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ABSTRACT Smart farming is a new concept that makes agriculture more efficient and effective by using
advanced information technologies. The latest advancements in connectivity, automation, and artificial
intelligence enable farmers better to monitor all procedures and apply precise treatments determined by
machines with superhuman accuracy. Farmers, data scientists and, engineers continue to work on techniques
that allow optimizing the human labor required in farming. With valuable information resources improving
day by day, smart farming turns into a learning system and becomes even smarter. Deep learning is a type
of machine learning method, using artificial neural network principles. The main feature by which deep
learning networks are distinguished from neural networks is their depth and that feature makes them capable
of discovering latent structures within unlabeled, unstructured data. Deep learning networks that do not
need human intervention while performing automatic feature extraction have a significant advantage over
previous algorithms. The focus of this study is to explore the advantages of using deep learning in agricultural
applications. This bibliography reviews the potential of using deep learning techniques in agricultural
industries. The bibliography contains 120 papers from the database of the Science Citation Index on the
subject that were published between 2016 and 2019. These studies have been retrieved from 39 scientific
journals. The papers are classified into the following categories as disease detection, plant classification,
land cover identification, precision livestock farming, pest recognition, object recognition, smart irrigation,
phenotyping, and weed detection.

INDEX TERMS Machine learning, internet of things, precision agriculture, artificial neural networks.

I. INTRODUCTION
Making agricultural activities more economically efficient
has always been one of the main objectives throughout
human agrarian history. However, this objective has not been
achieved to the desired level due to the difficulty in establish-
ing quality/cost balance. To get quality products, agricultural
production areas need to be visited frequently, thus, it may
be possible to affect all necessary precautions during crop
production. As farmers spend time and resources on each
visit, they increase the cost of the crop. Smart agriculture
has become necessary, given that farmers spend much of
their time monitoring and evaluating their crops. ‘‘Internet
of things’’ (IoT)-based technologies offer remote and precise
monitoring, making managing crops not only smart but also
cost-effective [1].

However, real-time monitoring of agricultural activities
is not enough to make agriculture smart. Smart agriculture
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should follow the cycle of observation, diagnosis, decision,
and action. In this continuously repeating cycle, data should
be collected and used quickly to make changes that optimize
the farming process. During the observation phase, data can
be obtained and recorded using sensors capturing features
from natural resources like crops, livestock, atmosphere,
soils, water, and biodiversity. During the diagnostic phase, the
sensor values are transmitted to a cloud-hosted IoT platform
based on predefined decision models that determine the state
of the object under investigation. During the decision phase,
the components based on machine learning techniques deter-
mine whether an action is required. During the action phase,
the end-user evaluates the situation and applies the action.
Then the cycle starts all over again [2].

In this century, it is not enough to have a passion for
agriculture to be a farmer. Farmers need expert knowledge in
agriculture, law, economics, accounting, and data analysis to
achieve sustainable agriculture [3]. Since in some regions the
majority of agricultural enterprises consist of family farms,
an expectation of high levels of expertise is not realistic [4].
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In the 20th century, in most regions, growers continued to
follow established farming methods, using more fertilizers
and pesticides, causing irreversible effects on the environ-
ment [1]. With consciousness-raising, it became known that
every plant should be treated by determining the need of plant,
instead of dealing with every farm and crop in the same way.
In recent years, farmers have increasingly sought the advice
of experts, which is not always affordable.With the intelligent
agricultural system consisting of IoT and machine learning
techniques, it is possible for farmers to get such advice at an
affordable price. These systems use the most advanced meth-
ods to automate crop monitoring and thus require minimum
human intervention [4].

II. DEEP LEARNING
In the early days of artificial intelligence, it was discovered
that mentally challenging problems for humans were simple
for computers as long as they could be described as a list
of mathematical and logical rules. As the field of artificial
intelligence expands and evolves, to benefit from the expe-
rience, to recognize sound and image, and to make intuitive
decisions became the focuses of research [5, p. 1]. Machine
learning, which is a sub-branch of artificial intelligence, uses
a self-learning approach to derive meaning from presented
data. Instead of manually creating rules by analyzing large
amounts of data, machine learning gradually improves pre-
diction performance by capturing information in the data.
This approach provides a more effective solution that can
make evidence-based decisions [6, p. 2]. Machine learning,
to extract meaningful relationships from data, uses learning
rules such as supervised learning, unsupervised learning,
reinforced learning, and hybrid learning [7].

Deep learning is a type of machine learning that uses
artificial neural network principles. Deep networks are dis-
tinguished from neural networks by their depth. Before the
big-data age, most machine learning techniques have been
used in shallow architecture. These architectures generally
consist of up to one or two layers containing nonlinear trans-
formations. Shallow architectures are effective in solving
well-structured problems, but they are inadequate for more
complex real-world data applications such as images, human
speech, natural voice, and language. With deep learning, it
became possible to process these data [8, p. 205].

Single-layer artificial neural networks, which have been
used as shallow architecture since the 1940s, lack the ability
to process such data. Deeper architectures were needed to
process more complex data. After the successful training of
complex neural networks in the 1980s, it became possible
to use neural networks effectively. This paved the way for
designing more complex and deeper architectures. Since the
application of neural networks has increased, it has gone
through many changes. Currently, neural networks that use
deep learning are of great interest [9, p. 165].

As its name suggests, artificial neural networks are compu-
tational networks that imitate the networks of nerve cells in
the central nervous system [10, p. 1]. Simple processing units

FIGURE 1. A schematic representation of an artificial neuron [81].

called artificial neurons, which communicate with each other,
form an artificial neural network [11, p. 15]. The artificial
neuron, after receiving binary or floating-point input from
one or more sources, multiplies and aggregates with weights.
The resulting total is transferred to the activation function
to be transmitted to the output. Figure 1 shows a schematic
representation of an artificial neuron [9, p. 31].

The data obtained from the output layer of one artificial
unit can feed the input layer of the other artificial unit. The
inputs are represented like x1, x2, x3, ...xn as mathematical
expressions [12]. The weights show how strongly the incom-
ing data are transmitted to the output via the inputs. Themath-
ematical expression of weights is shown asw1,w2,w3, . . .wn
[13, p. 8]. The sum function produces net input by correlat-
ing each input value with the weights. The most commonly
used addition function is the sum of each incoming input
multiplied by its own weight. The mathematical form of the
addition function is defined as [14]:

NetInput =

∑
wixi = w1x1+w2x2 + . . . + wixi (1)

The activation function sets limits for the output of the
artificial nerve unit. Linear, threshold, sigmoid, hyperbolic,
tangent, and softmax functions are the most commonly used
activation functions. The selection of the activation function
affects the data transmitted to the output [9, p. 48].

In feed-forward networks, the output is a value deter-
mined by the activation function, sent to another cell or
outside world. In feedback networks, feedback is made
by transmitting the output value to the input at the same
time [12].

Assuming that in the learning process of the neural net-
work, the desired output of the network is y and the net-
work produces output ŷ, the difference between the pre-
dicted output and the desired output is ŷ-y. The difference
value is converted to a metric known as the loss function
(J) [15]. When the neural network makes too many errors,
the loss is high, and when it makes fewer errors, it becomes
low. The purpose of the training process is to determine
the weight that minimizes the loss function in the training
set [15]. During the training process, having a sufficient
amount of data is important for the success of the network.
With the development of the Internet, it has become easy
to provide the amount of data required for training artificial
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neural networks. Large amounts of data provide an oppor-
tunity of developing many approaches to improve the learn-
ing performance of artificial neural networks. One of these
approaches is the deep learning approach. An artificial neural
network with more than one hidden layer is defined as a
deep network and the learning style it exhibits is called deep
learning [8, p. 206].

However, experimental studies have shown that it is more
difficult to train deep architectures than shallow architec-
tures. For example, as the architecture deepens the ‘‘local
minimum’’ or ‘‘vanishing gradient’’ problem becomes more
evident. Besides, as the architecture deepens, the training
period takes more time. To overcome such problems in deep
architectures, new solutions have been proposed in the liter-
ature [16, p. 34].

A rectified linear unit (ReLU) that produces particu-
larly useful experimental results despite its simple structure
became widely adopted with deep learning. The ReLU acti-
vation function is defined as f (x) = max(0, x). It gives zero
for negative values and increases linearly for positive values
[17, p. 68]. This activation function brings the predictions
closer to the desired output more quickly. ReLU the acti-
vation function is considered an advantageous function in
deep networks because it is relatively easy to calculate and
does not suffer from the vanishing gradient problem due to
its shape [15]. However, the ReLU activation function also
has some disadvantages, later leaky ReLU, softplus, PReLU,
ELU, swish activation functions were developed to overcome
these disadvantages.

In deep networks to reduce training time and not to
be trapped in a local minimum, several optimization tech-
niques were developed [5]. Commonly used optimization
algorithms in deep learning are the gradient descent algo-
rithm and its faster version the gradient descent algorithm
with momentum. Efforts to improve these algorithms led
to the development of algorithms such as Nesterov acceler-
ated gradient, Adadelta, AdaMax, Adam, Nadam, Adagrad,
AMSGrad, RMSprop [18].

The challenges mentioned above are just a part of the
work that should be done when deeper networks are used.
Model selection is always a major challenge in deep net-
works because the model should be selected in such a way
that it fits sufficiently. Inadequate compliance or overfit-
ting of the model’s data structure significantly influences
predictions. To prevent problems such as inadequate learn-
ing and overfitting of the network, a trade-off between bias
and variance is required [19, p. 102]. To solve the problem
of over-fitting, more data can be collected to change the
model. If data collection is not possible, the existing training
set can be enhanced by data augmentation techniques [20].
In addition to data enhancement, terminating training early
also solves overfitting problems. By looking at the perfor-
mance of the validation set, the training should be stopped
as soon as a decline occurs. To reduce the overfitting of the
network it is also possible to apply regulation or dropout
methods [21, p. 25].

III. METHOD
The bibliographic analysis in the domain based on databases
of the Science Citation Index (SCI) included full-text papers
published in peer-reviewed journals. A keyword-based search
for these papers was done by using search terms, ‘‘deep learn-
ing’’, and ‘‘agriculture or farming’’. Through that query, 133
papers were obtained. Articles containing keywords ‘‘deep
learning’’ but not related to the agricultural area have been
eliminated. As a result of this search, 133 articles were iden-
tified, initially. Some articles were excluded due to the lack
of meaningful findings and the initial number of papers was
reduced to 130. Then review papers were excluded from the
scope of the study, and the final number of papers was 120.

After collection of related work, a detailed review, and
analysis of this work were undertaken. Considering the fol-
lowing research questions, the 120 papers selected were ana-
lyzed individually:

Q1: What are the topics, where deep learning is imple-
mented in the agriculture domain?

Q2: What are the problems they addressed?
Q3: What approaches were employed to solve the prob-

lems?
Q4: What are sources of data used?
Q5: What is the benefit of deep learning relative to other

solutions?

IV. RESULTS
In the Appendices, a list of the 120 reviewed works is given,
indicating the research domain, problem the research address,
proposed methods for the solution, and sources of data used.
The summary tables obtained from analyzes are given in
Appendix A.

The highest number of deep-learning-based agriculture-
relevant papers on the database of the SCI appeared in 2019
(76) and there were no papers before 2016. The time trend
analysis given in Table 1, displays the eight most productive
countries. With its rapidly growing publications in 2019,
China was a leader throughout the period. Similarly, the
growth rate of publications in the USA was much faster than
the other six predominant countries. As shown in Table 1, the
distribution of the topics focused in all countries is almost
equal, expect papers by Chinese authors that concentrate on
topics such as disease detection (6), land cover identification
(6), object recognition (6), pest recognition (5), plant classi-
fication (4), and precision livestock farming (8). As shown in
Table 2, those topics appear to be the most common topics.
Therefore, it seems that China determines the trend of deep-
learning-based agriculturally-relevant studies.

The full list of those topics obtained from the analy-
sis of 120 articles for the deep-learning-based agriculture
domain is given in Table 2. Disease detection and plant
classification are the most common topics, with 19 records,
followed by land cover identification with 18 records, and
precision livestock farming with 13 records.

Table 3was created to obtain information about the number
of authors per article. Of the 120 papers, 48 (40%) were
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written by teams consisting of up to three authors whereas the
remaining 72 (60%) were written by teams consisting of four
or more authors. Algorithms created for deep learning study
are complex and obtaining suitable data is also a laborious
process, so it is natural that articles were written with the
contribution of large teams. One hundred and thirteen papers
(94%) were written by teams consisting of up to six authors.
Notably, four articles of the remaining seven are written by
Chinese authors. Especially the article written with a team of
14 authors is noteworthy.

A total of 39 journals published papers in this area during
2016-2019. The distribution of the 120 papers across these
journals is given in Table 4 and shows that more than 63% of
the deep-learning-based agriculture-relevant articles appear
in the three journals.
Computers and Electronics in Agriculture is the journal

with the most relevant articles (55), followed by Sensors
with 11 articles, and Remote sensing with 10 articles. Deep
learning appears to still be a slow-developing topic in some
important journals in agriculture, such as Plant Methods
and Journal of the Science of Food and Agriculture, which
published only two relevant articles each. There are some
other journals (not listed in Table 3) that published articles
in a related domain. Those were Oriental Insects, Journal
of Arid Land, Genetics Selection Evolution, International
Journal of Agricultural and Biological Engineering, Acta
Agriculture Scandinavica, American Dairy Science Associa-
tion, Acta Microscopica, Animals, Journal of Dairy Science,
Field Crops Research, The Plant Journal, and Precision Agri-
culture.

The distribution of 662 of keywords used in 120 articles
is shown in Table 5. ‘‘Deep learning’’ is the most common
keyword, with 68 uses, followed by ‘‘convolutional neural
network’’ with 51 uses and ‘‘image processing’’ with 23 uses.
The remainder of the list contains keywords related to area of
use, such as ‘‘disease detection’’, ‘‘crop classification’’, ‘‘pest
detection’’, ‘‘weed detection’’, ‘‘fruit detection’’, ‘‘unmanned
aerial vehicle’’, ‘‘yield estimation’’, and ‘‘smart agriculture’’.

Since the majority of articles shown in Table 5 were pub-
lished in journals with computer science perspective, there
are also keywords related to techniques, such as ‘‘com-
puter vision’’, ‘‘deep neural network’’, ‘‘machine learning’’,
‘‘transfer learning’’, ‘‘hyperspectral imaging’’, and ‘‘artificial
intelligence’’.

Detailed information about how deep learning was applied
to the most common domains is given in subtopics below, as
well as in Appendix B.

A. DISEASE DETECTION
Plant diseases are among the important production losses
in agriculture. It is critical to monitor the condition of the
products and to control the spread of diseases. The preven-
tion methods of plant diseases as well as disease diagnosis
methods differ from plant to plant. The plant-specific disease
detection methods are reported in the literature. Lu et al. [22]
proposed a wheat disease diagnosis method that functions

automatically in fields. Fuentes et al. [23] proposed a deep-
learning-based detector for recognition diseases and pests
in tomato plants. Kerkech et al. [24] proposed deep lean-
ing approaches for vine diseases detection using vegetation
indices and colorimetric spaces, applied to images collected
by UAV. Hu et al. [25] proposed a low shot learning method
for disease identification in tea leaves. Coulibaly et al. [26]
proposed an approach for the identification of mildew disease
in pearl millet, which is using transfer learning with feature
extraction. Cruz et al. [27] proposed an artificial intelligence-
based approach for detecting grapevine yellows symp-
toms. Deep convolutional neural network-based approach
for crop disease classification on wheat images proposed by
Picon et al. [28]. It was validated under real field conditions
by deploying on a smartphone. These and other studies focus-
ing on disease detection are given in Appendix B have made
useful contributions to the prevention of plant diseases.

B. PLANT CLASSIFICATION
Harvesting is laborious and time-consuming task in fruit pro-
duction, with harvestingmostly donemanually, so new devel-
opments are directed towards automated harvesting robots.
Since automation techniques cannot be generalized across
crops, researchers focused on developing crop-specific sys-
tems. Grinblat et al. [29] proposed plant identification based
on vein morphology. Rahnemoonfar and Sheppard [30] pro-
posed automatic yield estimation based on robotic agriculture
for tomato plants.

Veeramani et al. [31] and Altuntaş et al [32] applied deep
convolutional networks (CNN) for sorting haploid maize
seeds. Knoll et al. [33] proposed a self-learning CNN, to
distinguish individual classes of plants using the visual sensor
data in real-time. Häni et al. [34], Tian et al. [35], Gené-
Mola et al. [36], and Kang and Chen [37] proposed detection
and counting methods for apples in orchards. Yu et al. [38]
proposed fruit detection for a strawberry harvesting robot.
Koirala et al. [39] compared the performance of six deep
learning architectures. Detection of mango fruit has been
achieved using images of tree canopies [39]. Arad et al. [40]
present the case study of robotic harvesting for sweet pep-
per. Further studies on plant classification are given in
Appendix B.

C. LAND COVER IDENTIFICATION
Land cover and crop type maps have emerged as an
area where deep learning could be used efficiently. Multi-
source satellite images are often used to capture specific
plant growth stages. Several studies used deep learning for
land productivity assessment and land cover classification.
Kussul et al. [41] present a workflow for developing sus-
tainable goals indicators assessment using high-resolution
satellite data. Persello et al. [42] combined a full CNN
with globalization and grouping to detect field boundaries.
Zhou et al. [43] presented a deep learning-based classifier
that learns time-series features of crops and classifies parcels
of land. Using these parcels, a final classification map was
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produced. Zhao et al. [44] proposed a method for rice map-
ping which combined a decision tree method and a CNN
model.

Satellite data is not the only source of data for land
cover classification. With development IoT-based technolo-
gies, unmanned aerial vehicles (UAV) have become an effec-
tive tool for crop monitoring. Yang et al. [45] present a
deep CNN for rice grain yield estimation. This method using
remotely sensed images collected by UAV is able to make
estimations at the ripening stage. Dyson et al. [46] integrated
a radiometric index with terrain height images for segmenting
crops and trees over the soil. High-resolution images col-
lected by UAVs were used in the study. Nevavuori et al. [47]
applied CNNs to crop yield prediction using RGB and NDVI
data collected by UAVs. More studies on land cover identifi-
cation are given in Appendix B.

D. PRECISION LIVESTOCK FARMING
As a part of precision farming, managing the livestock is also
one of the current challenges for agriculture and is considered
as a special topic, precision livestock farming techniques.
These techniques include monitoring of animal health indi-
cators, such as the comfort of animal, pose estimation, and
behavior detection, as well as other production indicators.
Gorczyca et al. [48] used machine-learning algorithms for
predicting skin, core, and hair-coat temperatures of piglets.
Kvam and Kongsro [49] proposed a method for estimating
the IMF on ultrasound images. A noninvasive in vivomethod,
constructed using deep CNNs, by (Huang et al. [50] and
Yukun et al. [51] provided a low-cost method based on
machine vision and deep learning for evaluation of body
condition scores. Zhang et al. [52] proposed a real-time
sow behavior detection algorithm based on deep learning.
Li et al. [53] proposed deep cascaded convolutional models
for estimating cattle pose. A full list of studies focused on
precision livestock farming is given in Appendix B.

E. OBJECT RECOGNITION
Providing automation of processes in precision farming, the
detection of anomalies that may occur in the system is a
specific area of study. Anomaly detection can be defined
as detecting unexpected items or unusual behavior in data
sets, which differ from the normal situation. According to the
notions in the field of agriculture, elements that are not natural
for the environment are known as anomalies. An algorithm
combining anomaly detection and deep learning proposed by
Christiansen et al. [54] performed anomaly detection with
the exploitation of the homogenous characteristics of a field.
Ma et al. [55] proposed an unsupervised deep hyperspectral
anomaly detector. Rong et al. [56] proposed two different
CNN structures for automatic segmentation and detection of
foreign objects of different sizes that can be either natural or
man-made. The proposed structures were applied to walnut
images. Rasmussen and Moeslund [57] trained CNN models
for kernel fragment recognition in RGB images of silage.

Intelligent management and the automation of agricultural
machinery is now a realistic option, with an increase in
the level of agricultural mechanization. However, agricul-
tural machinery recognition differs from plant recognition
in the data acquisition methods used. For capturing agricul-
tural machinery images vehicle terminal camera is used, so
the images need preprocessing. Zhang et al. [58] designed
and trained AMTNet network to automatically recognize
agricultural machinery images that produced acceptable
results.

F. PEST RECOGNITION
Although some insects are economically beneficial, some
species can severely damage to agricultural production
and products. These destructive insects, known as agri-
cultural pests, need to be correctly identified and treated
according to their species to minimize the damage they
cause. Pest recognition is not just objected recognition;
it is a more complex task that should be treated in a
special way. Cheng et al. [59] performed pest identifica-
tion via deep residual learning in a complex background.
Ding and Taylor [60] and Zhu et al. [61] used deep
learning techniques for the classification of moth images.
Shen et al. [62] applied a deep neural network for the detec-
tion and identification of stored-grain insects. Partel et al. [63]
utilized artificial intelligence to develop an automated vision-
based system that can be used for monitoring pests, such
as the Asian citrus psyllid. Thenmozhi and Reddy [64] and
Dawei et al. [65] proposed techniques for the recognition of
pests by image-based transfer learning. Li et al. [66] proposed
an effective data augmentation strategy for CNN-based pest
recognition and localization in the field.

G. SMART IRRIGATION
Due to the continuing decline of water resources available
to the world, efficient use of water is an important con-
cern for all countries. Many studies have been conducted to
efficiently manage the irrigation process in agriculture and
this has become a specific research area known as smart
irrigation. For efficient management of the irrigation pro-
cess, it is important to detect the water status of plants.
AlZu’bi et al. [67] proposed image processing concepts,
where IoT sensors work with machine learning methods to
make smart irrigation decisions. Song et al. [68] proposed
a novel model combining deep belief network with macro-
scopic cellular automata (MCA) approach to predict the soil
moisture content over an irrigated cornfield. Sirsat et al. [69]
used almost all available regression methods to predict four
key soil nutrients and fertility indices for soil organic carbon.
Zambrano et al. [70] predicted the reduction of drought-
related agricultural productivity in Chile using rainfall esti-
mates, and climate oscillation indices.

H. PHENOTYPING
Phenotype is a set of observable features that result from the
interaction of an individual genotype with the environment.
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Plant phenotyping, which can be defined as the identification
and quantification of effects on the phenotype, is labori-
ous and time-consuming because it is typically a manual
task. Therefore, phenotyping of large populations in plant
breeding programs have high costs. An automation of phe-
notyping tasks can bring great benefit to plant improvement.
Uzal et al. [71] proposed a deep-learning-based computer
vision method that estimates the number of seeds into soy-
bean pods. Ampatzidis et al. [72] used small UAVs equipped
with sensors for the rapid acquisition of phenotypic data.
This method simplified the surveying procedure, decreased
data collection time, and reduced the cost of phenotyp-
ing. Yang et al. [73] used deep CNNs and leaf images
for the identification of the three Cinnamomum species.
Milella et al. [74] proposed methods for automated grapevine
phenotyping. Feng et al. [75] combined machine learning
with hyperspectral imaging to develop a tool for salt-stress
phenotyping.

I. WEED DETECTION
Weeds are undesirable plants that grow in agricultural crops
and cause yield losses because they compete for the resources
needed by the crop. Smartweed detection makes it possi-
ble to apply herbicide treatments specifically to detected
weeds. Santos Ferreira et al. [76] used CNN to perform
weed detection in soybean crop images and classify them as
grass and broadleaf weeds.Moshia andNewete [77] proposed
a deep learning neural network, for automatic identifica-
tion of weeds from the main crop using row-guided robots.
Bah et al. [78] proposed a learning method using CNN for
weed detection from images collected by UAV that auto-
matically performed unsupervised training dataset collection.
Kounalakis et al. [79] combined classifier for weed recogni-
tion with transfer learning techniques for deep learning-based
feature extraction. Partel et al. [80] designed and developed a
smart sprayer usingmachine vision and artificial intelligence.
This smart sprayer distinguishes target weeds from crop and
precisely sprays the targeted weed.

V. DISCUSSION
In agriculture manual activities, such as yield monitor-
ing, fruit counting, phenotyping, pest recognition and dis-
ease detection, are slow, labor-intensive, expensive, and
error-prone, reducing real-time performance and increasing
costs [60]. Considerable work has been done on automating
these activities in recent years. This review of the relevant
articles highlights that success has been achieved in many
studies, especially with the use of deep learning approaches.
When applying deep learning the user does not need to be
an expert at detecting disease or having other specific knowl-
edge [27]. The system does not need preprocessing of images,
so this makes it more advantageous than the current standard
techniques.

As a result of analyzing 120 articles, the topics of the
studies were observed to change over time. Earlier stud-
ies compared manual, current methods, and deep learning

TABLE 1. The most productive countries during 2016 – 2019.

TABLE 2. The most productive subjects during 2016 - 2019.

techniques. The result of these studies showed that by
applying deep learning approaches it is possible to obtain
high order features or more accurate results [29], [30], [59],
[76], [82]–[87]. However, there are some studies showing that
the current methods are better than deep learning or give the
same result, concluding that there is no value in applying
complex structures [23], [31], [88], [90], [91]. Sometimes
simple models that are formulated by carefully selecting the
best estimators and then by examining a specific situation
they give better results than complex models [70]. However,
it is not always possible to have the necessary knowledge to
examine specific situations. In these cases, the generalizing
ability of deep learning architecture provides an advantage.
Also, for the data that is too small to capture, the associated
characteristics and variations, deep learning approaches are
not meaningful [90].

It should be also noted that the data collection process,
which is the basic condition for success in deep learning
models, can also be time-consuming and laborious. As a
technology that aims to address this issue, UAV-aided IoT
networks have enormous potential in agriculture practices
[24], [45]–[47], [78], [110], [128]. This approach reduces
the technical workforce, is more cost-effective and consistent
than the manual methods based on the expertise of existing
staff [72]. Given that high maneuverability, high mobility,
and low maintenance cost, UAVs were used in studies related
to almost all topics. In addition to being an effective tool,
UAVs can contribute to the change from current practices
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TABLE 3. Number of authors per article for the most productive countries.

TABLE 4. The most productive journals during 2016 - 2019.

to practices that protect the environment. Standard broadcast
sprayers integrated with UAVs, treating the entire area, result-
ing in unnecessary application to areas that do not require
treatment. With the AI-based UAVs, a fast and precise treat-
ment can be applied to specific areas, which can significantly
reduce the amount of agrochemicals used [80]. Therefore,
UAV-aided studies were not analyzed as an independent topic,
and UAV can be considered as an integral part of smart
farming.

Although UAVs are a key technological advance, they have
some difficulties in their use in agriculture. Given their high
power consumption during their flight, the flight time of
UAV is quite limited [84]. It is known that it takes much
longer than the normal flight time to train a deep neu-
ral network system even on a very fast central processing
unit. Therefore, UAVs have to be equipped with a graphics
processing unit to speed up training, which brings extra
costs [77].

This kind of tradeoff between accuracy and
computational cost could be addressed in technologies
supporting AI in agriculture. So when there are some

TABLE 5. The 20 most popular keywords in 120 articles.

limitations and speed constraints, the more important
metrics should be taken into account and compared to
help to choose the right method [79]. However, there
are studies that improve the accuracy of detection and
speed of processing to make these suitable for real-time
applications [50], [52], [103].

Employment of Big Data for smart agriculture is a
completely new concept [114]. Although Big Data appli-
cations in smart agriculture are not that common, they
are meant for cloud computing and IoT-based smart agri-
culture application [67]. Systems that support reasoning
from real-time sensor data have the potential to deliver
digital data sources for online services, operations, farm-
ers, and processes by integrating a large number of data
sources [131]. Having the opportunity of direct access to
infrastructures that support advanced data discovery and
image processing services, researchers, farmers, or compa-
nies involved in smart farming could obtain value from these
data.
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VI. CONCLUSION
Using bibliographic methods, the characteristics of deep-
learning-based agriculture-relevant literature from 2016
to 2019 based on the SCI database were examined. The
study reveals that the literature on deep learning has grown
exponentially over the past 2 years. China was revealed to
be an important contributor to the deep learning literature
with the highest number of publications (40), followed by
the USA (14). The study also found that three core journals,
namely Computers and Electronics in Agriculture, Sensors
and Remote sensing published about 63% to the articles
on deep-learning-based agriculture. Disease detection, plant
classification, land cover identification, and precision live-
stock farmingwere found to be the key subjects with the deep-
est learning publications in the agricultural domain. The most
common agriculture-relevant keywords used were ‘‘disease

detection’’, ‘‘crop classification’’, ‘‘pest detection’’, ‘‘weed
detection’’, ‘‘fruit detection’’, ‘‘unmanned aerial vehicle’’,
‘‘yield estimation’’, and ‘‘smart agriculture’’.

UAV-aided IoT networks have enormous potential for
application in agriculture. Given their high maneuverability,
high mobility, and their lowmaintenance cost, they were used
in studies related to almost all topics. Therefore, UAV-aided
studies were not analyzed as an independent topic and UAV
can be considered as an integral part of smart farming. With
the integration of UAVs into smart farming, equipped with
sensors and cameras, the articles tended towards artificial
intelligence applications that produce faster results working
with real-time data. In addition to datasets collected with
sensors and cameras, in deep learning studies there are also
other data sources like satellite data, open-access databases,
and synthetic datasets.
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The focus of this study was to identify where deep learning
has been used for improving various agricultural practices,
to rank the topics in order to help new researchers in this
area, and to emphasize practices that could direct future
research. This survey should motivate more researchers to
focus on deep learning topics, related to data analysis, image
analysis and computer vision, applying it for classification or
prediction in smarter farming.

APPENDIX A
The summary tables obtained as a result of analyzes made in
this article.

APPENDIX B
The list of the 120 identified relevant works and answers to
research questions. (See Table.)
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