGA-II [16], NSGA-III [40], multi-objective
uniform-diversity differential evolution (MUDE) [41], and
on-line variable-fidelitymeta-model assistedMulti-Objective
Genetic Algorithm (OLVFM-MOGA) [42].

M. HYBRID DATA-DRIVEN LEARNING
As stated in pervious sections, ML techniques have some
limitations, and a hybrid ML technique can potentially cap-
ture more characteristics of complex systems to overcome
these limitations. Recent studies of hybrid models combining
different ML techniques have shown promising results [22],
[37]. There are various types of frameworks to develop hybrid
models, and it is unknown that which hybrid model can
perform the best in data-driven learning. Some recent hybrid
data-driven methods are: a combination of NN and EKF,
GPR technique with ARD kernel [21], SVM and SVRmodels
optimized by GA [43], RVM with incremental learning [44].
ANNs have become popular practical solutions of engineer-
ing problems. In the followingwe introduce a novel algorithm
of this type and apply it to an ML task under limited data
constrains.

III. A NOVEL ALGORITHM FOR ROBUST MODELING OF
NONLINEAR PROCESSES
In industry 4.0 applications, an offline approximate model
needs to be developed that can express the relationship
between inputs and outputs of industrial process. In fact, off-
line modeling represents an initial identification model of the
complex nonlinear system. This model is then updated using
limited data obtained from the online process. The online
adaptation requires real-time algorithms while high runtime
algorithms, such as evolutionary optimization methods can
only be used for offline modeling [15]. To address the needs
of both offline and online parts, we propose a new algorithm
that builds a robust model based on the input-output data
using an offline deterministic model and online updating
parts.

In the first part, the structure (topology) of the NN and
the initial values of its coefficients are extracted based on
deterministic input-output data. In other words, the uncertain-
ties included in the observed data are not considered and the
modeling is done based on nominal values of input-output
data. It is obvious that there aremany sources of uncertainties,
such as human error, laboratory equipment errors, or errors
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FIGURE 7. A novel algorithm to create a robust model for industrial
processes with available input-output data.

FIGURE 8. The alphabetical chromosome representing GS-GMDH.

due to changes in environmental factors, which can affect the
data. In order to obtain a robust model, all these sources of
uncertainties must be considered as a percentage of the vari-
ation around the reported nominal value [45]. In the second
part, the coefficients of the obtained model are updated using
MCS in combination with UKF to achieve a robust model.
In the following, we give details of these steps.

A. OFF-LINE MODELING BASED ON DETERMINISTIC DATA
In the off-line deterministic modeling part, first the modified
Taguchi DOE is used to make a reliable statistical test under
small sample size [16]. Then, a polynomial model is trained
explaining the relationship between the inputs and outputs of
the industrial process. To this end, one can use GMDH-type
NNs with multi-objective optimization and SVD to overcome
both overfitting and singularity. In the proposed algorithm,
we used the fuzzy adaptive mutation proposed by some
authors in to reach global optimum solutions [46]. As shown
in Fig. 7, in the first part (left), a primary model is extracted,
and the derived model is used as an input to the second part
that builds a more robust model. This model is not sensitive to
properties of data and can have reasonable performance with
both limited and big data.

As shown in Fig. 7, the input-output data are divided into
two sets of training and prediction. The training set, which
consists of 60%t of all inputs–output data pairs, is used
for training the neural networks model. The prediction set
consists of 40% of the data that are indeed unforeseen input–
output data samples during the training process and are used
for testing the performance of the trained model in correctly
capturing relationship between he inputs and outputs of the
process. For an acceptable performance of GMDH type NN,
the topology and the polynomial coefficients of each neu-
ron should be properly determined. Here, SVD is used to
determine the polynomial coefficients of each neuron. Multi-
objective Genetic Algorithm (GA) is used to find optimal
topology of GMDH-type NN. In multi-objective optimiza-
tion, both modeling and prediction errors are simultane-
ously considered as objectives. Using Nondominated Sorting
Genetic Algorithm (NSGA)-II [15], Pareto optimum non-
dominated models are obtained from the point of view of
these two objective functions. An alphabetical chromosome
is used to coding the structure and topology of general struc-
ture of GMDH (GS-GMDH). In the conventional GMDH,
each neuron is building using combination of two neurons in
adjacent layer, while in the GS-GMDH, all neurons in the all
previous layers used to build a new neuron. The alphabetical
coding of such GS-GMDH is shown in Fig. 8. In a GS-
GMDH neural network, neuron ac in the first hidden layer
is connected to the output layer by directly going through the
second hidden layer. Therefore, it is now very easy to notice
that the name of output neuron (network’s output) includes
ac twice as acac. In other words, a virtual neuron named ac
has been constructed in the second hidden layer and used with
abac in the same layer to make the output neuron abacacac as
shown in Fig.8. The evolutionary process starts by randomly
generating an initial population of alphabetical chromosome,
each as a candidate solution. Then, using the crossover and
mutation and tournament selection, the entire population of
symbolic strings improves gradually based on training and
prediction errors.
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Indeed, in order to achieve high modeling accuracy,
the polynomial degree is usually increased, which reduces the
generalizability (or prediction capability) of the model, often
due to overfitting. Finally, the designer chooses the trade-off
obtained from Pareto non-dominated solutions by compro-
mising between these two objective functions. A polynomial
model among the inputs and outputs of the industrial process
is developed by using the selected GMDH structure. The
derived topology of NN is used as the input of the second
part of the proposed algorithm.

B. ONLINE UPDATE TO MAKE THE MODEL ROBUST
In the second part (right side of Fig. 7) of the proposed
algorithm, the obtained model in the first part is modified
to enhance its robustness. To this end, the coefficients of
the derived model are updated using UKF to capture the
uncertainties in the input-output data. In order to obtain a
robust model, all sources of uncertainties are considered as
a percentage of the variation around the nominal values of
main data table. To take into account the uncertainties,N data
table sets are built around the nominal values usingMCS. The
network’s error on each data table is calculated according to

Ej =

∑k
i=1 (ymodel − yactual)

2

k
, j = 1, 2, . . . ,N (1)

The goal of UKF is to obtain the network coefficients that
minimize the mean and variance of network error. Indeed,
minimizing the mean of error (mean

(
Ej
)
) attempts to min-

imize the total network error for all tables. Also, by mini-
mizing the variance of error (var

(
Ej
)
), the error variation is

minimized relative to the average value. Mean and variance
of error is combined according to equation (2), and F is
minimized in a recursive process.

F = Mean
(
Ej
)
+ var

(
Ej
)

(2)

The UKF filter equations for determining the GMDH-type
neural network coefficients are as follows:

(i) The weight vector and its covariance matrix in network
are initialized with:

â0 = E [a0] (3)

P0 = E
[(
a0 − â0

) (
a0 − â0

)T ] (4)

where a = {a1, a2, . . . , as} is the vector of coefficients of
neural network and s is the number of coefficients.
(ii) The time-update equation are:

â−k = âk−1 (5)

P−a,k = Pa,k−1 + Rr,k−1 (6)

where k indicates the time.
(iii) The sigma points and measurement update according

basic equations of UKF.
Algorithm 1 show the pseudo-code of the proposed algo-

rithm and summarizes the steps.

Algorithm 1 The Proposed Algorithm for Robust Modeling
of Data
Part A: offline modeling:
A1. Enter matrix of
experimental data set
D[X(m,n) Y(m,1)]

% m and n are the num-
ber of experimental data
set and number of inputs,
respectively.

A2. T=D(1:t,n) and
V=D(t+1:m,n)

%Making Training (T )
and validation (V ) data
sets

A3. Pa=[Y1 Y2 . . . Yk] % Pareto optimum design
of GMDH and finding k
non-dominated solutions
(Y1. . . Yk )

A4. Ymodel = F(X) % Select trade-off model
from Pareto front and find-
ing polynomial model

Part B: on-line updating:
B1. DT= [D1D2 . . . DN ] % Building N data table

sets around the nominal
values of D using MCS.

B2. Ej=

k∑
i=1
(ymodel−yactual )2

k % calculation error of
Ymodel on all data tables
(j=1 . . . N )

B3. F = Mean
(
Ej
)
+

var
(
Ej
) % finding cost function

based of mean and vari-
ance of derived errors

B4. â−k = âk−1
P−a,k=Pa,k−1+Rr,k−1

% Update coefficients of
Ymodel using UKF

B5. if (F > ε) go to B2
else go to B5

% ε is threshold value of F
(equation 2)

B5. Yrobust = G(X) % finding robust model

IV. INDUSTRIAL CASE STUDY
To examine the performance of the algorithm proposed
above, an industry case study is considered. To this end,
27 samples (L27) modified Taguchi DOE method (Table 1)
was constructed at Carbon Fiber production line. The PAN
fiber inputs were chosen as the controlling parameters based
on the feasible processing window of the pilot plant: temper-
atures of 227, 230, 233, and 236◦, space velocity of 20, 25,
30 and 35 m/h, and stretching-ratio of 1.0, 2.0, 3.0 and 4.0%.
The measured output was a physical property. To reduce
the number of experiments, the Taguchi design was modi-
fied by adding some marginal operating parameters as listed
in Table 1.

NSGA-II and SVD are employed to design optimal topol-
ogy and to find optimal values of the polynomial coefficient
of GMDH, respectively. It is clear from this limited input-
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TABLE 1. input-output experimental data of carbon fiber production line.

output data that the inputs are not in the same order. For exam-
ple, x1 is in order 103, while order of x3 is 100. Therefore,
to keep the impact of each data set unchanged, using a linear
mapping equation (7), all inputs are mapped to the interval
[1, 2].

xMi = 1+

(
xi − xmini

)(
xmaxi − xmini

) , i = 1, 2, 3 (7)

where xMi and xi are the mapped and actual values of the
input variables, respectively. xmaxi and xmini are the maximum
and minimum values of each input variables, and i = 1, 2, 3.
It is clear that the other mapping methods such as logarithmic
normalization could not be employed here since it will change
the impact of each data set.

Two different sets of training and validation have been used
in order to show the prediction capability of the optimized
GMDH-type neural networks. The training set, which is used
for training, is composed of 18 out of 30 input–output data
pairs. The validation set, consisting of 12 unforeseen input–
output data samples during the training process, is solely
used for checking the performance of the trained model.
GMDH-type neural networks are employed to fit a poly-
nomial curve to the output of the model as a function of
effective input parameters. Considering two objective func-
tions (namely, Training Error, TE, and Prediction Error, PE),

FIGURE 9. Final front including non-dominated solutions in plane of
objective functions.

FIGURE 10. Optimized structure of GMDH-type neural network of design
point C.

TABLE 2. The and pe of optimum design point obtained in fig 7.

NSGA-II is used for the Pareto multi-objective optimization
of the GMDH-type neural network. The values of 80 for
population size, 0.9 for crossover probability, 0.1 formutation
probability, and 300 for number of generations, were found to
be suitable using a trial and error study. The resultant Pareto
front, representing a set of non-dominated superior solutions,
is shown in Fig. 9. In this figure, points A and B designate
solutions with the best PE and TE, respectively. As compared
with solution ‘A’, Point C shows a very small increase in
the TE value (about 0.7%) but a substantial improvement
(about 83%) in PE. Consequently, when the two objectives
are simultaneously taken into consideration, point ‘C’ may
be considered as a best trade-off solution.

The structure of the neural network corresponding to the
design point C obtained by the genetic algorithm NSGA-II is
shown in Fig. 10. Reasonable behavior of GMDH-type neural
networks model in the training and validation data are shown
in Fig. 11. Moreover, Fig. 12 shows a correlation coefficient
of 92.36% between the actual value and the predicted one,
representing a reasonably accurate model. for the obtained
model. Table 2 shows the values of TE and PE corresponding
to points A, B, and, C.
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FIGURE 11. Performance of the optimized GMDH model on both actual
and validation data sets corresponding to optimum point C.

FIGURE 12. Correlation coefficient between the actual values and
predicted ones corresponding to optimum point C.

To check the robustness of the obtained model, a ±5%
variation around the nominal values reported in Table 1 are
considered and 1000 random data tables are constructed using
MCS. Fig. 13 shows the upper and lower bounds of the
predicted values using this model. Extensive changes rela-
tive to the nominal values show poor robustness of derived
model. UKF is used to improve the robustness of the derived
model. It must be noted that the structure of GMDH as shown
in Fig. 10 is employed and only the coefficients of equations
are update by UKF. The equations governing the neurons of
this model derived by UKF are as follows:

y1 = 1.29− 0.01x1 − 0.0546x2 + 0.0135x21
+ 0.0156x22 − 0.00718x1x2 (8a)

ymodel = −4.24+ 7.787y1 − 0.0129x3 − 2.71y21
+ 0.003x23 + 0.0022y1x3 (8b)

Fig. 14 shows the upper and lower bound of the pre-
dicted values. It is seen that employing UKF is effective
in reducing the tolerance margins. The intelligent algorithm
results assisted the carbon fiber production line in alleviating
the reduced number of experiments, cost and limited data.
It should be noted that the same procedure can be used on
big data to find a robust model among inputs and outputs of
any nonlinear industrial process. Also, DL methods, such as
CNNs, DBNs and RNNs that mentioned in section II can be

FIGURE 13. Upper and lower bound of predicted values by deterministic
model on 1000 input-output random tables.

FIGURE 14. Upper and lower bound of predicted values by robust model
on 1000 input-output random tables.

used for very large (terabyte) data sets. One of themost imme-
diate and impactful outcomes of technological evolution is
the vast advancement in automation through data modeling.
The intelligent algorithm for robust data modeling continues
to accelerate, so will automation. Although our model aimed
to increase the estimation accuracy, the computational effort
is also reduced by 2 (ms) in offline modeling and 3 (ms) in
online modeling.

V. CONCLUSION
In this paper, some of existing machine learning techniques
that can deal with issues commonly observed in many indus-
trial applications and arising from having limited or big data
constraints, were reviewed. These techniques can be used
to efficiently address various challenges, such as increased
complexity, uncertainty, and dynamism, related to data pro-
cessing and analytics of manufacturing processes. Machine
learning is a powerful tool for many industrial applications,
and its importance is further enhanced due to increased use
of data collection and sensor technologies as part of indus-
try 4.0 implementation, leading to generation of valuable
data sources. We proposed a new intelligent algorithm that
can model limited industrial data. We applied the proposed
algorithm to a real industry case study with data collected
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from a Carbon Fiber production line. Pareto multi-objective
optimization including two objective functions was employed
to design the topology of GMDH and overcome overfitting.
Using the proposed algorithm, a deterministic model was
obtained that showed a very accurate fit to the actual data.
We further used UKF approach to improve robustness of
the model against uncertainties. The intelligent algorithm
assisted the carbon fiber production line in alleviating the
reduced number of experiments, cost and limited data. The
proposed algorithm has the potential to be used in any other
industrial settings for which the aim is to obtain a reliable and
robust model between its inputs and outputs.
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