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ABSTRACT The intelligent diagnosis of wheel flat based on vibration image classification is a promising
research subject for performance maintenance of railway vehicles. However, the image representation
method of vibration signal and classification network construction under small samples have become two
obstacles to intelligent diagnosis of wheel flat. This paper presents a novel frequency-domain Gramian angu-
lar field (FDGAF) algorithm to encode the vibration signal of wheel flat to featured images. Furthermore,
a modified transfer learning network is introduced to classify these featured images under small samples
without any involvement of prior knowledge. The proposed FDGAF can calculate the Gramian angular
matrix of axle box acceleration signal in frequency domain and assign frequency position dependence to
the featured images to preserve original characteristic information. Then, these featured images can be
intelligent classified by a transfer learning network under the condition of 30 sample without require of
prior knowledge. To verify the efficiency of this proposed method, 12 cases of artificial wheel flats are
processed on a scaled railway test rig, and their axle box acceleration signals are collected to obtain visual
diagnosis results. The verfication proves that FDGAF is able to obtain accurate diagnostic results with high
separability, for separability indexes of FDGAF reaches 10.8, 8.7, 14.9, and 5.8. We anticipate that this
method will find use in the performance maintenance of railway vehicles and the improvement of industrial
condition monitoring.

INDEX TERMS Intelligent transportation system, fault diagnosis, railway safety, wheels, frequency domain
analysis, knowledge transfer.

I. INTRODUCTION
Railway vehicles are efficient due to their large capacities
and high speeds. However, these advantages result in many
wheel surface defects, especially wheel flats with certain
numbers and sizes [1]–[3]. Wheel flat can increase contact
force instantaneously andmake severe noise [4]–[8]. Besides,
rail crack propagation failure and wheel polygonization exac-
erbation can also be generated by the wheel flat [9]–[10].
These problems brought by wheel flat make it urgent to
study intelligent diagnosis method. The current monitoring
methods for railway wheel flat are to measure the length of
flat on static vehicles, for example, the length limit of wheel
flat in Europe is 60, and 40mm in China [11]. However, these
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measurements require high labor costs and comprehensive
prior knowledge, which significantly reduces the intelligence
of wheel flatmonitoring. For better performancemaintenance
of the railway wheel, it is necessary to study the diagnosis
method for wheel flat and increase its intelligence as much as
possible.

The first thing for wheel flat diagnosis is to select a
type of signal that can represent characterized wheel flat
information. Some indirect approaches were studied based
on strain, sound, electricity, and vibration [8]–[14]. Among
them, vibration acquired from the axle box is the most widely
used signal because of its convenient installation, insensitiv-
ity to vehicle speed, and low-latency acquisition [15], [16].
Generally, this kind of signal is abbreviated as ABA
(axle box acceleration) [17]. After the vibration transmis-
sion, the ABA can be treated as a discrete-time series with
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a lot of uncertainty [18]. There are some methods have
been proposed based on ABA signals. For example, Yue and
Chen [19] proposed a method for analyzing wheel vibra-
tion signals, which were carried out based on continuous
wavelet transform. Skarlatos et al. [20] established a fuzzy
logic method to classify healthy and damaged train wheels.
Gibert et al. [21] proposed an intelligent detection method
for rail fasteners using a deep convolutional neural network.
Wang et al. [22] utilized torsional vibration to diagnose
wheel flat. Yunguang et al. [23] constructed a data-driven
method for estimating wheel condition. However, most of
these existing methods for wheel flat diagnosis need certain
prior knowledge to process the ABA signal, which brings
extra labor cost for wheel flat diagnosis. Recently, Krum-
menacher [24] proposed a method called GAF, which can
encode features of time series generated by wheel flat as
images. However, this method is not suitable for ABA signals
because of the sequence position dependence of time series.
Based on the feature encoding ability of GAF and the fre-
quency characteristics of wheel flat vibration, we proposed
a novel frequency-domain Gramian angular field (FDGAF)
algorithm to encode wheel flat vibration features as image.
Also, a transfer learning network is introduced to realize the
intelligent diagnosis for different types of railway wheel flat
under four different vehicle velocities.

The main contributions of this paper are list below:
(1). To represent wheel falt vibration as images, we pro-

posed a novel FDGAF algorithm. In the frequency domain,
this algorithm can convert the ABA signal of wheel flat
to a featured image by avoiding time independence of raw
vibration. Based on the calculation of the Gramian matrix of
frequency amplitude in polar coordinate, the feature informa-
tion of wheel flat can be preserved, and the angular field of
these frequency features can be represented as 2-D images for
specific feature learning in a transfer learning network.

(2). To realize the intelligent classification of FDGAF
images under small sample conditions, we introduced a mod-
ified transfer learning network to complete the task. The
FDGAF images are utilized for the training of the fully con-
nected layer, the softmax layer, and the classification layer of
this network, while the ImageNet is introducted to pre-train
the generic features. With this modified transfer learning
network, FDGAF images with sample groups as small as 30
can also be used for intelligent classification.

(3). To verify the effectiveness of the proposed algorithm,
we processed 3 types of artificial wheel flat on a scaled test rig
and collected their ABA signals under four different veloc-
ities. After the signal processing by the proposed FDGAF,
we obtained visual diagnostic results with clear boundaries
under different velocity levels.

II. FREQUENCY FEATURE ANALYSIS OF WHEEL FLAT
A. WHEEL FLAT FORCE ANALYSIS DURING THE IMPACT
Wheel flat is a localized region of missing material caused
by frequent braking and severe thermal stress on the wheel
tread. It can cause fluctuations in the wheel-rail contact force

FIGURE 1. Actual shape of typical wheel flat.

FIGURE 2. Contact model during the impact.

and vehicle vibration. Generally, the shape of an actual wheel
flat can be summarized as elliptical pits, as shown in Fig. 1.

Based on the typical shape of the wheel flat shown in Fig.1,
we use a standard wheel-rail contact model to analyze the
fluctuation of the contact force. It is believed that the contact
force only exists on the rolling circle of the wheelset, so the
simplified model shown in Fig.2 can be used to analyze the
contact status during the impact of wheel flat.

Based on the contact model in Fig.2, the impact force
generated by the wheel flat can be divided into three phases:
Tstart ,Tmiddle and Tend . In these three different phases, the
contact force can be described as follows:

Fwheel

=


M1g+M2g− Fcontact t ≤ Tstart
M1g+M2g Tstart < t ≤ Tmiddle
M1g+M2g− Fcontact − Fimpact Tmiddle < t ≤ Tend
M1g+M2g− Fcontact Tend < t

(1)

where M1 is the sprung mass, M2 is the unsprung mass,
Fcontact is the supportive force caused by elastic deformation
of rail, and Fimpact is the transient impact force when a wheel
flat hit the rail which can reach several times Fcontact during
the impact [24].

It can be seen from Equation (1) that the contact force
Fwheel changes nonlinearly with the change of contact phases.
At the same time, with the rolling of wheelset, its correspond-
ing contact force also shows periodicity related to the velocity
Vvehicle. Therefore, the ABA signal generated by contact force
fluctuation also has particular nonlinearity and periodicity
related to wheel flat rotation frequency. It is necessary to
analyze the ABA signals in time domain and frequency
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FIGURE 3. The waveform of wheel flat signals in the time domain and
frequency domain.

domain to obtain a better understanding of the wheel flat
feature.

B. COMPARISON OF FEATURE ANALYSIS IN TIME
DOMAIN AND FREQUENCY DOMAIN
The ABA signal of wheel flat in field operation is complex
because the existence of track irregularities, bogie system
damping, and loading variations. To represent the character-
istics of wheel flat vibration as real as possible, we collected
ABA signals from a scaled wheel flat test rig and drew their
waveforms both in time domain and frequency domain. Their
waveforms were shown in Fig. 3. The velocity of wheel
is 40 Km/h, the rotating frequency of wheel axle is 20.47Hz,
and the acquisition time is 0.2 seconds.

From Fig.3, we can know that it is difficult to tell the
difference between these three types of wheel flat in time
domain because they have no significant feature difference.
However, there are some distinct feature differences between
the waveforms of three falt types in frequency domain, such
as different concentrated frequency clusters, which appear
at 250 to 350 Hz, 400 to 450 Hz, and 5 to 30 Hz. The highest
peaks under three fault conditions are 269Hz, 291Hz, and
287Hz, respectively. It is noticed that in the case of double
flats and triple flats, there is a severe frequency modulation
near the highest frequency peak. Some features like frequency
amplitudes, peak positions, and sparseness of frequency fam-
ilies that can represent wheel flat conditions show apparent
differences in the frequency domain. Take the amplitude of
the highest frequency peak as an example, it reaches 0.2g
in the condition of single flat, while that value is 0.12g for
double flats and 0.11g for triple flats. This phenomenon
indicates that features in frequency domain can represent
wheel defect type more vividly than the features in time
domain.

III. FREQUENCY-DOMAIN GRAMIAN ANGULAR FIELD
AND TRANSFER LEARNING NETWORK
A. TRADITIONAL IMAGE ENCODING FOR TIME SERIES
With the wheel flat features analyzed in time domain and
frequency domain, it is crucial to encode the ABA signals
as images with features information preserved. The Gramian
angular field (GAF) method can encode time series as an

image [24]. Given a time series S = {x1, x2, · · · , xN } of N
points, we rescale S to S̃ withmin-max normalization tomake
sure that the values of s̃ fall in the interval [−1 1]. Then in the
polar coordinates, the inverse cosine of s̃(i) can be selected as
the angle value, and the timestamp of xi in S̃ can be treated
as the radius value to conduct a polar transformation. Such a
process can be described as:

S̃(x, y)
∣∣∣
x=ti,y=s̃(i)

polar transform
−−−−−−−−→ P(r, ϕ)|

r=ti/N ,ϕ=arccos(s̃(i))
(2)

where ti is the time stamp of xi, and P(r, ϕ) is the repre-
sentation in polar coordinates. After obtaining P(r, ϕ), the
triangular sum between each point can be calculated and the
time correlation in different time intervals can be identified.
The corresponding GAF can be defined as follows:

GAF = S̃T × S̃ −
√
I − S̃2

T

×

√
I − S̃2

=


cos(ϕ1 + ϕ1) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1)
· · ·

· · ·

· · ·

cos(ϕ2 + ϕn)
· · ·

cos(ϕn + ϕ1) · · · cos(ϕn + ϕn)

 (3)

where I is the unit vector. By defining the inner product
< a, b >= a · b −

√
1− a2 ·

√
1− b2, the GAF can be

represented as a Gramian matrix. Then the representative
feature map can be obtained when we use the value of this
matrix as the pixel in an image.

Traditional GAF has two properties:
(1). For a time series, the GAF matrix produces only one

bijective result in the polar coordinates because of the cosine
mapping.

(2). Different from encoding mapping in Cartesian coordi-
nates, the value of GAF is not only dependent on time stamp
interval, but also influenced by absolute sequence position.

The property (1) means that the corresponding values
will warp among different angular positions, so the dynamic
change of amplitude in time series can be represented. How-
ever, when the GAF is utilized for periodic vibration signal
processing, the image encoding results will be interfered with
by the absolute starting point of the signal sample because
of the property (2). For ABA signal of wheel flat vibration,
this means the harmonics of sampling frequency/shaft-rate
frequency, and it will bring intervention of prior knowledge
and less intelligence in the fault diagnosis process. To solve
this problem, we need to find a way to avoid this dependence
on prior knowledge.

B. NOVEL FREQUENCY-DOMAIN GRAMIAN ANGULAR
FIELD
Based on the analysis of wheel flat feature in frequency
domain and description of GAF, we proposed a novel
frequency-domain Gramian angular field method (FDGAF).
To represent the wheel flat features with a discrete sequence,
we transfer the original ABA signal from time domain to
frequency domain using discrete Fourier transform.
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Given a wheel flat vibration signal Swf = {s1, s1, · · · , sN },
where N is the sampling point. Its frequency-domain
sequence Swf (k) = {swf (1), swf (2), · · · , swf (k)} can be
described as

Swf (k) =
N−1∑
i=0

Swf (n)e−j
2π
N ki (4)

where k = 0, 1, · · · ,N − 1.
Then we convert the non-dimensional discrete sequence

Swf (k) to the angular field. First, it should be rescaled to the
interval [-1 1] to satisfy the amplitude principle of a cosine
function. The min-max normalization is described as follow:

s̃wf (k) = 2
swf (k)−min(Swf (k))

max(Swf (k))−min(Swf (k))
− 1 (5)

This normalized frequency sequence can be encoded in
polar coordinates below:r̃ =

k
N
, k = 0, 1, · · · ,N − 1

ϕ̃ = arccos(s̃wf (k)), ϕ ∈ [−11]
(6)

Therefore, the frequency-domain Gramian angular field
can be constructed as follow:

FDGAF=


cos(ϕ̂1 + ϕ̂1) · · · cos(ϕ̂1 + ϕ̂k )
cos(ϕ̂2 + ϕ̂1)

...

· · ·

. . .

cos(ϕ̂2 + ϕ̂k )
...

cos(ϕ̂k + ϕ̂1) · · · cos(ϕ̂k + ϕ̂k )

 (7)

There are three advantages to encode wheel flat vibration
with FDGAF:

(1). The FDGAF uses frequency amplitude as angle value
and frequency position as radius value to construct a matrix
field. With this encoding process, the frequency features of
wheel flat can be preserved graphically.

(2). The main diagonal of FDGAF contains the original
wheel flat frequency information, which can be approxi-
mately reconstructed from high-level features learned by
transfer learning.

(3). With image encoded in the frequency domain, the
series position dependence in GAF can be avoided, and the
intervention of fault-related prior knowledge can be elimi-
nated by FDGAF.

To illustrate how the proposed FDGAF works for periodic
signals, we constructed a modulated signal as an example:

S1 = 0.7 sin(2π ∗ 50t)+ sin(2π ∗ 20t), t ∈ [0,
2
3
T ]

S2 = 0.7 sin(2π ∗ 50t̃)+ sin(2π ∗ 20t̃), t̃ ∈ [
1
3
T ,T ]

(8)

where T = 1s.
Based on Equation (2) to Equation (7), we performed GAF

and FDGAF methods on S1 and S2 respectively, as shown
in Fig.4. From Fig.4, we can know that these two periodic
signals contain similar vibration information because they are
segments with different starting points in one same signal

FIGURE 4. Comparison between GAF and FDGAF.

(S1 start form 0s and S2 start from T
/
3). However, GAF of

S1 and S2 represented completely diverse image information,
whereas the FDGAF of S1 and S2 represented similar featured
image information.

C. THE TRANSFER LEARNING NETWORK FOR FDGAF
IMAGES
After the image encoding by FDGAF, classification of these
images becomes a critical issue in the intelligent wheel flat
diagnosis. Deep convolution neural network (DCNN) has
become a powerful tool for vibration-based fault diagnosis
because of its reliable intelligence and powerful generaliza-
tion [25]. Typical DCNN consists of an input layer, several
hidden layers, and an output layer [26], [27]. The standard
form of the input layer is an image. The hidden layer often
contains a convolution layer, a pooling layer, an activation
layer, and a fully connected layer to extract high dimensional
features. The output layer is often used to predict probability.

For an input sample X , mostly a matrix of the input image,
the convolution layer can extract some specific features. The
m-th feature map of the l-th layer before the activation has the
feature value vlm,, this convolution can be described as follow:

vlm = wlm ∗ X + b
l
m (9)

where wlm means the weight of m-th convolutional kernel of
the l-th layer, blm is the bias and ∗ means the convolutional
operator.

After the activation function been involved, a large number
of feature maps can be obtained through the convolution
shown in Equation (9), then the pooling layer is used to reduce
parameters of the deep network. The pooling process can be
described as:

yl+1m = p(β l+1D(zlm)+ b
l+1) (10)

where p(·) means the activation function, D(·) is the down-
sampling function, and β l+1 denotes its corresponding
weight.

The DCNN requires a large number of image samples
to train the entire classification network at multiple levels.
With a large number of samples, the classification results of
DCNN can reach a high classification accuracy and strong
robustness. However, in the actual diagnosis of wheel flat,
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FIGURE 5. Structure of the transfer learning network for FDGAF images.

the number of fault samples is usually small, which can
not provide enough dimensions and input samples to sup-
port the retraining of the whole DCNN network. Therefore,
an intelligent network that can maintain high accuracy and
classification robustness under the condition of small samples
is needed to realize the intelligent diagnosis based on the
FDGAF image. Research shows that in the image classi-
fication task, the convolution layer and pooling layers are
supposed to learn generic features, like image edge, color, and
image texture [28]. The specific feature learning that deter-
mines the classification characteristics is mainly trained in
the fully connected layers, the softmax layers, and the output
layers. For the FDGAF images of wheel flat, we use a transfer
learning network to perform intelligent diagnosis.We utilized
a typical structure of traditional CNN to construct our transfer
learning network [29], [30]. The generic features of the top
five convolutional and pooling layers were pre-trained by
ImageNet [31], and the specific features related to wheel flat
were learned by FDGAF samples. And then, we use a fully
connected layer to get an intelligent classification result.With
such a fine-tuning of transfer learning network parameters,
we can realize the transfer learning from generic ImageNet
to specific FDGAF images. Through such a transfer pro-
cess, the generic features of the convolutional layers and
the pooling layers that are the majority of the classification
network can be maintained, and the FDGAF samples can
only be used to retrain the last three layers, which account
for a relatively small proportion of the network. Therefore,
the proposed method can efficiently realize intelligent fault
diagnosis under small samples while the high classification
accuracy remained. The structure of the transfer learning
network used for FDGAF images is shown in Fig.5.

D. INTELLIGENT DIAGNOSIS FOR WHEEL FLAT BASED ON
FDGAF AND TRANSFER LEARNING NETWORK
With the FDGAF used to encode wheel flat features into
images and the transfer learning network introduced to
classify images intelligently, we constructed an intelligent

method for wheel flat diagnosis. For each image encoded by
FDGAF, the transfer learning network can obtain its corre-
sponding attribution probability for the wheel flat type. The
classification result with the most considerable attribution
probability is taken as the attribution of the input image,
which is

CaseFDGAF(i)=max[p(FDGAF(i)) ∈ (Case1, · · · ,CaseM )]

(11)

where M is the number of wheel flat types, FDGAF(i)
denotes the i-th FDGAF encoding image.

To further illustrate the classification result of the proposed
method, we use t-distributed stochastic neighbor embedding
(t-SNE) to visualize the classification [32]. The flow chart
of the intelligent diagnosis method based on FDGAF and
transfer learning network is described in Fig. 6.

IV. TEST VERIFICATION
To verify the proposed method in this paper, we used a scaled
test rig for simulation of railway wheel flat. This test rig is
mainly composed of one suspension system, one drive motor,
four axle boxes, two wheelsets, and one circular rail. It is
manufactured at a scale ratio of 1:5 relative to a field railway
vehicle. The radius of the wheel’s rolling circle is 86.42 mm,
and the velocity could be adjusted from 0 km/h to 120 km/h.

A. DESCRIPTION OF TEST
Based on the actual wheel flat length shown in Fig. 1, we pro-
cessed artificial wheel flats with sizes of 10 mm × 8 mm
on the test rig in equal proportions. As shown in Fig. 7,
we machined three types of wheel flats with a high-speed
grinder. Type 1 is a single wheel flat, Type 2 was double
wheel flats with the flats separated by 90◦, and Type 3 was
triple wheel flats with the flats separated by 45◦. To verify the
applicability of this intelligent method at different velocities,
we set the vehicle velocities to 20Km/h, 40Km/h, 60Km/h,
and 80Km/h. The specific conditions of the test were shown
in TABLE 1.
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FIGURE 6. Flow of wheel flat intelligent diagnosis based on FDGAF.

FIGURE 7. Scaled test rig of wheel flat.

B. DESCRIPTION OF TEST
To collect the ABA signals, we mounted an accelerometer
on the axle box vertically. The sampling frequency was set
to 20KHz to obtain reliable vibration details. The test rig is
shown in Fig. 7.

C. VERIFICATION UNDER DIFFERENT CASES
The verification can be divided into three steps:

(1). Signal acquisition and segmentation
The ABA signals of three different wheel flat were

collected and segmented. Each signal is divided into
30 segments.

(2). The FDGAF encoding of segmented samples
Taking one sample in Case1 as an example, the image

encoding process using FDGAF is shown in Fig. 8.
The time-domain waveform of the first sample in Case1

is shown in Fig. 8(a), and its frequency-domain waveform
is drawn in Fig. 8(b). To obtain the wheel flat vibration
features in frequency-domain, we convert the waveform from

FIGURE 8. (a) Time-domain waveform. (b) Frequency-domain waveform.
(c) Transform in polar coordinates. (d) Encoded image of FDGAF.

TABLE 1. Detailed condition of the test.

Cartesian coordinates to polar coordinates, as shown in
Fig. 8(c). With the polar representation, the encoded image
of FDGAF shown in Fig. 8(d) can be obtained.

(3). Perform intelligent diagnosis of wheel flat
After obtaining the FDGAF images for all the cases,

the transfer learning network can be applied to diagnose
the wheel flat intelligently. All FDGAF image samples are
divided into four groups according to their velocity level,
and each group contains three different types of wheel flats.
To fully utilize the intelligent training and verification ability
of the transfer learning network, 70% of the FDGAF samples
were used for training and 30% for testing. We froze the top
five convolutional layers and pooling layers to preserve the
generic features of the network pre-trained by ImageNet, and
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FIGURE 9. Intelligent diagnosis of wheel flats based on FDGAF.

FIGURE 10. Intelligent diagnosis of wheel flats based on GAF.

train the last three fully connected layers and softmax layers
with FDGAF images to learn specific features that related to
wheel flat characteristics. Then an output layer is constructed
to obtain the probability of each sample belonging to the
wheel flat type.

To illustrate the superiority of the proposed FDGAF,
we conducted the intelligent classification process based on
FDGAF, and obtained its visual diagnosis result. Its diagnosis
results are shown in Fig. 9.

As shown in Fig. 9, for FDGAF-based diagnosis, the
classification results at four different velocities have distinct
classification boundaries. Moreover, the cluster for single
flat, double flats, and triple flats are centralized within the
classes and scattered among the classes, which means that
the diagnosis based on FDGAF can realize outstanding clas-
sification.

In contrast, we also conducted the intelligent classification
based on traditional GAF, typical time-frequency representa-
tion method STFT, and typical time-frequency representation
methodWVD. In order to keep the consistency of the method
in the aspect of no prior knowledge, we choose the classical
parameter setting of STFT and WVD, which may lead to
some small differences in the results. The results of these
three typical method are shown in Fig.10 to Fig.12.

FIGURE 11. Intelligent diagnosis of wheel flats based on STFT.

FIGURE 12. Intelligent diagnosis of wheel flats based on WVD.

As can be seen from Fig.10 to Fig.12, all classification
results at four velocities are not separable, there are a many
points existed in wrong classification, and their classification
boundary are instinct. The poor performancd of thse three
methods were probably caused by the time dependence of
GAF, the time-frequency resolution conflict of STFT, and the
serious cross term of WVD.

For a more accurate quantitative evaluation of the clas-
sification result, we calculated the Euclidean class distance
between FDGAF clusters, GAF clusters, STFT clusters, and
WVD clusters under four velocities. The calculation results
are shown in Table 2.

Comparison of the numbers in Table 2 indicates that
there are apparent disparities between intra-class distance and
inter-class distance for FDGAF under all four velocities, the
former ones are generally 5 to 10 times higher than the latter
ones, which means that FDGAF can classify the samples with
same attributes correctly and distinguish the samples with dif-
ferent attributes effectively. In contrast, the multiple numbers
between intra-class distance and inter-class distance for GAF,
STFT, and WVD vary from 1.8 to 5.8, which are relatively
small compared with the numbers for FDGAF. This result
shows that FDGAF can obtain classification clusters with
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TABLE 2. Class distance between clusters.

FIGURE 13. Comparison of separability between FDGAF and GAF.

clear boundaries, while other image representation method
lack this kind of classification ability.

To further illustrate the superiority of proposed FDGAF,
we define the separability index as inter-class distance
divided by intra-class distance and draw the separability
indexes of FDGAF, GAF, STFT, and WVD at four velocities
in Fig.13.

It can be seen from Fig.13 that the diagnostic separabil-
ity indexes of FDGAF are all higher than the separability
indexes of other methods. In the case of 20Km/h, 40Km/h,
and 60Km/h, the indexes of FDGAF are more than two times
higher than the other indexes, which can fully demonstrate the
superiority of the intelligent diagnosis method using FDGAF.

V. CONCLUSION
In this paper, we presented an intelligent wheel flat diag-
nosis method using FDGAF and transfer learning network.
Moreover, we proved its superiority with vibration signals
from a scaled test rig for railway wheel flat. Through the
comparison of wheel flat vibration in time-domain and

frequency-domain, we concluded that the wheel flat features
are mainly represented in frequency domain. By mapping
the vibration signals into frequency domain, we proposed
the FDGAF method, which can construct a Gramian field
in polar coordinates for the frequency-domain signals, thus
discarding the wheel flat-related prior knowledge in the pro-
cess of vibration signal image encoding. Then, a transfer
learning network is used to realize the intelligent diagnosis
of FDGAF images. In this network, the generic features of
the top five layers are pre-trained by the ImageNet, and
FDGAF learns the specific features of the last three layers.
We verified the effectiveness of the proposed method for
the wheel flat signals obtained on a scaled test rig under
twelve cases and obtained four intelligent diagnosis results
with distinct classifications. We calculated the classification
separability indexes based on Euclidean class distance, and
the results indicated that the separate indexes of FDGAF are
much higher than GAF, STFT, and WVD.

This method is developed for different types of wheel flats
under different constant velocities. In practical wheel flat
diagnosis, the condition of the rail, including track irregular-
ities and track joints, should be considered as a factor that
may affect the classification performance. Future work will
include an analysis of the influence of track irregularities
and track joint impacts, an examination of the stabilization
of wheel flat vibration signals under variable velocities, and
field experiments for further verification of the method.
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