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ABSTRACT Smart farming is a new concept that makes agriculture more efficient and effective by using
advanced information technologies. The latest advancements in connectivity, automation, and artificial
intelligence enable farmers better to monitor all procedures and apply precise treatments determined by
machines with superhuman accuracy. Farmers, data scientists and, engineers continue to work on techniques
that allow optimizing the human labor required in farming. With valuable information resources improving
day by day, smart farming turns into a learning system and becomes even smarter. Deep learning is a type
of machine learning method, using artificial neural network principles. The main feature by which deep
learning networks are distinguished from neural networks is their depth and that feature makes them capable
of discovering latent structures within unlabeled, unstructured data. Deep learning networks that do not
need human intervention while performing automatic feature extraction have a significant advantage over
previous algorithms. The focus of this study is to explore the advantages of using deep learning in agricultural
applications. This bibliography reviews the potential of using deep learning techniques in agricultural
industries. The bibliography contains 120 papers from the database of the Science Citation Index on the
subject that were published between 2016 and 2019. These studies have been retrieved from 39 scientific
journals. The papers are classified into the following categories as disease detection, plant classification,
land cover identification, precision livestock farming, pest recognition, object recognition, smart irrigation,

phenotyping, and weed detection.

INDEX TERMS Machine learning, internet of things, precision agriculture, artificial neural networks.

I. INTRODUCTION
Making agricultural activities more economically efficient
has always been one of the main objectives throughout
human agrarian history. However, this objective has not been
achieved to the desired level due to the difficulty in establish-
ing quality/cost balance. To get quality products, agricultural
production areas need to be visited frequently, thus, it may
be possible to affect all necessary precautions during crop
production. As farmers spend time and resources on each
visit, they increase the cost of the crop. Smart agriculture
has become necessary, given that farmers spend much of
their time monitoring and evaluating their crops. ‘““Internet
of things” (IoT)-based technologies offer remote and precise
monitoring, making managing crops not only smart but also
cost-effective [1].

However, real-time monitoring of agricultural activities
is not enough to make agriculture smart. Smart agriculture
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should follow the cycle of observation, diagnosis, decision,
and action. In this continuously repeating cycle, data should
be collected and used quickly to make changes that optimize
the farming process. During the observation phase, data can
be obtained and recorded using sensors capturing features
from natural resources like crops, livestock, atmosphere,
soils, water, and biodiversity. During the diagnostic phase, the
sensor values are transmitted to a cloud-hosted IoT platform
based on predefined decision models that determine the state
of the object under investigation. During the decision phase,
the components based on machine learning techniques deter-
mine whether an action is required. During the action phase,
the end-user evaluates the situation and applies the action.
Then the cycle starts all over again [2].

In this century, it is not enough to have a passion for
agriculture to be a farmer. Farmers need expert knowledge in
agriculture, law, economics, accounting, and data analysis to
achieve sustainable agriculture [3]. Since in some regions the
majority of agricultural enterprises consist of family farms,
an expectation of high levels of expertise is not realistic [4].
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In the 20th century, in most regions, growers continued to
follow established farming methods, using more fertilizers
and pesticides, causing irreversible effects on the environ-
ment [1]. With consciousness-raising, it became known that
every plant should be treated by determining the need of plant,
instead of dealing with every farm and crop in the same way.
In recent years, farmers have increasingly sought the advice
of experts, which is not always affordable. With the intelligent
agricultural system consisting of IoT and machine learning
techniques, it is possible for farmers to get such advice at an
affordable price. These systems use the most advanced meth-
ods to automate crop monitoring and thus require minimum
human intervention [4].

Il. DEEP LEARNING

In the early days of artificial intelligence, it was discovered
that mentally challenging problems for humans were simple
for computers as long as they could be described as a list
of mathematical and logical rules. As the field of artificial
intelligence expands and evolves, to benefit from the expe-
rience, to recognize sound and image, and to make intuitive
decisions became the focuses of research [5, p. 1]. Machine
learning, which is a sub-branch of artificial intelligence, uses
a self-learning approach to derive meaning from presented
data. Instead of manually creating rules by analyzing large
amounts of data, machine learning gradually improves pre-
diction performance by capturing information in the data.
This approach provides a more effective solution that can
make evidence-based decisions [6, p. 2]. Machine learning,
to extract meaningful relationships from data, uses learning
rules such as supervised learning, unsupervised learning,
reinforced learning, and hybrid learning [7].

Deep learning is a type of machine learning that uses
artificial neural network principles. Deep networks are dis-
tinguished from neural networks by their depth. Before the
big-data age, most machine learning techniques have been
used in shallow architecture. These architectures generally
consist of up to one or two layers containing nonlinear trans-
formations. Shallow architectures are effective in solving
well-structured problems, but they are inadequate for more
complex real-world data applications such as images, human
speech, natural voice, and language. With deep learning, it
became possible to process these data [8, p. 205].

Single-layer artificial neural networks, which have been
used as shallow architecture since the 1940s, lack the ability
to process such data. Deeper architectures were needed to
process more complex data. After the successful training of
complex neural networks in the 1980s, it became possible
to use neural networks effectively. This paved the way for
designing more complex and deeper architectures. Since the
application of neural networks has increased, it has gone
through many changes. Currently, neural networks that use
deep learning are of great interest [9, p. 165].

As its name suggests, artificial neural networks are compu-
tational networks that imitate the networks of nerve cells in
the central nervous system [10, p. 1]. Simple processing units
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FIGURE 1. A schematic representation of an artificial neuron [81].

called artificial neurons, which communicate with each other,
form an artificial neural network [11, p. 15]. The artificial
neuron, after receiving binary or floating-point input from
one or more sources, multiplies and aggregates with weights.
The resulting total is transferred to the activation function
to be transmitted to the output. Figure 1 shows a schematic
representation of an artificial neuron [9, p. 31].

The data obtained from the output layer of one artificial
unit can feed the input layer of the other artificial unit. The
inputs are represented like x1, x2, x3, ...x, as mathematical
expressions [12]. The weights show how strongly the incom-
ing data are transmitted to the output via the inputs. The math-
ematical expression of weights is shown as wy, wo, w3, ... wy,
[13, p. 8]. The sum function produces net input by correlat-
ing each input value with the weights. The most commonly
used addition function is the sum of each incoming input
multiplied by its own weight. The mathematical form of the
addition function is defined as [14]:

Netlnput = Z wix;i = wixi+waxo + ...+ wix; (1)

The activation function sets limits for the output of the
artificial nerve unit. Linear, threshold, sigmoid, hyperbolic,
tangent, and softmax functions are the most commonly used
activation functions. The selection of the activation function
affects the data transmitted to the output [9, p. 48].

In feed-forward networks, the output is a value deter-
mined by the activation function, sent to another cell or
outside world. In feedback networks, feedback is made
by transmitting the output value to the input at the same
time [12].

Assuming that in the learning process of the neural net-
work, the desired output of the network is y and the net-
work produces output y, the difference between the pre-
dicted output and the desired output is §-y. The difference
value is converted to a metric known as the loss function
(J) [15]. When the neural network makes too many errors,
the loss is high, and when it makes fewer errors, it becomes
low. The purpose of the training process is to determine
the weight that minimizes the loss function in the training
set [15]. During the training process, having a sufficient
amount of data is important for the success of the network.
With the development of the Internet, it has become easy
to provide the amount of data required for training artificial
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neural networks. Large amounts of data provide an oppor-
tunity of developing many approaches to improve the learn-
ing performance of artificial neural networks. One of these
approaches is the deep learning approach. An artificial neural
network with more than one hidden layer is defined as a
deep network and the learning style it exhibits is called deep
learning [8, p. 206].

However, experimental studies have shown that it is more
difficult to train deep architectures than shallow architec-
tures. For example, as the architecture deepens the “local
minimum’ or ““vanishing gradient” problem becomes more
evident. Besides, as the architecture deepens, the training
period takes more time. To overcome such problems in deep
architectures, new solutions have been proposed in the liter-
ature [16, p. 34].

A rectified linear unit (ReLU) that produces particu-
larly useful experimental results despite its simple structure
became widely adopted with deep learning. The ReL.U acti-
vation function is defined as f(x) = max(0, x). It gives zero
for negative values and increases linearly for positive values
[17, p. 68]. This activation function brings the predictions
closer to the desired output more quickly. ReLU the acti-
vation function is considered an advantageous function in
deep networks because it is relatively easy to calculate and
does not suffer from the vanishing gradient problem due to
its shape [15]. However, the ReLLU activation function also
has some disadvantages, later leaky ReL.U, softplus, PReLU,
ELU, swish activation functions were developed to overcome
these disadvantages.

In deep networks to reduce training time and not to
be trapped in a local minimum, several optimization tech-
niques were developed [5]. Commonly used optimization
algorithms in deep learning are the gradient descent algo-
rithm and its faster version the gradient descent algorithm
with momentum. Efforts to improve these algorithms led
to the development of algorithms such as Nesterov acceler-
ated gradient, Adadelta, AdaMax, Adam, Nadam, Adagrad,
AMSGrad, RMSprop [18].

The challenges mentioned above are just a part of the
work that should be done when deeper networks are used.
Model selection is always a major challenge in deep net-
works because the model should be selected in such a way
that it fits sufficiently. Inadequate compliance or overfit-
ting of the model’s data structure significantly influences
predictions. To prevent problems such as inadequate learn-
ing and overfitting of the network, a trade-off between bias
and variance is required [19, p. 102]. To solve the problem
of over-fitting, more data can be collected to change the
model. If data collection is not possible, the existing training
set can be enhanced by data augmentation techniques [20].
In addition to data enhancement, terminating training early
also solves overfitting problems. By looking at the perfor-
mance of the validation set, the training should be stopped
as soon as a decline occurs. To reduce the overfitting of the
network it is also possible to apply regulation or dropout
methods [21, p. 25].
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lil. METHOD
The bibliographic analysis in the domain based on databases
of the Science Citation Index (SCI) included full-text papers
published in peer-reviewed journals. A keyword-based search
for these papers was done by using search terms, “‘deep learn-
ing”, and “agriculture or farming”’. Through that query, 133
papers were obtained. Articles containing keywords ‘“deep
learning” but not related to the agricultural area have been
eliminated. As a result of this search, 133 articles were iden-
tified, initially. Some articles were excluded due to the lack
of meaningful findings and the initial number of papers was
reduced to 130. Then review papers were excluded from the
scope of the study, and the final number of papers was 120.

After collection of related work, a detailed review, and
analysis of this work were undertaken. Considering the fol-
lowing research questions, the 120 papers selected were ana-
lyzed individually:

Q1: What are the topics, where deep learning is imple-
mented in the agriculture domain?

Q2: What are the problems they addressed?

Q3: What approaches were employed to solve the prob-
lems?

Q4: What are sources of data used?

Q5: What is the benefit of deep learning relative to other
solutions?

IV. RESULTS
In the Appendices, a list of the 120 reviewed works is given,
indicating the research domain, problem the research address,
proposed methods for the solution, and sources of data used.
The summary tables obtained from analyzes are given in
Appendix A.

The highest number of deep-learning-based agriculture-
relevant papers on the database of the SCI appeared in 2019
(76) and there were no papers before 2016. The time trend
analysis given in Table 1, displays the eight most productive
countries. With its rapidly growing publications in 2019,
China was a leader throughout the period. Similarly, the
growth rate of publications in the USA was much faster than
the other six predominant countries. As shown in Table 1, the
distribution of the topics focused in all countries is almost
equal, expect papers by Chinese authors that concentrate on
topics such as disease detection (6), land cover identification
(6), object recognition (6), pest recognition (5), plant classi-
fication (4), and precision livestock farming (8). As shown in
Table 2, those topics appear to be the most common topics.
Therefore, it seems that China determines the trend of deep-
learning-based agriculturally-relevant studies.

The full list of those topics obtained from the analy-
sis of 120 articles for the deep-learning-based agriculture
domain is given in Table 2. Disease detection and plant
classification are the most common topics, with 19 records,
followed by land cover identification with 18 records, and
precision livestock farming with 13 records.

Table 3 was created to obtain information about the number
of authors per article. Of the 120 papers, 48 (40%) were
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written by teams consisting of up to three authors whereas the
remaining 72 (60%) were written by teams consisting of four
or more authors. Algorithms created for deep learning study
are complex and obtaining suitable data is also a laborious
process, so it is natural that articles were written with the
contribution of large teams. One hundred and thirteen papers
(94%) were written by teams consisting of up to six authors.
Notably, four articles of the remaining seven are written by
Chinese authors. Especially the article written with a team of
14 authors is noteworthy.

A total of 39 journals published papers in this area during
2016-2019. The distribution of the 120 papers across these
journals is given in Table 4 and shows that more than 63% of
the deep-learning-based agriculture-relevant articles appear
in the three journals.

Computers and Electronics in Agriculture is the journal
with the most relevant articles (55), followed by Sensors
with 11 articles, and Remote sensing with 10 articles. Deep
learning appears to still be a slow-developing topic in some
important journals in agriculture, such as Plant Methods
and Journal of the Science of Food and Agriculture, which
published only two relevant articles each. There are some
other journals (not listed in Table 3) that published articles
in a related domain. Those were Oriental Insects, Journal
of Arid Land, Genetics Selection Evolution, International
Journal of Agricultural and Biological Engineering, Acta
Agriculture Scandinavica, American Dairy Science Associa-
tion, Acta Microscopica, Animals, Journal of Dairy Science,
Field Crops Research, The Plant Journal, and Precision Agri-
culture.

The distribution of 662 of keywords used in 120 articles
is shown in Table 5. “Deep learning” is the most common
keyword, with 68 uses, followed by ‘“‘convolutional neural
network’ with 51 uses and ‘““image processing” with 23 uses.
The remainder of the list contains keywords related to area of

EE T3 LT

use, such as “disease detection”, “crop classification”, “pest
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detection”, “weed detection”, “‘fruit detection”, ‘“‘unmanned
aerial vehicle”, “yield estimation”, and ‘“‘smart agriculture”.

Since the majority of articles shown in Table 5 were pub-
lished in journals with computer science perspective, there
are also keywords related to techniques, such as ‘“‘com-
puter vision”’, “deep neural network”, “machine learning”,
“transfer learning™, “hyperspectral imaging”’, and “‘artificial
intelligence”.

Detailed information about how deep learning was applied
to the most common domains is given in subtopics below, as

well as in Appendix B.

A. DISEASE DETECTION

Plant diseases are among the important production losses
in agriculture. It is critical to monitor the condition of the
products and to control the spread of diseases. The preven-
tion methods of plant diseases as well as disease diagnosis
methods differ from plant to plant. The plant-specific disease
detection methods are reported in the literature. Lu et al. [22]
proposed a wheat disease diagnosis method that functions
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automatically in fields. Fuentes et al. [23] proposed a deep-
learning-based detector for recognition diseases and pests
in tomato plants. Kerkech et al. [24] proposed deep lean-
ing approaches for vine diseases detection using vegetation
indices and colorimetric spaces, applied to images collected
by UAV. Hu et al. [25] proposed a low shot learning method
for disease identification in tea leaves. Coulibaly et al. [26]
proposed an approach for the identification of mildew disease
in pearl millet, which is using transfer learning with feature
extraction. Cruz et al. [27] proposed an artificial intelligence-
based approach for detecting grapevine yellows symp-
toms. Deep convolutional neural network-based approach
for crop disease classification on wheat images proposed by
Picon et al. [28]. It was validated under real field conditions
by deploying on a smartphone. These and other studies focus-
ing on disease detection are given in Appendix B have made
useful contributions to the prevention of plant diseases.

B. PLANT CLASSIFICATION

Harvesting is laborious and time-consuming task in fruit pro-
duction, with harvesting mostly done manually, so new devel-
opments are directed towards automated harvesting robots.
Since automation techniques cannot be generalized across
crops, researchers focused on developing crop-specific sys-
tems. Grinblat et al. [29] proposed plant identification based
on vein morphology. Rahnemoonfar and Sheppard [30] pro-
posed automatic yield estimation based on robotic agriculture
for tomato plants.

Veeramani et al. [31] and Altuntas et al [32] applied deep
convolutional networks (CNN) for sorting haploid maize
seeds. Knoll er al. [33] proposed a self-learning CNN, to
distinguish individual classes of plants using the visual sensor
data in real-time. Héni et al. [34], Tian et al. [35], Gené-
Mola et al. [36], and Kang and Chen [37] proposed detection
and counting methods for apples in orchards. Yu et al. [38]
proposed fruit detection for a strawberry harvesting robot.
Koirala et al. [39] compared the performance of six deep
learning architectures. Detection of mango fruit has been
achieved using images of tree canopies [39]. Arad et al. [40]
present the case study of robotic harvesting for sweet pep-
per. Further studies on plant classification are given in
Appendix B.

C. LAND COVER IDENTIFICATION

Land cover and crop type maps have emerged as an
area where deep learning could be used efficiently. Multi-
source satellite images are often used to capture specific
plant growth stages. Several studies used deep learning for
land productivity assessment and land cover classification.
Kussul et al. [41] present a workflow for developing sus-
tainable goals indicators assessment using high-resolution
satellite data. Persello et al. [42] combined a full CNN
with globalization and grouping to detect field boundaries.
Zhou et al. [43] presented a deep learning-based classifier
that learns time-series features of crops and classifies parcels
of land. Using these parcels, a final classification map was
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produced. Zhao et al. [44] proposed a method for rice map-
ping which combined a decision tree method and a CNN
model.

Satellite data is not the only source of data for land
cover classification. With development IoT-based technolo-
gies, unmanned aerial vehicles (UAV) have become an effec-
tive tool for crop monitoring. Yang et al. [45] present a
deep CNN for rice grain yield estimation. This method using
remotely sensed images collected by UAV is able to make
estimations at the ripening stage. Dyson et al. [46] integrated
aradiometric index with terrain height images for segmenting
crops and trees over the soil. High-resolution images col-
lected by UAVs were used in the study. Nevavuori et al. [47]
applied CNNss to crop yield prediction using RGB and NDVI
data collected by UAVs. More studies on land cover identifi-
cation are given in Appendix B.

D. PRECISION LIVESTOCK FARMING

As a part of precision farming, managing the livestock is also
one of the current challenges for agriculture and is considered
as a special topic, precision livestock farming techniques.
These techniques include monitoring of animal health indi-
cators, such as the comfort of animal, pose estimation, and
behavior detection, as well as other production indicators.
Gorczyca et al. [48] used machine-learning algorithms for
predicting skin, core, and hair-coat temperatures of piglets.
Kvam and Kongsro [49] proposed a method for estimating
the IMF on ultrasound images. A noninvasive in vivo method,
constructed using deep CNNs, by (Huang et al. [50] and
Yukun efr al. [51] provided a low-cost method based on
machine vision and deep learning for evaluation of body
condition scores. Zhang et al. [52] proposed a real-time
sow behavior detection algorithm based on deep learning.
Li et al. [53] proposed deep cascaded convolutional models
for estimating cattle pose. A full list of studies focused on
precision livestock farming is given in Appendix B.

E. OBJECT RECOGNITION

Providing automation of processes in precision farming, the
detection of anomalies that may occur in the system is a
specific area of study. Anomaly detection can be defined
as detecting unexpected items or unusual behavior in data
sets, which differ from the normal situation. According to the
notions in the field of agriculture, elements that are not natural
for the environment are known as anomalies. An algorithm
combining anomaly detection and deep learning proposed by
Christiansen et al. [54] performed anomaly detection with
the exploitation of the homogenous characteristics of a field.
Ma et al. [55] proposed an unsupervised deep hyperspectral
anomaly detector. Rong et al. [56] proposed two different
CNN structures for automatic segmentation and detection of
foreign objects of different sizes that can be either natural or
man-made. The proposed structures were applied to walnut
images. Rasmussen and Moeslund [57] trained CNN models
for kernel fragment recognition in RGB images of silage.
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Intelligent management and the automation of agricultural
machinery is now a realistic option, with an increase in
the level of agricultural mechanization. However, agricul-
tural machinery recognition differs from plant recognition
in the data acquisition methods used. For capturing agricul-
tural machinery images vehicle terminal camera is used, so
the images need preprocessing. Zhang et al. [58] designed
and trained AMTNet network to automatically recognize
agricultural machinery images that produced acceptable
results.

F. PEST RECOGNITION

Although some insects are economically beneficial, some
species can severely damage to agricultural production
and products. These destructive insects, known as agri-
cultural pests, need to be correctly identified and treated
according to their species to minimize the damage they
cause. Pest recognition is not just objected recognition;
it is a more complex task that should be treated in a
special way. Cheng et al. [59] performed pest identifica-
tion via deep residual learning in a complex background.
Ding and Taylor [60] and Zhu et al. [61] used deep
learning techniques for the classification of moth images.
Shen et al. [62] applied a deep neural network for the detec-
tion and identification of stored-grain insects. Partel ez al. [63]
utilized artificial intelligence to develop an automated vision-
based system that can be used for monitoring pests, such
as the Asian citrus psyllid. Thenmozhi and Reddy [64] and
Dawei et al. [65] proposed techniques for the recognition of
pests by image-based transfer learning. Li ez al. [66] proposed
an effective data augmentation strategy for CNN-based pest
recognition and localization in the field.

G. SMART IRRIGATION

Due to the continuing decline of water resources available
to the world, efficient use of water is an important con-
cern for all countries. Many studies have been conducted to
efficiently manage the irrigation process in agriculture and
this has become a specific research area known as smart
irrigation. For efficient management of the irrigation pro-
cess, it is important to detect the water status of plants.
AlZu’bi et al. [67] proposed image processing concepts,
where [oT sensors work with machine learning methods to
make smart irrigation decisions. Song et al. [68] proposed
a novel model combining deep belief network with macro-
scopic cellular automata (MCA) approach to predict the soil
moisture content over an irrigated cornfield. Sirsat et al. [69]
used almost all available regression methods to predict four
key soil nutrients and fertility indices for soil organic carbon.
Zambrano et al. [70] predicted the reduction of drought-
related agricultural productivity in Chile using rainfall esti-
mates, and climate oscillation indices.

H. PHENOTYPING
Phenotype is a set of observable features that result from the
interaction of an individual genotype with the environment.
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Plant phenotyping, which can be defined as the identification
and quantification of effects on the phenotype, is labori-
ous and time-consuming because it is typically a manual
task. Therefore, phenotyping of large populations in plant
breeding programs have high costs. An automation of phe-
notyping tasks can bring great benefit to plant improvement.
Uzal et al. [71] proposed a deep-learning-based computer
vision method that estimates the number of seeds into soy-
bean pods. Ampatzidis et al. [72] used small UAVs equipped
with sensors for the rapid acquisition of phenotypic data.
This method simplified the surveying procedure, decreased
data collection time, and reduced the cost of phenotyp-
ing. Yang et al. [73] used deep CNNs and leaf images
for the identification of the three Cinnamomum species.
Milella et al. [74] proposed methods for automated grapevine
phenotyping. Feng et al. [75] combined machine learning
with hyperspectral imaging to develop a tool for salt-stress
phenotyping.

I. WEED DETECTION

Weeds are undesirable plants that grow in agricultural crops
and cause yield losses because they compete for the resources
needed by the crop. Smartweed detection makes it possi-
ble to apply herbicide treatments specifically to detected
weeds. Santos Ferreira et al. [76] used CNN to perform
weed detection in soybean crop images and classify them as
grass and broadleaf weeds. Moshia and Newete [77] proposed
a deep learning neural network, for automatic identifica-
tion of weeds from the main crop using row-guided robots.
Bah et al. [78] proposed a learning method using CNN for
weed detection from images collected by UAV that auto-
matically performed unsupervised training dataset collection.
Kounalakis et al. [79] combined classifier for weed recogni-
tion with transfer learning techniques for deep learning-based
feature extraction. Partel et al. [80] designed and developed a
smart sprayer using machine vision and artificial intelligence.
This smart sprayer distinguishes target weeds from crop and
precisely sprays the targeted weed.

V. DISCUSSION
In agriculture manual activities, such as yield monitor-
ing, fruit counting, phenotyping, pest recognition and dis-
ease detection, are slow, labor-intensive, expensive, and
error-prone, reducing real-time performance and increasing
costs [60]. Considerable work has been done on automating
these activities in recent years. This review of the relevant
articles highlights that success has been achieved in many
studies, especially with the use of deep learning approaches.
When applying deep learning the user does not need to be
an expert at detecting disease or having other specific knowl-
edge [27]. The system does not need preprocessing of images,
so this makes it more advantageous than the current standard
techniques.

As a result of analyzing 120 articles, the topics of the
studies were observed to change over time. Earlier stud-
ies compared manual, current methods, and deep learning
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TABLE 1. The most productive countries during 2016 - 2019.

Country 2016 2017 2018 2019 Total %

China 2 3 5 30 40 33
USA 2 3 9 14 12
Spain 2 4 6 5
France 3 2 5 4
Australia 2 3 5 4
Turkey 1 4 5 4
Denmark 1 1 3 5 4
Ttaly 1 4 5 4
Others 2 6 10 17 35 29
Total 5 12 27 76 120 100

TABLE 2. The most productive subjects during 2016 - 2019.

Domain Number Of Papers K
Disease detection 19 16
Plant classification 19 16
Land cover identification 18 15
Precision livestock farming 13 1
Object recognition 12 10
Pest recognition 9 8
Smart irrigation 7 6
Phenotyping 7 6
Weed detection 5 4
Other 11 9
Total 120 100

techniques. The result of these studies showed that by
applying deep learning approaches it is possible to obtain
high order features or more accurate results [29], [30], [59],
[76], [82]-[87]. However, there are some studies showing that
the current methods are better than deep learning or give the
same result, concluding that there is no value in applying
complex structures [23], [31], [88], [90], [91]. Sometimes
simple models that are formulated by carefully selecting the
best estimators and then by examining a specific situation
they give better results than complex models [70]. However,
it is not always possible to have the necessary knowledge to
examine specific situations. In these cases, the generalizing
ability of deep learning architecture provides an advantage.
Also, for the data that is too small to capture, the associated
characteristics and variations, deep learning approaches are
not meaningful [90].

It should be also noted that the data collection process,
which is the basic condition for success in deep learning
models, can also be time-consuming and laborious. As a
technology that aims to address this issue, UAV-aided IoT
networks have enormous potential in agriculture practices
[24], [45]-[47], [78], [110], [128]. This approach reduces
the technical workforce, is more cost-effective and consistent
than the manual methods based on the expertise of existing
staff [72]. Given that high maneuverability, high mobility,
and low maintenance cost, UAVs were used in studies related
to almost all topics. In addition to being an effective tool,
UAVs can contribute to the change from current practices
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TABLE 3. Number of authors per article for the most productive countries.

Number of authors per article

Country 1 2 3 4 5 6 7 8 9 10 14 Total
China 3 6 7 10 10 1 1 1 1 40
USA 1 2 5 3 3 14
Spain 1 3 2 6
France 3 1 1 5
Australia 1 1 1 1 1 5
Turkey 2 1 1 1 5
Denmark 1 1 2 1 5
Italy 1 2 2 5
Others 3 10 5 7 8 1 0 0 0 0 35
Total 5 20 23 26 27 12 1 2 2 1 1 120
Cumulative
Percentage 4% 21% 40% 62% 84% 94% 95% 97% 98% 99% 100%
TABLE 4. The most productive journals during 2016 - 2019. TABLE 5. The 20 most popular keywords in 120 articles.
Journals Nunber Of Papers % Keywords Number of Usage %
Computers and Electronics in Agriculture 55 46 Deep learning 68 10
Convolutional neural network 51 8
Sensors 1 9 Image processing 23 3
Remote Sensing 10 8 Disease detection 20 3
Remote Sensing of Environment 3 3 Precision agrie ulture 19 3
Computer vision 17 3
Symmetry 33 Deep neural network 14 2
IEEE Access 3 3 Machine learning 11 2
GIScience & Remote Sensing 2 2 érg;;)czllzl;;?ﬁcation lg %
Soft Computing 2 2 UAV (unmanned aerial vehicle) 8 1
BMC Bioinformatics 2 2 Pest detection. 8 1
Transfer learning 8 1
Plant Methods 22 Hyperspectral imaging 8 1
IEEE Geoscience and Remote Sensing Letters 2 2 Weed detection 7 1
Computers in Industry 2 2 let dete?ctlop 7 !
Yield estimation 6 1
J Sci Food Agric 22 Object detection 6 1
Others 21 18 Smart agriculture 4 1
Total 120 100 Artificial intelligence 4 1
Others 354 53
Total 662 100

to practices that protect the environment. Standard broadcast
sprayers integrated with UAVs, treating the entire area, result-
ing in unnecessary application to areas that do not require
treatment. With the Al-based UAVs, a fast and precise treat-
ment can be applied to specific areas, which can significantly
reduce the amount of agrochemicals used [80]. Therefore,
UAV-aided studies were not analyzed as an independent topic,
and UAV can be considered as an integral part of smart
farming.

Although UAVs are a key technological advance, they have
some difficulties in their use in agriculture. Given their high
power consumption during their flight, the flight time of
UAV is quite limited [84]. It is known that it takes much
longer than the normal flight time to train a deep neu-
ral network system even on a very fast central processing
unit. Therefore, UAVs have to be equipped with a graphics
processing unit to speed up training, which brings extra
costs [77].

This kind of tradeoff between accuracy and
computational cost could be addressed in technologies
supporting Al in agriculture. So when there are some

VOLUME 8, 2020

limitations and speed constraints, the more important
metrics should be taken into account and compared to
help to choose the right method [79]. However, there
are studies that improve the accuracy of detection and
speed of processing to make these suitable for real-time
applications [50], [52], [103].

Employment of Big Data for smart agriculture is a
completely new concept [114]. Although Big Data appli-
cations in smart agriculture are not that common, they
are meant for cloud computing and IoT-based smart agri-
culture application [67]. Systems that support reasoning
from real-time sensor data have the potential to deliver
digital data sources for online services, operations, farm-
ers, and processes by integrating a large number of data
sources [131]. Having the opportunity of direct access to
infrastructures that support advanced data discovery and
image processing services, researchers, farmers, or compa-
nies involved in smart farming could obtain value from these
data.
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“DeepAnomaly: DeepAnomaly can detect humans at ranges
combining DeepAnomaly is an algorithm between 45-90 m, which makes it more
background that combines anomaly detection effective than Region-based convolutional

1 Subtraction and deep ~ Anomaly and deep learning to make the Sensor data neural networks (RCNN). It has faster [54]
learning for detecting  detection homogenous characteristics of a processing time per image and needs a small
obstacles and field and to perform anomaly computational cost.
anomalies in an detection
agricultural field”

“Automatic moth An automatic deep learning Compared to other techniques applied for pest
detection from tra Pest based detection applied for Commercial detection, this approach needs minimal human

2 imaces for pest P management identifying and counting pests in codling moth  effort and no pest-specific engineering [60]

& p” g images collected by placing field dataset knowledge.
management
traps
- - - 5 -
“Hybrid deep Recognition of An architecture combmes A data-set of Achieves an accuracy of IO‘OA)V and it takps
learning for lepidopteran Supported  Vector Machines 1301 only about 200 ms to recognize insect species

3 automa%e q (bl?l tterI;'l ) (SVMs) with deep convolutional Lenidontera from an image. Outperforms LLC and CART [61]

. . ey neural network (DCNNs) to . picop method, as well as Local mean color feature-
lepidopteran insect species . . . . images from
. - L identify = Lepidoptera species . based method.
image classification”  correctly from their images 22 species.
“Deep learning for Plant White bean A feature extractor that learns relevant
plant identification identification A deep convolutional network red bean an7d features automatically provides the

4 using vein . . was used to develop a task- elimination of manual search. The study [29]

. using vein . soybean leaves
morphological mormholo specific module. dataset shows that the depth of the model make a
patterns” Tphology positive effect on the final accuracy.
Modelmg_spa.ltlo—. A model using deep belief A multi-layer perceptron (MLP) was
temporal distribution Precise networks (DBN) for predictin compared to DBN. Compared to the MLP-
of soil moisture by L . . p g Data from 172 MCA model, the DBN-MCA model caused a
5 . irrigation the soil moisture content (SMC) Lo o [68]
deep learning-based . . - sensors reduction in RMSE by 18%.
scheduling was applied to an irrigated corn
cellular automata field
model”
Implementing  An automatic diagnosis system Using the same amount of parameters, the
. . . proposed  system was compared to
Ca s effective for disease detection and X .
An in-field management localization for discase arcas in conventional CNN architectures. Two
automatic wheat anag Wheat Disease  different deep learning architectures with the

6 . : . with wheat  fields. A  weakly- . . o [22]

disease diagnosis . . . Database mean recognition accuracies of 97.95% and
" controlling the  supervised deep learning .
system b . 95.12%  respectively, outperformed two
spread of framework was trained with only . .
discases image-level annotation conventional CNN frameworks with the
) results of 93.27% and 73.00%.
« . . An open The performances of deep models and
b{:;?”ﬁgféggf; le:é?cl?;sl and Deep  convolutional neural access shallow networks were evaluated. Trained

7 severitp estimation gisease networks for diagnosing the database of with transfer learning, deep VGG16 was the [83]

venty N severity of the disease 50,000 images best model, having an overall accuracy of
using deep learning management (PlantVillage)  90.4%.
“A robust deen- A deep-learning architecture for Dataset Comparisons were made using Region-based
learnin -baseg A fast and diseases and pests recognition contains Fully Convolutional Networks (R-FCN),
detecto% for real-time accurate was developed. Diseases and images with Faster R-CNN, and Single ShotMultibox

8 tomato plant diseases detection of pests detection was performed in several Detector (SSD). The plain networks [23]
and es]tas diseases and tomato plants using various diseases and performed better than deeper networks, but
recop ition” pests resolution  camera  images pestsintomato with data augmentation, deeper networks

e captured in-place. plants. showed a performance of more than 90%.
« . The proposed method speeds up images
ls;ﬁe;;::(s’éuit;): (e)sf Discase capturing tasks in the tomato field.
Ifjor the acceleratifn of classification CNN-based classification of the Furthermore, it secures the accuracy of these
. diseases applied on super- Plant Village images for the following analysis. Making
9  image-based and accelerate luti hich luti 4 d b ial uti h ! [84]
henotyping and image-based reso utlon,. 1g. -resolution, an ataset etter spatla ‘reso ution enhancement o
gi or diagnosis in henotybin low-resolution images tomato disease images, the proposed method
&6 g s p yping outperformed conventional image scaling
agriculture methods
“Deep learnin Better In the study, a traditional fully connected
b ‘earning Y . . Multitemporal MLP and random forest (RF) were compared
classification of land ~ discrimination = A multilevel Deep Learning It ith ) . .
10 cover and crop types  of certain approach for land cover and crop multisource with CNNs. Overall classification accuracies [85]
R . . . satellite for MLP, RF, 1-D and 2-D CNNs were
using remote sensing  summer crop  types classification imagery 027%.  88.7%. 93.5%. and 94.6%
data types respectively.
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“Estimation of the A pixel-wise classification was Manual annotation of real images for training
botanical composition P . task takes more than 3000 h, where the use of

. performed using a fully . . .
of clover-grass leys Automatic R Simulated top-  simulated images reduces the manual labor to
. . convolutional neural network. .
from RGB images analyze images . down images a few hours. The network was tested on

11 . . . . The network was trained to . . . [86]

using data simulation acquired from . of clover-grass images with different amounts of clover and
classify weeds, clover, and . . .

and fully fields f . fields grass. An overall pixel classification accuracy

. grass, in RGB images of clover- . o
convolutional neural . achieved was 83.4%.

5 grass mixtures.
networks

Traditional BP neural networks, SVM, and

“Pest identification To prevent . pla_ln CNN - were cor_npar?d to the_ deep
via deep residual damage caused Development of an agricultural Pest image residual network. Classification accuracies for

12 S . pest identification system using SVM, BP NN, and plain CNN were 44.0%, [59]
learning in complex by agricultural . . database o o .
background” pests deep residual learning 42.67%, and 86.67%, respectively. The

ResNet-101 model had an accuracy of
98.67%.
In the study area-based counting, shallow
Estimation of networks were compared to deep networks.
w e tree, fruit,and ~ Automatic  yield estimation Accuracies for area-based counting, shallow
Deep count: fruit - - o
counting based on flower bgsed on robotic agrlcultu're a Synthetic and network and proposed method were 66.16%,

13 . numbers for simulated deep convolutional 11.60% and 91.03%, respectively. The [30]
deep simulated . . . real data . .

Jearning” improving neural network for yield average time for one test image for manual
decision estimation counting is 6.5, for the area-based method is
making 0.05 and for the proposed method is 0.006

seconds.
“DeepSort: deep Discriminate Application of a deep Dataget DeepSolrt is compared to RF, SVM’A Logistic
convolutional diploids from  convolutional network consists of Regression (LR) and test accuracies were

14 . ) . . 4731 RGB 96.8%, 84.5%, 87.6%, 77.5%, respectively. [31]
networks for sorting  haploids maize (DeepSort) for the sorting of .

. . s . images of corn  Results show that the performance decreases
haploid maize seeds” seeds haploid seeds
seeds the number of the layers decreases.
In vivo ultrasound estimation of intramuscular
.In vivo prediction of Intramuscular A method for estimating IMF . fat based on deep learning compareq to
intramuscular fat . . 3037 animal images from the real world or previous

15 . fat (IMF) using deep convolutional neural ; X [49]

using ultrasound and .. . images studies using ultrasound data. The method
s Prediction networks on ultrasound images. .
deep learning performs best on moderate to low IMF images
<6% giving a correlation of R = 0.82.
A multimodal data fusion DME can detect intramodal correlations in
framework, the deep multimodal initial layers, as well as the enhanced
« Real-world . . .
Heterogeneous . encoder (DME), based on deep intermodal correlations in deeper layers. The
. To improve X : dataset . . .
sensor data fusion by . learning techniques for sensor non-linear transformations and the higher-

16 . inference and . . collected from . o [87]

deep multimodal S data compression, missing data . order features increase robustness to missing
R prediction . . N anagriculture X . L.
encoding imputation, and new modality data. DME is capable of filling missing data
L . sensor network . .
prediction under multimodal even with a 90% missing rate.
scenarios.
Using Convolutional Neural In the study ConvNets, Support Vector
Machines, AdaBoost and Random Forests
w Lo Weed Networks (ConvNets or CNNs) . o
Weed detection in .. . . were compared. Precision values were 99.5%,
. detection in to perform weed detection in 4500 weed o o o - ST

17 soybean crops using agricultural sovbean  cro imaces and  images 98.0%, 98.2%, 96.0%, respectively. Training [76]

ConvNets” ¢ e P e € time was 528.16, 0.78, 16.28, 2.33 scconds,

crops classify these weeds among . .
rass and broadleaf respectively. Memory usage of the algorithms
g was 1715 MB, 329 MB, 283 MB, 623 MB.

The proposed single-hidden layer network

Optimized Wishart . Single-hidden layer OWN and 0utp<_erf0rm§ deep architecture 11}v01v1ng

network for an Disaster . . multiple hidden layers because it takes

. - . S extended OWN for classification PolSAR ST g
18 efficient classification prediction in . . . polarization information of the PoISAR data [88]
. . of multi-frequency, and single images . . . . .

of multifrequency agriculture frequency PolSAR data into consideration, while deep learning-based

PoISAR data” q y architecture considers the PolSAR data like
any general data.

“Deep leaning Using different color spaces and vegetation

approach with UAV system indices performances of CNNs were

colorimetric spaces Detection of Method based on CNN and color with RGB compared. The obtained results give the best

19  and vegetation symptoms in information to detect symptoms ~ sensor were accuracy of more than 95.8%. [24]
indices for vine grape leaves in the vineyards used for data
diseases detection in acquisition
UAYV images”

“Deep learnin CNN models were developed to  An open Several deep architectures were trained, with
mo derl’s for la%q t Plant disease perform plant disease detection ~ database of the best performance of 99.53% success rate

20 . pia detectionand  and diagnosis using simple 87,848 images, in classifying diseased and healthy plants. [89]
disease detection and . . . : ..

. S diagnosis leaves images of diseased and containing 25
diagnosis
healthy plants plants
VOLUME 8, 2020 105595
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“Impact of dataset A dataset that contains various image capture
size and variety on An image conditions, plant species, and diseases are not
the effectiveness of Automatic — . database suitable for CNN, because it has a low
. o The application of deep learning . .
21 deep learning and recognition of with a focus on CNNs composed of number of samples in each class, which [90]
transfer learning for  plant diseases 12 plant makes it difficult to capture the characteristics
plant disease species of each class.
classification”
Apprpxnnate ' A tool for the detection of single Pig daFa'set NN of different complexities were combined
2 Bayesian neural Genome-wide nucleotide polvmorphisms comprising to compare the shallow models to complex [91]
networks in genomic  prediction polymorp 3534 models and confirmed that the shallow model
AT (SNPs). I
prediction individuals performs better than more complex models.
e Estimate The proposed approach accurately estimates
EStltm?tlm,l (()if p vegetation D | networks based A 3DR Solo VI using deep neural networks at a low cost.
23 E_eg; ahlon IE 1ctes O index (VD) :_ep neura F ctwor st_ase_ d drone was used The results show that RGB images contain 0
igh-throughpu from estimation of a vegetation index i o custom  information that is sufficient for VI [92]
phenotyping of wheat . using RGB color images s
. . ° ., multispectral platform estimation.
using aerial imaging image
“An explainable deep Identification A machine learning framework . The al;thOrS' found a classification aceuracy
. .. . . . . 4,174 images  (94.13%) using a large dataset for the testing
machine vision of abiotic and  for the identification and . .
24 . . . . . for healthy tasks. With no need for detailed symptom [93]
framework for plant  biotic stresses  classification of foliar stresses in .
i henotyping” in o bean leaves annotation by experts, a model can accurately
stress phenotyping crop soybea identify and quantify foliar stresses.
“A two-branch CNN Monitoring of Direct deep learning based The proposed method (MultiResoLCC)
architecture for land the earth’sg classification of images without ~ Reunion outperforms recent classification methods for
25  cover classification of surface at fine- preprocessing methods like Dataset, Gard  optical Very High Spatial Resolution (VHSR) [94]
PAN and MS scale image sharpening or resampling  Dataset images.
imagery” process
“Targeted grassland Improvin In the study, parcels declared as grassland
monitoring at parcel P & . . . were valuated using Sentinel-1- and -2-
. . accuracy in Deep learning classification BRP datasets . ..
level using sentinels, : . . derived (S1 and S2) markers. By combining
26 . parcel level method for identification of of 770,000 . . [95]
street-level images 1o rassland-declared parcels arcels S1 and S2, the best marker with a precision of
and field P i & P P 98% was obtained.
observations” &
DenseNet, Resnet 50, GoogleNet, OverFeat,
« .. VGG16, VGGI19, Inception and Xception
DecoFungi: a web .
. Measurement . . networks were used in the study. The 6
application for Deep-learning model applied to . .
. of dye . . The dataset classifiers such as Extremely Randomised
automatic Lo characterize dye decolorization . .
27 - decolorisation . consists of Trees, MLP, Nearest Neighbor Pattern [96]
characterisation of . level of fungal strains . ; .
dve decolorisation in applied to automatically 1204 images Classification, LR, RF, and SVM were used.
fli/n al strains” fungal strains The best method with an accuracy of 96.5% is
& obtained when Resnet 50 is used as a
network, and SVM is employed.
“Classification of DNN classifier is able to make accurate
Elgh resolution Analyzing The DNN is combined with a Hyperspectral identification of dlfferent land covers §ugh as
yperspectral remote  hyperspectral . natural forest, agricultural area, buildings,
28 . . . stacked autoencoder and a remote sensing [97]
sensing data using remote sensing . roads, etc.
d softmax classifier. data
eep neural data
networks”
The proposed method (CNN+SVM) was
“Apple flower Dataset is compared to the three baseline methods such
PP R Estimate A pre-trained convolutional as HSV, HSV+SVM, and HSV+Bh. It
detection using deep L composed of a ..
29 convolutional bloom neural network is improved for total of 147 outperforms these approaches precision rates [98]
networks” intensity flower detection. imaces higher than 90%. AUC-PR for HSV,
& HSV+Bh, HSV+ SVM, CNN+SVM are
54.9%, 61.6%, 92.9%, 97.7 %, respectively.
“An unsupervised The dataset The proppsed method ' outperforms  the
Anomaly . Collaborative Representation detector, global
30 deep hyperspectral ) DBN based anomaly detection downloaded L [55]
. detection Reed-Xiaoli detector, and the local RX
anomaly detector from NASA
detector.
“Large-scale oil palm The proposed approach is compared with
tree detection from Remote A two-stage  convolutional existing methods for oil palm detection. F1-
high-resolution sensing-based  neural  network  (TS-CNN) QuickBird scores for single-stage CNN, SVM, RF,
31 satellite images using quantitative developed for oil palm detection Artificial Neural Network (ANN) and for [99]

two-stage

convolutional neural

networks”

detection of oil
palm trees

using high-resolution satellite

images

satellite image

proposed method are 87.95%, 81.80%,
80.61%, 78.35%, and 94.99%, respectively.
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The images Developed to extract feature maps, the
“Detection of stored-  Detection of Application of deep neural taken by the improved inception network with a precision
32 grain insects using stored-grain network for stored-grain insect OITD system  of 87.99 outperformed inception network and [62]
deep learning” insects detection and identification 1944x2592 VGG16 with a precision of 81.39, 82.66,
pixels. respectively.
“Seed-ner-nod Features extraction (FE) followed by SVM
estimagon If)or lant Phenotyping of Deep learning based computer 7853 + 10325 and CNNs methods. Test accuracies of
33 . orp large vision method for estimation of . 50.4% for FE+SVM and 86.2% for FE+CNN [71]
breeding using deep . images .
.S, populations seed amount per soybean pod show that deep learning outperforms the
learning . . ..
classic machine vision approach.
“Building a globally LR, MLP, deep learning MLP (DL-MLP), the
optimized . . . A dataset of Gray world (GW), white patch (WP) were
. To analyze Analysis of nitrogen status in . .
computational nitrogen status  wheat plants using image 4,800 samples  compared in the study. Euclidean error (AE)
34  intelligent image in w}%eat rocesSin with c%)m u%ational of RGB color  of DL-MLP method is 3.67, which is lower [100]
processing algorithm lants ?n telli enfe P and binary compared to the error of LR, MLP, GW, WP,
for on-site inference p g values and MLPs fusion (11.03, 4.85, 22.30, 13.74,
of nitrogen in plants” 4.10).
“Automatic 145 signals after Machine learning algorithms as ANN, CNN,
classification of plant To test Different methods of automatic ~ osmotic stress, =~ Optimum-Path  Forest (OPF), k-Nearest
electrophysiological different classification were tested. 118 signals after Neighbors (k-NN), and SVM and interval
responses to Different environmental cues low light stress,  arithmetic were compared. The experiments
35 . ... methods of . . . . . . [101]
environmental stimuli automatic causing specific changes in the 76 signals after  suggested supervised classifiers and Interval
using machine classification electrical signals of plants were 091(1 stress, 342 Arithmetic are more suitable than deep
learning and interval identified. signals inideal  learning.
arithmetic” conditions
“Improving To distinguish The dataset Proposed classifier is found to be better in all
efficiency of organic  the individual A self-learni e i asa; parameters than random forest classifiers. The
farming by using a classes of sell-learning consisls o accuracy of random forest classifier is 93.8%,
36 . . convolutional neural network 4742 plants : : [33]
deep learning plants using . . Y while the accuracy of the deep-learning
. . . was used for the classification (50% carrots, : o
classification the visual 50% weed) approach is over 98%.
approach” sensor data ’
“Application of deep LR, RF, Sequential Minimal Optimization
learning architectures Detection of (SMO), Bagging MLP methods are compared
for accurate and rapid internal Classification of hyperspectral 737 blueberry ~ with deep CNN. Classifiers SMO, LR, RF,
37 detection of internal mechanical blueberry samples into sound samples Bagging, MLP, and CNN obtain accuracy of [102]
mechanical damage damace of and damaged groups using deep  collected from  80.8%, 76.1%, 73.1%, 71.1%, 78.3%, and
of blueberry using bluebirries CNN Chile 88.4% respectively. Deep models are better in
hyperspectral classification than the traditional machine
transmittance data” learning methods.
“Automatic Automatic Data images A detector which detects about 20 frames in a
recognition of detection of Identification of five postures were recorded second could be adequate to be used in real-
lactating sow . like sitting, standing, lateral, usinga time monitoring for livestock breeding. With
38 posture using . . [103]
postures from depth computer sternal, ventral recumbences Microsoft emergency measures inserted to system
images by deep visi (ﬁl with Faster R-CNN based deep Kinect v2 abnormal behavior could be detected in a
learning detector” learning framework sensor short time.
“Machine learning . Machine learning algorithms for Four machine 1 cammng algorithms were tested.
. . To predict o . > The best prediction for Tr was performed by
algorithms to predict predicting physiological . o
. K surface . Sensor dataat  DNN, with an error of 0.36%, for Ts was
39  core, skin, and hair- temperatures, such as hair-coat R . . [48]
temperatures . 200 data points performed by a gradient boosted machines
coat temperatures of h surface (Th), skin-surface (Ts), ith £ %. for Th f d
iolets” of livestock and rectal (Tr) with an error of 0.62%, for Th was performe
pig by random forests with an error of 1.35%.
“Automatic Fertility indices for soil organic A collection of 76 repressors like Deep
prediction of village- carbon and four soil nutrients Data include Learning, ANN, SVM, RF, quantile
wise soil fertility for ~ An automatic ~ such as manganese, zinc, iron, 372 regression, partial least squares, generalized
40  several nutrients in prediction of and phosphorus pentoxide were co-referenced additive models bagging, and boosting were [69]
India using a wide fertility indices used in available regression gattems compared. The most accurate prediction of
range of regression methods p five nutrients and soil fertility indices was
methods” achieved by ExtraTrees
“Prediction of Two prediction approaches as optimal LR and
drought-induced DL were compared. The mean variability
. Early season Moderate .
reduction of . . . explained (Rev 2) values for one, two, three,
. forecasts on Deep learning (DL) architecture ~ Resolution . .
41 agricultural drought for carly prediction of drought Imaging four, five, and six months lead time were [70]
productivity in Chile oceurrence and  occurrence Spectroradiom 0.96, 0.84, 0.65, 0.54, 0.46, 0.38 for DL, and
from MODIS, rainfall . P for OLR were 0.95, 0.83, 0.68, 0.56, 0.46.
. . severity eter (MODIS)
estimates, and climate
oscillation indices”
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“DeepDendro — A . Testing dataset The method is based on CNN, which is
: An automatic . . ) L .
tree rings detector detection of An automatic detector for tree- contained over claimed to be the first application of CNNs in
42 based on a deep treerin ring boundary 2500 of tree- the area of dendrochronological analysis. The [104]
convolutional neural boun dafies using the CNN ring proposed approach detection rate was at the
network” boundaries level of 96%.
Mexican poppy Automatic identification of Real-world Tralnmg DL Fakes longer on the Cer}tral
(argemone mexicana) . Processing Unit (CPU), therefore for high-
. . . weeds based on deep learning dataset L . -
control in cornfield Site-specific . performance training Graphics Processing
43 . . neural networks trained on real-  collected from . . . . [77]
using deep learning weed control L . . Unit (GPU) is needed to finish work quickly.
neural networks: a time image acquired by row- agriculture
e guided robots sensor network
perspective
“Deep learning with CNNs, SVM, and RF were applied to features
p learning Appling CNNs to unsupervised extracted from the datasets. The models were
unsupervised data . g . Datasets for .
44 labeline for weed Automatic training dataset in order to bean and applied to two types of data and found to be (78]
s forw weed detection  perform fully automatic weed . comparable for three classification methods
detection in line crops . spinach fields. . . . .
. . " detection with a maximum difference of about 6% in
in UAV images both fields.
“A comparative stud The DL architectures as Inception V4, VGG
par y . . . 54,306 images 16, DenseNets with 121 layers, ResNet with
of fine-tuning deep . Plant disease classification
45  learning models for Plant_ dlsez‘ise applied to images using deep form . 50, 101, and 152 layers were compared. [105]
: classification PlantVillage DenseNets outperforms the rest of the
plant disease CNN X L
H R o, database architectures, achieving an accuracy of
identification 99.75%
. 0.
“A low shot learnin A low shot learning method for Deep learning based architecture (C-
method for tea leaf’g Identification  identification of disease in tea 40 images of DCGAN+VGG16), SVM, and Decision Tree
46 discase of disease in leafs in order to monitor tea tea diseases for RF were compared. Deep architecture [25]
identification” tea leafs leaf’s diseases precisely and each type outperforms classical learning methods
timely having an accuracy of 90%.
Deep convolutional ) An adapted Deep Residual 8178 images of Resqlts from previous _work were enha}nced by
neural networks for Precise . making use of a Residual NN that included
. . . . Neural Network-based algorithm three relevant . .
mobile capture identification . . several improvements on the augmentation
47 . . to deal with the detection of European . . [28]
device-based crop of the specific . . . . scheme and on the tile cropping. The balanced
. . . . . multiple plant diseases in real endemic wheat .
disease classification  infection S P . accuracy improved from 0.78 up to 0.87
. O acquisition conditions diseases . .
in the wild under exhaustive testing.
“Deep neural Detection and . . . . 124 images Due to the experimental result accuracy of
- . . Identification of mildew disease o - o
48 networks with diagnosis of in pearl millet using transfer manually 95.00%, the precision of 90.50%, the recall of [26]
transfer learning in Mildew . . . downloaded 94.50% and the fl-score of 91.75% was
X X . . learning with feature extraction . .
millet crop images disease from internet obtained.
ResNet-101, ResNet-50, AlexNet, Inception
Detec‘tlon of Grapevine CNN applied for end to-end Leaf clipping v3, GoogleNet, and SqueezeNeF were
grapevine yellows . . . compared. The best of tested architectures
A yellows detection of Grapevine yellows  images . .
49  symptoms in Vitis . . . . . was ResNet-50 with a sensitivity of 98.96% [27]
- . disease (GY) in red grape vine, using acquired from g o . .
vinifera L. with detection color images of leaf clinpings internct and specificity of 99.40%. Expensive sensing
artificial intelligence” & ppIngs. equipment and expert knowledge in GY
detection are not required.
« . . ResNetl8, ResNet34, ResNet50 and
PD2SE-Net: . Applied ResNet50 architecture Synthetic ResNet101 were tested. SGD optimizer
Computer-assisted Development . . dataset that .
lant discase of diagnosis as.the basic moFiel and combined was Global Al integrated PDZS_E model based on ResNet50
50 P . with shuffle units as the the best accuracies of 91%, 98%, and 99% for [106]
diagnosis and system for o Contest  and . . o .
. S . auxiliary structures formed the . disease severity estimation, plant disease
severity estimation plant diseases. the  synthetic . . . o
» proposed PD2SE-Net50. classification, and plant species recognition,
network dataset .
respectively.
“Pixel-level aflatoxin 146 images Traditional identification models such as K-
. Electric displacement platform, g NN, RF, RBF-SVM, BP-ANN were
detecting based on Detect of . cubes of 73 .
. . SCOMS, grating module, and compared to DL. DL was the best on pixel
51  deep learning and Aflatoxin in . peanut samples . - [107]
hyperspectral peanut camera were used to design a (before and level gnd kgrnel level, with the recognition
yper v CNN besed hyperspectral . rate is higher than 96% and 90%,
imaging ) . after aflatoxin) .
imaging system. respectively.
“Multilayer Development The proposed method, having accuracy of
convolution neural of effecriive A real-time 97.13%, outperformed SVM, Particle swarm
network for the method for Proposed multilayer CNN dataset of 1070 optimization (PSO), and Radial basis function
52 classification of discase and classifies Mango leaves images of the neural network (RBFNN) that have accuracies [108]
mango leaves infected by fungal disease. 8 0f 92,75%, 88.39%, 94.20%, respectively.
. symptoms Mango leaves
infected by diagnosis
anthracnose disease”
_Plagt dlsgase _ A soil borne The training The pr_oposed model classifies glyperspectral
identification using . . . data with an accuracy of 95.73%. The most
. fungal disease A 3D deep CNN applied to the ~ dataset consists - . . S .
53 explainable 3D deep sensitive pixel locations were visualized using [109]
. called charcoal hyperspectral data of 1090 .
learning on . the concept of a saliency map.
rot images.
hyperspectral
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images”
Quantltgtlve Northern leaf ~ Segmentation of NLB disease 3000 aerial An‘ average precision .Of 096 was obtained.
phenotyping of . AU . : Being robust to variation in image scale, the
. blight (NLB) lesions in unmanned aerial images and .
54 Northern leaf blight . . . . . proposed method demonstrates the potential [110]
. . . disease vehicle (UAV) images with a 5234 lesion . . .
in UAV images using . : for integrating a deep learning-based
.o detection mask R-CNN model. instances. .
deep learning approach with UAV technology.
“Solving current . One-stage and two-stage detectors were
S A neural network architecture .
limitations of deep . . Dataset tested. Proposed two-stage architecture called
- Plant disease with two-stage focused on a real o .
55 learning based . . . containing PlantDiseaseNet showed better performance [111]
detection environment for plant disease . : o
approaches for plant . . 79,265 images  with an accuracy of 93.67%.
g ., classification
disease detection
Feature vectors were obtained from deep
cight clusters learning networks like AlexNet, ResNet101,
“Plant disease and Different approaches of nine co%l tainin ResNet50, SqueezeNet, GoogleNet, VGG19,
pest detection using ~ Diagnosis of powerful deep architectures for & VGGleé, Inception ~ ResNetV2, and
56 . . . . 1965 real pest R . ; [112]
deep learning-based  plant diseases  plant disease detection were images and InceptionV3. The traditional classifiers of
features” evaluated. langt discase KNN, ELM, and SVM were used in the
P classification phase. ResNet50+SVM model
produced the highest accuracy of 97.86%.
“End-to-end sequence Altering The best system is a NN that uses Softmax,
labeling via deep human- 8 different deep learning character embeddings, and Bidirectional Long
57 learning for oriented architectures to develop an end- 2426 PDF short-term memory It achieves a performance [113]
automatic extraction  regulations to-end sequence labeler for of 88.3% F1 score.
of agricultural with computer- phytosanitary regulations.
regulations” oriented rules
Temperature, Short-term  missing data and random
“Interpolation of Statistical methods like spline atmospheric extraction data were estimated with high
Greenhouse . . . . N b
greenhouse environments and linear interpolations were pressure, accuracy. The machine learning method with
58  environment data analysis usin applied. Linear models like RF  relative stable accuracy was robust to experimental [114]
using multilayer bi gata € and MLP were selected as humidity, light period changes. MLP showed high accuracy
perceptron” & machine learning methods. intensity, CO2 in all experiments among the other deep
concentration learning models.
“A workflow for Thanks to the high resolution of remote
sustainable Yield sensing  products and deep learning
development goals assessment and  Assessment of land productivity methodology the capacity to evaluate SDG
59 indicators assessment land using deep learning Satellite data indicators can be increased. [41]
based on high- productivity methodology
resolution satellite analysis
data”
“Characterization of The 40% of images were identified with an
food cultivation along A deep CNN were trained with 57,079 accuracy of 99.0% and the area under the
60 roadside transects Crop Google Street View imagery two panoramas ROC curve of 0.9905. The study shows good [115]
with Google Street identification  software tools for crop discovered in  performance in detecting banana plants.
View imagery and identification was tested Nong Chang
deep learning”
“Crop yield Remote CNNs based model for crop The Qata CNN modgls are at yield e;tlmatlon trained
s . . . . . acquired from  with RGB images. CNN architecture performs
prediction with deep  sensing based  yield prediction was applied to . .. . . .
61 . . . single Airinov  better with RGB images than NDVI images. [47]
convolutional neural  yield NDVI and RGB data acquired Solo 3DR
networks prediction from UAVs. UAV
“Deep convolutional Using UAV-based imagery, a deep CNN
neural networks for Discovery of important features technique better than the vegetation index
. A . o . 800 ; . A
rice grain yield . related to rice grain yield using (VI) regression model for rice grain yield
Co Crop yield . management AR
62  estimation at the S CNN architecture and low- s estimation. The performance of deep CNN at [45]
o . estimation . units in a 160- B
ripening stage using altitude remotely sensed . the ripening stage was better and more stable.
. hectare site
UAV-based remotely imagery.
sensed images”
Development Classification of summer crops XGBoost, RF, and SVM were compared to
of deep using Landsat Enhanced two types of deep learning models LSTM and
« . learning based ~ Vegetation Index (EVI) time Latest survey ~ ConvlD. LSTM showed the lowest accuracy
Deep learning based . . y . . o .
. classification series. One-dimensional for Yolo of 82.41% of among all the classifiers,
63 multi-temporal crop . . . [116]
classification” framework for  convolutional (ConvlD) layers ~ County in year XGBoost was the best with an accuracy of
remotely and Long Short- Term Memory ~ 2014. 84.17% among non-deep learning classifiers.
sensed time (LSTM) models were designed The highest accuracy of 85.54% was achieved
series for this purpose. by the Conv1D.
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“Delineation of gPb-owt-ucm, Single-scale Combinatorial
agricultural fields in Grouping (SCG), Multiscale Combinatorial
smallholde‘r fgrms Detection of field boundaries Field boundary Grouping (MC(_}) and deep models based on
from satellite images ~ Accurately . . data, Fully Convolutional Network (FCN), SegNet

. using a fully CNN in .. :

64  using fully detects sparse combination with erouping and  COMPrising were compared. FCN-based techniques [42]

convolutional field contours . grouping over 500 field  showed better results than shallow techniques.

globalization .

networks and polygons SegNet-W provides more accurate results
combinatorial than FCN-DKG6.

grouping”

“Deep learning for gPb-ucm (global probability of boundary

. . . .. . The open data .
automatic outlining Automatic Outlining of agricultural plot followed by ultrametric contour map) method
. - ‘ : . from the Land

agricultural parcels: outlining of boundaries using CNNs, applied . was compared to the CNN model. The

65 " . Parcel Identi . [117]
exploiting the land agricultural to orthophotos over large areas caption System proposed approach fit the GT boundaries
parcel identification  plot boundaries with a heterogeneous landscape. P 4 better than boundaries detected by the gPb-

» (LPIS)
system UCM method.
“Long-short-term- . . The proposed LSTM-based method was
. . . . high-resolution
memory-based crop Discovering  of  time-series 7Y-3 images compared to RF and SVM. Overall accuracy
classification Parcel-based features of crops using deep and & scores for LSTM, SVM, and RF are 80.71%,
66  using high-resolution  crop learning-based LSTM, to . 72.64%, and 74.19%, respectively. [43]
Lo . . . multitemporal
optical images and classification classify parcels and produce a .
. . . Sentinel-1A

multitemporal SAR final classification map.
data” SAR data
< Py - - >

Ma}?pmg rice o An innovative method for rice The proposed classification method (.93'56/’)
paddies in complex Estimating . .. outperformed three other classification

. ) mapping by combining a HJ-1 A/B . .
landscapes with cropyield . techniques, such as backpropagation neural
. . convolutional neural network charge-coupled L .
67  convolutional neural  and performing .. . network (BPNN), original CNN, pre-trained [44]
(CNN) model and a decision tree device (CCD) .
networks and land . . . CNN applied to HJ-1 A/B charge-coupled
. (DT) method with phenological images . .

phenological management metrics device (CCD) images.
metrics” )
“CropDeep: the crop The proposed method was compared to VGG,
vision dataset for c CropD ies classificati Detection ResNet,  DenseNet,  Inception,  and

63 deep learning based Clmp ficati bmpd ee;zispeclles classitication dataset, SqueezeNet. The ResNet50 was the best 118
classification and ZSISDI 1tcatt1'on tas;, ?n cep-iearning consisting of ~ model with an accuracy of 99.81% on the (18]
detection in and Detection — technology 31,147 images  CropDeep datasets.
precision agriculture”

A strategy for integrating terrain The results demonstrate that the method
“Deep learning for To correctl height (DSM) images with High potentially enables the correct segmentation
eep g . . Y radiometric index (NDVI) to resolution of soil. It is shown that the DSM/NDVI index
soil and crop identify and f L . .
69 seementation from sepaTate Crons segment crops and tree objects Digital Surface produces an improvement of about four times [46]
g . P P over soil through the use of Model (DSM) compared to its baseline NDVI marker.
remotely sensed data”  from the soil . . .
high-resolution images from data
UAVs.
WorldView-2 (WV-2) images The proposed approach has Overall Accuracy
“Smallholder crop with RGB bands were used to of 95% of crop area classification, which is
area mapped with a Crop arca confirm the effectiveness of the WorldView-2  better than other deep semantic segmentation

70  semantic ma P in proposed semantic classification (WV-2) networks such as U-Net, PspNet, SegNet, [119]
segmentation deep pping framework  for  information images DeepLabv2, and traditional machine learning
learning method” extraction and the crop area methods, such as Maximum Likelihood (ML),

mapping task. SVM, and RF.
« . . . Image features are extracted through AlexNet,
A microbial image Design of . .
. . . . . L CNN, and then the classification task was
recognition method microbial Mixed microbial image . . .
. L : The microbial ~ completed through the traditional RF

71  based on image recognition model using . . [120]

. . . data set algorithm. The experiment result proves that

convolutional recognition Convolutional Neural Networks . . S o
. the mixed microbial image recognition model

neural networks model s . .
proposed in this paper is effective.

A systematic evaluation of The six classifiers that are considered in this
“Automatic different image-classification work are extremely randomized trees (ERT),
characterisation of Measuring dye  approaches considering 235 images of KNN, LR, MLP, RF, and SVM. For features

7 dye decolourisation decolourisation traditional computer vision dye are extraction DenseNet-ERT, GoogleNet- [121]
in fungal strains using of fungal features, ad hoc expert features,  decolourisation SVM, Inception-LR, Resnet-SVM, OverFeat-
expert, traditional, strains and transfer-learning features assays SVM, VGGI16-ERT, VGGI9-LR, and
and deep features” obtained from deep neural Xception-LR were used. The best model was

networks. Resnet-C-SVM with an accuracy of 96.5%.
“Classification of Identify of coir A fuzzy extension of the back-propagation
rubberized coir fibres YOLCOI An intelligent method for Central Coir algorithm was compared to decision tree-
. . fibre quality in . > L . . . .

73 Using deep learning- mattress- classification and prediction of ~ Research based classification algorithms, such as Naive [122]
based neural fuzzy manufacturing 2% materials quality using deep  Institute Bayes, C4.5, CART, ID3, fuzzy, MLP, and
decision tree com;anyu & learning Dataset showed the best accuracy of 98.75%.

approach”
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“Classification of tree Identification 3000 ground VGG16 was used form pre-training of the
species and stock of the number ~ Estimation of the growing stock  forest images ~ UGG network, to segment the trunk part of

74  volume estimation in  of trees volume with the nonlinear mixed captured by each tree in the ground forest image. Using [123]
ground forest images  contained in effect model Canon EOS the UNET network structure, the accuracy
using Deep Learning” the image. 700D camera  rate was 96.03%,

« .. Automatic detection of different- . The proposed me_thod sue ceed@d to segment

Computer vision . . Experiments 99.5% of the object regions in test dataset,
- . Rapid sized man-made and natural . . o . . .

detection of foreign . . . - consisted of a  and to classify 95% of the foreign objects in

75 . . detection of foreign  objects using two Dy . . [56]
objects in walnuts . . . . total of 781 the validation dataset. The processing time

: ., foreign objects different CNN applied to walnut . - . .
using deep learning X images needed for segmentation and detection tasks is
images .
shown to be less than 50 ms per image.
AlexNet, GoogLeNet, ResNet, and VGGNet
« . were compared for insect classification. Fine-
Deep learning-based .. . .
X o Recognition . . tuning of the pre-trained model was made by
automatic recognition f Automatic recognition of . - .
of agricultural . - . 200 machine applying transfer learning. As a result CNN
76  network of . agricultural machinery images . ’ [58]
. machinery . images architecture could learn deep features of the
agricultural . using a network called AMTNet . . d achieved £
machinery images” images insect images and achieved an accuracy o
97.47%, giving better results than handcrafted
features.
It is stated that adding conditional random
“Synthetic fields (CRF) only improved performance on
bootstrapping of Machine learning methodology 50 empirical the synthetic data. A performance was
. Image . . . . .
convolutional neural . to reduce the need for manually and 10,500 improved with the increasing size of the

77 segmentation . . . . . [124]
networks for in aericulture DT pixel level annotation of synthetic dataset. For the synthetic dataset, learning
semantic plant part & images images stabilizes around 3000 images. The
segmentation” generalization to other related datasets proved

possible.
Fast spectral A spectral clustering method to Synthetic The Proposed m}proved algorithm provides an
clustering for Hyperspectral . . datasets and efficient solution for large-scale HSI
> . improve classification of large- . . e
78  unsupervised image . Hyperspectral — classification where the traditional spectral [125]
. . . scale hyperspectral image . . o .
hyperspectral image  classification . S . images (HSI)  clustering has no capability to deal with them.
. PN without any prior information.
classification datasets
“Maize silage kernel 1393 images Boupdmg—box detection was performed with
A . Lo Region-based Fully Convolutional Network
fragment estimation Two deep learning-based containing just . .
k . . (R-FCN) and instance segmentation was
using deep learning To determine  methods adopted for kernel over 6907 ) .
. . . s . performed with Multi-task Network Cascade
79  based object the quality of  processing prediction without manually . [57]
. . (MNC). Kernel Processing Score (KPS)
recognition in non- harvested crop  stover and kernels separation annotated . . .
L calculation became to be done in minutes by
separated kernel step before capturing images. kernel . .
. " . removing the requirement of kernel/stover
/stover RGB images instances .
separation.
The software The performance of the proposed method was
“Double-DQN based A path-tracking algorithm based acquired the compared  Pure-Pursuit Control  (PPC)
path smoothing and Automatic path % Double Deep Q-Network GPSand IMU algorithm. While tracking curved paths

80 tracking control trackin p (Double DQN) for an automated data by RS232  overshoot and settling time could be reduced [126]
method for robotic & robotic vehicle in a simulated serial by Double DQN-based control at a minor cost
vehicle navigation” virtual environment. communicatio  of slightly increased rising time.

n.
“A deep learnin Dataset of The proposed model with PX448 and SGD
model tlZ) reco n%ze CNN based solution for 6900 optimizer was compared to ANN or SVM.
oght Identification  automatic identification of 15 microscopic Accuracies of ANN, SVM and proposed

81 food contaminating . . o o o, [127]

. of pests beetle species that frequently images of method are 79%, 85%, and 83.8%,
beetle species based . .

" detected in storage products elytra respectively.
on elytra fragments
fragments

“Automated vision- - . . Detection of ACPs on a sample of 90 young
based system for Detection of UtzihzaF}f)n' ()lfmalcll}lne v1sf10n Six high citrus trees was performed with precision and
monitoring Asian psyllids from and artificial mtelligence for an resolution USB ~ recall of 80% and 95%, respectively.

82 . A automated system that monitors [63]
citrus psyllid in other Lo . . cameras was

e . the Asian citrus psyllid (ACP) in
orchards utilizing insects oves used
artificial intelligence” &
“Crop pest CNN with deep architectures are AlexNet, VGGNe, ResNet and GoogLeNet
classification based . . used for automatic feature . was trained for insect classification. The
Classification . . NBAIR, Xiel, R . . o

g3 on deep of insect extraction. Method is able to Xie2 insect highest classification accuracy of 96.75%, [64]
convolutional neural species learn complex high-level dataset 97.47%, and 95.97% were achieved for
network and P features in image classification ' NBAIR, Xiel and Xie2 insect dataset
transfer learning” applications. respectively.
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The proposed method was compared to DAG-
“An effective data 4400 images CNN, and HR, Feature Pyramid Network
augmentation strategy Pest Pest recognition and localization  split into (FPN). Mean Average Precision for proposed

84 for cnn-based pest classification methods based on CNN with an  training subset method, DAG-CNN, HR, and FPN, were 6]
localization and and countin effective data augmentation and validation ~ 83.23%, 73.76%, 76.77%, 68.74%,
recognition in the g strategy subset at ratio  respectively. The experimental results show
field” of 9:1 the effectiveness of the proposed data

augmentation method.
The proposed transfer learning method was
compared to human experts and traditional
“Recognition pest b Transfer learning is used to neural network models (SIFT-HMAX and
. g P Y Reliable pest . g Less than 500  CNN). The experimental results show that the
85 image-based transfer . . . develop diagnostic system for . [65]
L identification X o images proposed method performed better than four
learning pest detection and recognition. .
human experts. It achieved an accuracy of
93.84%, which outperform SIFT-HMAX
(85.50%) and CNN (90.41%) models.
“Citrus rootstock The ranid Reduction of cost, data Correlation between UAV collected data and
evaluation utilizing ac uis?tion of collection time and facilitation Data collected the manually collected data is high. Data

86 UAV-based remote h(i,not ic of surveying procedure by by UAV collected by AI and UAV-based techniques [72]
sensing and artificial gata yp equipping small UAVs with y could be used instead of the manual methods.
intelligence” various sensors
“Differentiating Score fusion was then applied to improve the
between Differentiating Approximately performance of classifiers based on deep
morphologically between the . . 500 leaves CNN models (VGG16, Inception-V3, and

L S . Three Cinnamomum species .
similar species in three species . . - ) were sampled ~ NASNet). The fused CNN classifiers reached

87 . . were identified using leaf images o S [73]
genus Cinnamomum  on the basis of and deep CNN from 1to 3 an accuracy of 96.7%, which is higher than
(Lauraceae) using their P individuals for  accuracy of SVM classifiers (74.6%).
deep convolutional appearance each species
neural networks”

AlexNet, GoogLeNet, VGG16,
“In-field high Methods for and VGG19 were tested for An Intel VGG19 model reached accuracy of 91.52%,
throughput grapevine automated segmentation of visual images RealSense despite the poor quality of the input images.

88  phenotyping with a apevine into multiple classes and RGB-D R200  Data acquired by the Intel RealSense R200 [74]
consumer-grade ghel:x)l otypin recognition of grape bunches in  imaging was used in automatic grapevine phenotyping
depth camera” P yping images acquired by the RGBD system in the field.

Sensor.
“Hyperspectral Deen | o based i The public Deep learning basefi image segmentation for
imaging combined ) eep learning based Image CVPPP 2015  leaf and plants achieved result score of 0.94
: : The rapid segmentation for leaf and plants for plant segmentation and score of 85.4 for
with machine selection of applied RGB images extracted dataset and the P o .

89 learning as a tool to o fpp S nag image leaf segmentation. Results show th".ltA the [75]
obtain high- Sal mity- Tom imaging segmentation p_roposed approach could replace traditional
throughput plant salt- tolerant crops challenge time-consuming laboratory-based methods.
stress phenotyping” dataset.

“UAV-based high Low-cost and Deep. CNN, multispectral Detection and counting of' citrus t're.es in a
imaging, and UAVs were grove were performed with precision and

Throughput automated bined to devel hni I of o d o ivel
henotyping in citrus  high- combined to develop tec} nique ) recall o 99.9% an : 99.7%, respectlve‘y.

90 Pene . for data acquisition and image UAV images.  Estimation of canopy size was performed with [128]
utilizing multispectral throughput . o .

X . A . processing to evaluate an accuracy of 85.5% and detection of tree
imaging and artificial ~phenotyping : L . ..
intelligence” technique phenotyplc characteristics on gaps was performed with precision and recall
citrus crops. of 100% and 94.6%, respectively.
The results of thestudy show that Gaussian
“A comparative study . Mixture Models based semi-supervised
. . . . A novel semantic Data sets are . . .
of fruit detection and  Fruit detection . method is better from fruit detection and deep
. . segmentation-based approach for composed of a . R b
91  counting methods for and counting frui . . learning-based approach is better for fruit [34]
. R it detection and counting total of 2,874 . - .
yield mapping in methods usine deep learnin images counting. With combining both methods
apple orchards” & deep e g estimation accuracies achieve range 95.56%
t0 97.83%.
“Analysis of transfer Flavia, Four different transfer learning models for
learning for deep Classification ~ The automated classification of ~ Swedish Leaf,  deep neural network-based plant classification

92  neural network based  of plant plant species using Deep Neural ~ UCI Leaf, were tested on four public datasets. The study [129]
plant classification species Networks (DNNs) Plantvillage shows that automated plant identification can
models” datasets benefit from transfer learning.

“Apple detection YOLO-V3 model for apple 480 images YOLOV3-dense model the original YOLO-
during different Real-time detection during different later expanded V3 model and the Faster R-CNN. The average

93 growth stages in anple detection growth stages of apples in to 4800 images detection time of the model is 0.304 s per 35]
orchards using the app hard orchards using data frame, which means that model could be used
improved YOLO-V3 1n orehards augmentation  for real-time apple detection in orchards.
model” methods
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il detcion sk Kgion Comouoa B et i e T
ey € fora Neural Network (Mask-RCNN) 2000 Y . .
04 robot in non- strawberry was used for improving strawberry perform feature extraction. It achieved a (38]
structural . . - . precision rate of 95.78% and showed better
. harvesting performance of machine vision  images . . .
environment based on robot in fruit detection results than four traditional fruit detection
Mask-RCNN” algorithms.
Fully automatic Fully automatic segmentation Self-built The accuracy of the proposed method, having
segmentation method Identification =~ method for medicinal plant leaf  database with  a precision of 96.02%, is better than many
95  for medicinal plant of medicinal images in complex background 1600 species main fully automatic image segmentation [130]
leaf images in plants is proposed by taking vein of medicinal methods including deep learning Feature
complex background enhancement and extraction. plants Pyramid Network (FPN) architecture.
“Grapevine variety The classifiers compared were SVM and
identification using CNN. In the case of Touriga Nacional, the
“Big Data” collected 35,833 spectra SVM provided better test results than the
with miniaturized Identification  SVM and CNN were built for from leaves of CNN. For Touriga Franca it was t.he CNN that
spectrometer . . . . gave the best results having correct
96 . . of grapevine separating Touriga Nacional 626 plants . . o [131]
combined with 5 L. classification percentage 93.82%.
varieties from 63 other varieties from 64
support vector .
. varieties
machines and
convolutional neural
networks”
“Identification of The most effective of compared modes was
3 3 3 - 3 0,
haplmd and dlglold ' Automatic recognition of 1230 haploid VGG-19 with accuracy of 94.22 Aa The other
maize seeds using The selection hanloid and dinloid maize seeds  and 1770 CNN models also show promising results
97  convolutional neural  of the haploid U.Sil:;l CNN ang transfer learning  dinloid maize (AlexNet  92.67%, VGG-16  92.78%, [32]
networks and a seeds a r%ach s selz d images GoogLeNet 90.89%, ResNet-18 92.44%,
transfer learning PP € ResNet-50 90.89%, ResNet-101 91.11%.).
approach”
“Multi-modal deep KFuji RGB- After adding depth and range-corrected
learning for Fuji Fruit d . T(?e Fa;tlfr R'CNN}IH f? del }‘:V as 1 DS database of intensity channels, the model showed an
08 apple detection using n:;t ctection a aptf': or u.se vlwt léec amnel - 967 multi- improvement of 4.46% in the F1-score. When 16
RGB-D cameras and ?n at ;ﬂpultlmsagesaco or (RGB), q modal images  all channels are used F1- score and precision [36]
their radiometric ocalization . etpt (t ) an {arége—correcte containing became 0.898 and 94.8%, respectively.
capabilities” intensity signal (S). 12,839 apples
“Using Deep DCNN outperformed manual assessment of
Convolutional Neural 5 Meoa-Pixel the viability of oak seeds with an accuracy of
Network for oak Assessment of  Visual assessment of the C CD%ii ital 85%. Despite the long training procedure, the
99  acorn viability the viability of  viability of oak seeds with digital recognition task takes only 68 ms on average. [132]
.. machine vision
recognition based on  oak seeds DCNN -
. . camera images
color images of their
sections”
Identification of Improving the  Assessment of robustness of a 40 classes, Snnylatlons with 6400 training and .l 600
wheat kernels by catesorization  VGG16 deen learning tool and with 200 testing samples showed accuracy rates higher
100  fusion of RGB, g . > deep g too! . than 98%, which is higher than almost all the [133]
of wheat improving the categorization of ~ samples in .
SWIR, and VNIR state-of-the-art techniques.
. kernels. wheat kernels. each class
samples
“Deep learning for YOLOv3 and YOLOV2 were integrated to
real-time fruit b . ¢ fruit 1300 training, ~ create MangoYOLO, which was compared to
jo1 detection and orchard  Detection of il;;e(;tsl%r; ;eemngg i::l;ltwlir;h 130 validation ~ Faster R-CNN and Faster R-CNN. The [(39]
fruit load estimation:  mango fruit d gl . h'p and 300 test proposed method achieved Precision and F1
benchmarking of eep learning architectures images score of 0.983 and 0.968, respectively,
MangoYOLO” outperforming other algorithms.
“Controlled lighting The database The color-based algorithm achieved precision
and illumination- Low-cost and robust target includes 156 and recall of 95% on FNF images and 99%
independent target detection with Flash-No-Flash scenes with precision at a 69% recall for Flash-only
102 detection for real- Sweet Pepper  (FNF) controlled illumination 468 images images. Deep learning techniques achieved a [40]
time cost-efficient detection acquisition protocol containing a precision of 84% Flash-only and 83.6% for
applications. The case total of 344 FNF images.
study of sweet pepper yellow sweet
robotic harvesting” peppers.
The comparison of the DasNet and the other
state-of-the-art works in object detection and
“Fruit detection and A multi-function network for 300 images semantic segmentation was included. The
segmentation for . .. semantic segmentation of apples & DaSNet  with ResNet-101 backbone
. Real-time fruit . from the .
103 apple harvesting . and branches and real-time outperformed state-of-the-art methods in both [37]
: . . detection . . . orchards were . . . .
using visual sensor in detection by using the visual collected object detection and semantic segmentation,
orchards” sensor in orchard with an F1 score of 87.6% and 77.2% on the
segmentation of apples and branches,
respectively.
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“An improved single The improved SSD method achieved an
shot multibox o, o accuracy of 98.46% and 89.63% for

Body condition Low cost Body condition scores . . . . .

104 detector method scores evaluation method based on 8972 image classification and location, respectively. [50]
applied in body evaluation deep learnin samples Compared to original SSD and YOLO-v3, it
condition score for val p & has a smaller model size with 23.1 MB and
dairy cows” faster detection speed with 115 fps.

“Automatic The selected linear regression model had a
monitoring svstem high coefficient of determination value
for indivi fua}ll dair (0.976), and the correlation coefficient
cows based on a dZe Individual An automatic system for between manual Body condition score (BCS)
learnine framework P identification identifying individuals and and ultrasonic BCS was 0.94. The finding of

105 that pr ogvi des and BCS assessing body condition score Sensor data improved model performance for thin cows [51]
that p . . BCS) using a deep learnin, with the addition of phase congruency and
identification via assessment & P & P & Y
body parts and framework gray channels in a CNN suggests that a minor
estirsx/lstion of bod improvement in the average accuracy may be
condition score” y achievable within the absolute accuracy error

range.
“A computer vision The algorithm achieved an Fl-score of 0.97
P . . - Video for counting bees and an F1-score of 0.91 for
system to monitor the Determine the A Computer vision system for sequence with  detecting varroa mites. The results show that

106 infestation level of number of bees monitoring the infestation level 1 = ) - . [134]

. . . 1775 bees and  the traditional methods, which require the
Varroa destructor ina  and mites of the Varroa destructor mite . . 1 .
honeybee colony” 98 visual mites  killing of bees can be replaced with the
proposed computer vision system.
“Automated pi Herd dataset A modified Counting CNN model according

107 counting usi rf gdee Pie countin A deep learning solution for pig  containing to the structure of ResNeXt was used. The [135]

learnin g:, & deep & & counting problem nearly 30,000  proposed method gets a mean absolute error
g pigs of 1.67 in real-world data.

The convolutional heatmap regression model,

“Deep cascaded A robust cattle pose estimation 2134 images of convolutional pose machine model, and the

108 convolutional models  Cattle pose with deep cascaded CNN and 33 dairy cattle  stacked hourglass model were tested. The (53]
for cattle pose estimation RGB images captured under real and 30 beef stacked hourglass model outperformed other
estimation” cattle farm conditions. cattle two, reaching a 90.39% PCKh mean score at

the threshold of 0.5 for 16 joints.

The proposed method FLYOLOv3, was

compared to the YOLOV3 algorithm and
FLYQLOV3 deep Accur.ate Detection of key parts of dairy Faster R-CNN and. FLYOLOV3 outperforms
learning for key parts  detection of N 1000 cow .

109 of dairy cow bod the key parts of WS with FilterLayer based images other methods with an accuracy of 99.18%, [136]

detectIiZn Y dai gol\)vs YOLOV3 in complex scenes & the recall rate of 97.51%, the average frame
Ty rate of 21 f/s, and the average precision of

93.73%.
“Prediction of shee Prediction of ~ Deep Learning (DL), Gradient RF and MT were the first two methods
carcass traits from P intramuscular Boosting Tree (GBT), K-Nearest outperformed all other learning algorithms for

110 early-life records fat, fat depth,  Neighbour (KNN), Model Tree Sensor data all the traits and scenarios and the least [137]
usiny machine computed (MT), and RF were employed to efficient methods were LR and KNN. In this
lea mgin " tomography predict HCW, IMF, GRFAT, study, DL showed different efficiency for all

& lean meat yield LW and CTLEAN the traits and scenarios.
SBDA-DL outperformed traditional detection
A 3 million algorithms  (Haar+AdBoost, HOG+SVM)
1 1< 0, 0,
“Real-time sow A Real-Time Sow Behavior pixel infrared :g(tih agnz ng/erat%gr prg:ilsllgz of Erfrfaé)érlglirﬁi
behavior detection Detecting sow  Detection Algorithm based on network - . e .

111 . . . mounting behaviors detection, respectively. [52]
based on deep behavior Deep Learning (SBDA-DL) is camera was
learning” proposed used to collect Compared to commonly ulsedAdeep models,

1912 images the SBDA-DL can maintain the same
& category accuracy but with a much faster
detection speed.
“A Multi-Feature A novel multi-feature fusion 1000 training ~ The proposed transfer learning has better
Fusion Based on Chicken based on Deen Convolutional and 1000 classification performance (accuracy rate of
112 Transfer Learning for Embryo Eggs Neural Netwoprk (DCNN) testing samples  98.4%) and superior generalization for small- [138]
Chicken Embryo Classification architecture in a small dataset of chicken scale agricultural image samples.
Eggs Classification” embryo images
The detection accuracy was measured as 54%
0,
“Fast Pig Detection A method for fast detection of 22(31132)9 023 d 721?112)(?(; 051(91 A)me tl?ojde)ep %?12
with a Top-View The fast pigs under various illumination authors ? roposed ;n Ii)m 5 e processin —iaase d

113 Camera under detection of conditions using complementary  Sensor data method glatp Larantees agfasf execu tiogn time [139]
Various Illumination  pigs information from the depth and . & . :
Conditions” infrared images Having the same accuracy with the DeepLab

method the execution time of the proposed
method is only 8.71 ms.
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N  Article name Problem Proposed methods Source of data Results and advantages Ref
A 10 bit. 4 x 4 Similarity —maximization framework for
“Hyperspectral To reduce End-to-end demosaicking and mosaic s’ensor demosaicking outperformed standard bilinear
der?lzsai]skin and crosstalk and crosstalk-correction of a 4 x 4 is used to make interpolation or Bayer demosaicking. Increase
114 crosstalk co Ifection to increase raw mosaic image using CNN a dataset of in the number of layers and the addition of [140]
usine deen learning’ spatial based similarity maximization 2500 aerial nonlinearity, improved results to achieve a
g deep & resolution. framework . median structural similarity (SSIM) index of
images. - :
0.86 between original and upscaled images.
“An efficient Exploitation of IoT sensors and SVM, CNN, and RF were compared. CNN
employment of Efficient machine learning methods for Sensed outperformed the other classifiers with a
115 internet of management of image processing task to make Multimedia precision of 0.96. Among the models, CNN [67]
multimedia irrigation the irrigation decision Data was the slowest model. SVM, it also proved
things in smart and process to be a high performing classifier with high
future agriculture” accuracy and short training time.
“Land parcel-based RF, ANN, ordinary kriging, and cokriging
digital soil mapping Accurately and  Extraction of land parcels from Land parcel combined with the land-parcel-based DSM
of soil nutrient recise soil high-resolution remote sensin boundaries framework. The ANN model performs the
roperties 1n an . . . were extracte worst, and land parcel-base erforms the
116 properties i E trient 1mga es using CNN based ¢ d d land parcel-based RF perf he [141
alluvial-diluvia plain e ges using LI from GF-2 best in four models.
. . mapping automatic extraction model .
agricultural area in fusion data
China”
“Ref To estimat Daily DL model showed great capabilities for ETo
ererence O estimate. . . meteorological estimation and outperformed RF, GLM and
evapotranspiration evapotranspirat DL, Generalized Linear Model data 31 vears GBM models. DL model had zood accurac
estimation and ionbecauseit (GLM), RF, and Gradient- for Hos}}:ia U on  trainin ) validation gan d testiny
117 modeling of the plays a pivotal Boosting Machine (GBM) were and 38 ea?s) respectivel gt’)ecause it WZ’lS able to avoiﬁ [142]
Punjab Northern role in evaluated for the overall ability year pecuvely
India usine dee irrigation water to predict future ETo for Patiala is overfitting. Robustness of the proposed model
learnine” g deep schge dulin P : considered for was  higher than the robustness of
& g study conventional approaches.
The overall accuracy obtained using the
“Mapping irrigated . Open access NDVI in RF; classifier reached 89.5% while
11y areas using Sentinel-1 Irrigation fSiI;letg?dStAolin (asp lr&:f;fd plots Sentinel-1 (S1) that in the CNN reached 91.6%. By applying 82]
Time Series in mapping anc rtgure radar) tiyrr?e serics and Sentinel-2  the CNN approach to SAR data, the overall
Catalonia, Spain” P (S2) data accuracy of 94.1% was obtained.
An image The discriminatory capabilities of features
“Deep learning-based .\ . .\ g extracted using various deep CNN
. = Recognition of A classifier for weed recognition dataset from a . . S )
visual recognition of the Broad- was combined with transfer dairy farm architectures and their combination with
119 rumex for robotic leaved dock in  Learning techniques for dee conrt)e/linin classifiers were evaluated. Result shows that [79]
precision ung q P & the proposed method outperforms other
S, grasslands learning-based feature extraction broad-leaved o . .
farming docks recognition methods inaccuracy, but not in
) false-positive rates.
“Devel ¢ and Machi . d artificial 1000 images of Traditional broadcast sprayers usually treat
elve (_)pme;l e;n ! acn.me vision an _‘1’_ 1(;013 targets and the entire field and apply agrochemicals areas
evatuat:ion o r? ow= iinte 11gence zere utl 1zef to non-targets that do not require treatment. Al-based weed
120 cosh anl sm? Weed d_ev_e op _Srﬁl_a Sprayers Odr " labeled mapping and precision spraying systems, with %0
technology oz detection lstlrtlgulst 1rt1)g tatrgf:t er St rom manually for spraying to a specific area can significantly [80]
iti for treatment.
artificial intelligence” target/location. posmon on the
images.
VI. CONCLUSION detection”, ““crop classification”, “‘pest detection”, “weed

Using bibliographic methods, the characteristics of deep-
learning-based agriculture-relevant literature from 2016
to 2019 based on the SCI database were examined. The
study reveals that the literature on deep learning has grown
exponentially over the past 2 years. China was revealed to
be an important contributor to the deep learning literature
with the highest number of publications (40), followed by
the USA (14). The study also found that three core journals,
namely Computers and Electronics in Agriculture, Sensors
and Remote sensing published about 63% to the articles
on deep-learning-based agriculture. Disease detection, plant
classification, land cover identification, and precision live-
stock farming were found to be the key subjects with the deep-
est learning publications in the agricultural domain. The most
common agriculture-relevant keywords used were ‘“‘disease

VOLUME 8, 2020

detection”, ‘“fruit detection’, “‘unmanned aerial vehicle”,
“yield estimation”, and “‘smart agriculture”.

UAV-aided IoT networks have enormous potential for
application in agriculture. Given their high maneuverability,
high mobility, and their low maintenance cost, they were used
in studies related to almost all topics. Therefore, UAV-aided
studies were not analyzed as an independent topic and UAV
can be considered as an integral part of smart farming. With
the integration of UAVs into smart farming, equipped with
sensors and cameras, the articles tended towards artificial
intelligence applications that produce faster results working
with real-time data. In addition to datasets collected with
sensors and cameras, in deep learning studies there are also
other data sources like satellite data, open-access databases,
and synthetic datasets.
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The focus of this study was to identify where deep learning
has been used for improving various agricultural practices,
to rank the topics in order to help new researchers in this
area, and to emphasize practices that could direct future
research. This survey should motivate more researchers to
focus on deep learning topics, related to data analysis, image
analysis and computer vision, applying it for classification or
prediction in smarter farming.

APPENDIX A
The summary tables obtained as a result of analyzes made in
this article.

APPENDIX B
The list of the 120 identified relevant works and answers to
research questions. (See Table.)
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