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ABSTRACT Over the past 20 years, integrated decision making for production systems has gained the
interest of researchers and practitioners. Many studies have shown that integrated decision making can lead
to substantial amount of savings. Yet, a few research work has been conducted on the areas of integrated
maintenance, production and quality in dynamic environments. This paper provides an integrated multi-
period, maintenance, production and quality-inspection scheduling model, which is formulated as a Markov
decision process. The model minimizes the total expected maintenance, production and quality inspection
costs. The structural properties of the proposed model are mathematically investigated and with using
sensitivity analysis, practical insights are also provided. We mathematically provide conditions to guarantee
that the optimal inspection policy is monotone non-decreasing in the state of the machine. Furthermore,
we show that the optimal production policy decreases by one unit as the state of inventory increases by
one unit. Sensitivity analysis demonstrates that the production parameters affect both, maintenance and
inspection decisions. In addition, the maintenance parameters affect inspection decisions. Finally, it is found
that among the inspection parameters (i.e., cost-of-inspection and inspection-errors), type-II error mainly
affects maintenance decisions.

INDEX TERMS Decision making under uncertainty, integrated production, maintenance and quality,
inspection errors, Markov decision process.

I. INTRODUCTION
In today’s highly competitive business environment, driven
by globalization and advances in production technology,
companies adapt by increasing the efficiency of their pro-
duction systems. Integrated decision making is one of the
key tools to achieve production efficiency [1]. Advanced
production systems are complex and accordingly they are
usually modelled as multi-state ones [2], [3]. This paper
addresses amulti-state production system, and aims at finding
the optimalmaintenance, production and inspection decisions
in a dynamic environment.

Consider a multi-state deteriorating machine that produces
items with imperfect quality to satisfy a random demand,
the machine’s deterioration will be assumed to follow a
discrete-time Markov chain. Also, the quality of produced
items will be dependent on the state of the machine; the worse
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the state of the machine the more likely it is to produce items
with defects. Different maintenance actions are assumed to
be available to the decision maker prior to a production run.
Maintenance actions can range from doing nothing, to over-
hauling or replacing the machine [2]. Maintenance, followed
by production, and quality inspection decisions are assumed
to be taken at discrete points in time. The objective of the
decision maker is to determine the optimal combination of
maintenance, production and inspection policies, to minimize
their corresponding total costs over a finite planning horizon.
The main scientific contribution here is the development of
an integrated Markov decision process (MDP) model, which
addresses the maintenance, production and inspection for
multi-state systems. The structural properties of the proposed
model are investigated mathematically and using sensitivity
analysis.

The remainder of this paper is organized as follows;
Section II summarizes previous research works that are of
relevance to the problem at hand. Model assumptions and
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notations are given in Section III and the developed MDP
model is presented in Section IV. In Section V, the structural
properties of the proposed model are provided, along with
illustrative examples in Section VI. Finally, the conclusions
and future research work are provided in Section VII.

II. LITERATURE REVIEW
The operations management literature spans a plethora of
topics, which include integration of one ormore of the follow-
ing decision areas: scheduling, maintenance, production, and
quality control. For more details on these topics, the reader
may consult the following survey papers [4]–[6].

This section discusses two streams of research that are
highly relevant to the work at hand, namely I) multi-state
machine maintenance models and II) works that investigate
dynamic economic lot-sizing in a multi-state setting, both
using MDP.

A. MULTI-STATE MACHINE MAINTENANCE MODELS
Maintenance is usually performed correctively and
preventively to maximize the availability of production
systems, [7]–[9]. Over the past few decades, the growth
of maintenance practices has been related to the growth of
technology [10], which in turn, leads to increased complexity
of industrial systems. Complex industrial systems are usually
represented as multi-state systems [2], [3].

One of the earliest multi-state machine maintenance
models is the one by Derman [11]. Assuming that multiple
states of a machine represent different levels of the machine
deterioration and the deterioration process is modeled as a
discrete time Markov chain, the authors proved that the opti-
mal replacement policy is control limit policy in one of the
machine states. Later, Kolesar [12] included state occupancy
cost and obtained similar control limit policy. Based on the
observability of the considered system, MDP maintenance
models are classified into three main categories, namely:
I) partially observable (POMDP), in this type the decision
maker receives noise-corrupted information about the system
state II) non-observable, this type is a POMDP with just one
‘null’ observation and III) fully observable, in this type the
decision maker knows true state of the system at the differ-
ent stages of the planning horizon [13], [14]. Yet, the fully
observable systems can be considered as a special case of
the partially observable systems given that each state of the
system has a unique signal.

One of the earliest POMDP models is the one by
Ross [15]. Ross proved that the profit-maximizing objective
is piecewise-linear concave function, assuming three possible
maintenance actions (i.e., do nothing, inspect, and replace).
Later on, many scholars extended Ross’s model and inves-
tigated the existence of threshold-type structured optimal
maintenance polices, which involved different assumptions
on the parameters of the problem. For instance, White [16]
reported that the optimal maintenance policy is an at most
four-region policy (AM4R)-over the state space of the
system −sorted by the first order stochastic dominance.

Maillart [14] addressed the case of a system with obvious
failures and consequently obtained an AM4R policy.

POMDP models are defined over multi-dimensional belief
spaces. Therefore, the corresponding optimal policies are
characterized over partially ordered belief spaces. The base
of this research direction was established by the pioneer
research work of White [13], [16]–[18]. Some authors made
extensions to White’s work by using other partial orders,
such as the monotone likelihood ration [19] and the marginal
monotonicity partial orders [2].

Recently, Papakonstantinou et al. [20] demonstrated the
possibility of using MDP to compute optimal inspection and
maintenance policies based on uncertain data in real time.
Their research work addressed a non-stationary, 332-state,
infinite horizon POMDP model.

B. MULTI-STATE ECONOMIC LOT-SIZING MODELS
One of the earliest dynamic optimal lot-sizing models was
presented in White [21]. It addressed optimal lot sizing of
items with imperfect quality and deterministic demand. This
was later extended to consider: price fluctuations with deter-
ministic demand [22], Markovian price fluctuations with ran-
dom demand [23], time-inhomogeneous random prices with
deterministic demand [24] and pricing decisions [25].

Parlar [26] addressed perishable items that expire after
two time periods. In this case, one time-period old items
were sold at less price. This work was based on stochas-
tic analysis of demand, two classes of customers and the
determination of the optimal number of new items to be
processed/ordered in each time period. Haijema et al. [27]
extended Parlar’s model [26] to a larger state space
(i.e., longer self-life with different item categories). Further,
they used MDP to determine the optimal production amount
of blood platelets. Recently, Haijema [28] optimized order-
ing, issuing and disposal policies of perishable goods, this
was dependent on the usage policy (i.e., last in first out and
first in first out).

Some authors studied different classes of customers or
products. For instance, Wu et al. [29] presented a multi-item
dynamic lot-sizing problem with downward substitution,
the authors assumed that different items represented different
quality grades. The objective was to find an optimal pol-
icy for selling quality-graded inventory. Iravani et al. [30]
extended Wu et al. [29] by accounting for economic produc-
tion decision and lost sales. Benjafar and Elhafsi’s work [31]
addressed the problem of one supplier and two customers
to determine the joint optimal production and allocation
policies.

C. INTEGRATED MODELS
So far, the presented literature showed that production lot-
sizing, maintenance and inspection have infrequently been
studied within the context of multi-state dynamic systems.
In this section we provide a brief review of some recent inte-
grated multi-state systems and highlights the contributions of
our work.
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The work by Abboud [32] was focused on multi-state
maintenance and inventory system with fixed production and
demand rates. Their objective was to estimate the overall
system cost.

Recently, some researchers proposed MDP and other
dynamic decisionmakingmodels. Xiang et al. [33] developed
anMDP production and maintenance model, and showed that
the optimal production and the maintenance policies have a
control limit structure. Bajestani et al. [34] considered joint
determination of the optimal maintenance and production
policies for a multi-period, multi-machine system. They for-
mulated a multi-period model and developed sufficient con-
ditions to guarantee monotonicity of the maintenance plan,
this was based on assuming deterministic demand andMarko-
vian deterioration. Recent applications included inspection
and maintenance scheduling in infrastructural systems using
POMDP [35], the provision of managerial insights about
complex production systems using MDP [36] and Reinforce-
ment learning, which also involves MDP [37].

Many researchers considered static multi-state deteriorat-
ing production systems. Recent research included multi-state
machine maintenance and production planning with imper-
fect repairs using mixed integer linear programming [38],
joint production and maintenance planning under quality
constraints using non-linear programming [39], Integrated
production maintenance and quality using integer nonlinear
programming [40] and recently, production scheduling using
stochastic mixed integer programming [41].

The most relevant researches to ours are the ones by Ivy
and Pollock [2], Xiang et al. [33] and Kuo [1]. The work by
Kuo [1] neither addressed production lot-sizing nor the possi-
bility of multiple maintenance actions and multiple machine
states (Kuo assumed that if production was performed,
M units would be produced by a two-state machine).
Ivy and Pollock [2] considered multi-state machine with mul-
tiple maintenance actions, they did not address production
lot-sizing. In this research work, we focus on a multi-state
machine, with multiple maintenance actions as in [2]; how-
ever, we further extend this by accounting for production
lot-sizing and inspection. In contrast to the work by [1]
and [2], we address the case of fully observed system.
It is worth mentioning that Xiang et al. [33] did not con-
sider inspection and assumed no production setup cost [42].
In addition, they assumed only two maintenance actions,
namely; do nothing and replace.

Our work contributes to the literature through providing a
novel integrated stochastic dynamic, maintenance, lot-sizing
and inspection model using MDP. Furthermore, The model
addresses the cases of imperfect repairs and inspection errors.
The structural properties of the model are investigated math-
ematically and using sensitivity analysis. Technical and prac-
tical insights on the model performance are provided as well.

III. MODEL ASSUMPTIONS AND NOTATIONS
This section presents the main assumptions and notations that
are used to develop our proposed model.

A. MODEL ASSUMPTIONS
• The system under consideration consists of a machine
and inventory of finished items that are produced by the
machine.

• The system state variables are: the state of the machine
and the state of inventory; both may change at discrete
points of time.

• The machine has multiple operating states that represent
different levels of deterioration.

• The machine deterioration is modeled as a discrete time
Markov chain [2], [3].

• The more deteriorated the system, the more likely it is
to deteriorate further and/or fail [14], [16].

• The state of inventory represents the number of units in
stock.

• Customers’ demand is IID, time-homogeneous ran-
dom variable following a known probability mass
function [43].

• A decision maker observes the system state at the begin-
ning of each time period, then a maintenance action can
be taken followed by production and quality inspection
actions for that period.

• Maintenance actions improve the state of the machine
prior to production.

• Production may lead to machine deterioration [3].
• The effect of maintenance actions is assumed to be inde-
pendent of the current state, and maintenance actions are
assumed to be deterministic. [2], [44].

• Quality inspection actions are error-free [1].
• At each time period, the costs incurred by the system
depend on the system state, the action(s) taken by the
decision maker, and the customers’ demand [45].

• Backorders are not allowed [43].
• As in [1] and for simplicity, we do not keep track of
defective units; they are either repaired after inspection
or shipped to the market with a penalty.

• The objective function is to minimize the overall
expected system maintenance, production and inspec-
tion costs, over a finite planning horizon.

B. NOTATIONS
The main notations used in this paper are given in Table 1.

IV. MODEL FORMULATION
This section starts by providing a basic MDP model for
the problem at hand. Then, we derive an extended ver-
sion of the model by relaxing the assumptions of error
free inspection and deterministic effect of maintenance
(Subsection IV-F). For simplicity of presentation, we will
refer to these models by I) the basic model and II) the
extended model.

An MDP model consists of system states, action
space, transition probabilities between system states, and
reward/cost criteria that depend on system state and the
actions taken [45]. The definitions of these elements are
provided successively as follows:

VOLUME 8, 2020 105647



M. M. Aldurgam: Dynamic Maintenance, Production and Inspection Policies

TABLE 1. Notations.

A. PLANNING HORIZON
We assume a finite planning horizon composed of T time
periods. A decision maker takes decisions at time
periods t = 1, 2, . . . ,T . At each time period, the deci-
sion maker performs machine maintenance by selecting a
maintenance action, at , and decides on the optimal pro-
duction quantity and sample size for quality inspection
(i.e., bt and kt , respectively). These actions are taken after
observing the system state, which is defined next.

B. SYSTEM STATE AT TIME t
At the beginning of time period t , the system state consists
of the level of on-hand inventory, it ∈ {0, . . . , imax}, and
the machine state, jt ∈ {0, . . . , jmax}, which represents the
deterioration level of the machine. As examples: jt = 0
represents a new machine; whereas jt = jmax represents
a failed machine (i.e. nonfunctional machine, or a machine
that produces 100% defectives). Given the system state at
time t , St = (it , jt ), the decision maker takes maintenance,
production and quality inspection actions during (t, t + 1).

C. ACTION SPACE DURING TIME PERIOD t
At the beginning of time period t , the decision maker selects
a maintenance action, followed by a production and quality
inspection actions, which are described next.

a) Maintenance actions
al : the action of improving the machine state by l
states [2], l ∈ {0, 1, . . . , jmax}. For instance, if the
machine is in state jt , al brings the machine back, instan-
taneously, to state max {0, jt − l}; whereas, a0 is the do
nothing action, which keeps the current machine state
unchanged. For simplicity of notation, we refer to al
taken at time t by at .

b) Production actions
bu: the action of producing a batch of u units, bu ∈
{0, 1, . . . , imax − it }, where it is the on hand inventory of
finished items (it 6 imax), and imax is themaximum level
of inventory; due to space constraint. This also helps
keep a finite state and action spaces in our model.

c) Quality inspection actions
kt : the action of inspecting the quality of kt produced
items. kt ∈ {0, 1, . . . , bt }. For simplicity of notation,
we refer to the action of not inspecting any item by k0.

Having the ‘‘do nothing’’ actions (i.e., a0, b0, and k0) in
our model, means that the model will not only determine
the optimal maintenance, production and inspection actions,
rather, it will also determine the time between them [2].
As example, if b∗t > 0 at t = 3, followed by b0 at t = 4
and b∗t > 0 at t = 5, then, from t = 3, the time between
producing is two time units, and so on. The same thing applies
to a∗t and k

∗
t .

D. TRANSITION PROBABILITIES BETWEEN THE SYSTEM
STATES
Given a system state (it , jt ) at time t , the conditional state
transition probability depends on (it , jt ), the action(s) taken
and the customers’ demand (X ), which is assumed to be
an IID discrete random variable. To visit the next system
state (it+1, jt+1) from (it , jt ), the system goes through an
intermediate state (it , j′t ); this is due to the maintenance action
taking place prior to the production action.

Given a system state (it , jt ) at time t , a maintenance action
is first taken. This alters the state of the machine from the
initial state, jt , to jt ′. Production and inspection actions follow
the maintenance action and lead to transition in the state of
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TABLE 2. List of events taking place in a typical time period t .

inventory to it+bt , and possible deterioration of the machine
(probabilistic failure due to operating the machine). Thus,
j′t becomes jt+1 and remains there until t+1. Finally, a random
demand, X = x, takes place, which is satisfied from available
inventory. Table 2, summarizes the event list in a given time
period t , where t ′, t ′′ and t ′′′ > 0, and t ′ + t ′′ + t ′′′ < 1.
Assuming that it and jt are independent; the transi-

tion probability to (it+1, jt+1); given the current system
state,(it , jt ), the actions taken, (at , bt , and kt ) and the demand,
xt , is expressed as follows

P(St+1|St , at , bt , kt , xt ) = P(it+1, jt+1|it , jt , at , bt , xt )

= P(it+1|it , bt , x)× P(jt+1|jt , at , bt )

Assuming IID and time-homogeneous demand,X ∼ fX (x),
we have

P(it+1|it , bt , x) =


p(X = x) = f (x) if it+1 =

max {it + bt − x, 0}

0 otherwise
(1)

And, since the deterioration of the machine is Markovian,
we have

P(jt+1|jt , at = al, bt ) = P(jt+1|j′t , bt )× P(j
′
t |jt , at = al),

such that

P(j′t |jt , at = al) =

{
1 if j′t = max {jt − l, 0}

0 otherwise
(2)

Depending on bt , P(jt+1|j′t , bt ) has two expressions: The
state of the machine may deteriorate due to production

P(jt+1|j′t , bt 6= b0) =

{
P(jt+1|j′t ) if jt+1 > j′t
0 otherwise

(3)

Or, remains the same in the case of no production

P(jt+1|j′t , bt = b0) =

{
1 if jt+1 = j′t
0 otherwise

(4)

Please note that the probabilities P(jt+1|j′t ) are assumed to
be Markovian.

Having the state and action spaces of the problem, the cost
criteria is defined next.

E. COST CRITERIA
Depending on the system state (it , jt ) at the start of t ,
the actions taken during t , and the demand and state transi-
tions taking place (as demonstrated by Table 2), the system
incurs the following random cost:

R(St , at = al, bt = bu, kt , xt )

= cal + cb + cubu + cqkt
+(crkt + cd (bu−kt ))p(y|jt , al)+ ch[it + bu − xt ]+

+cπ [xt − it − bu]+ ∀ at , bt , kt , t, xt (5)

The first two terms of equation 5, cal + cbu , account for
the fixed costs of performing maintenance action al and
production action bu. The terms cubu + cqkt represent vari-
able production and inspection costs. We assume error-free
inspection and define p(y|jt , at ) = p(y|j′t ) as the probability
of producing a defective unit when the machine is in the
intermediate state j′t (Recall from Table 2 that the machine is
in state j′t prior to production). The term (crkt + cd (bt−kt ))×
p(y|jt , al), represents the cost to repair the units with defects
found in inspection (crktp(y|jt , al)), plus the cost of the defec-
tive units delivered to the market (cd (bt−kt )p(y|jt , al)). The
term, ch[it + bu − xt ]+ accounts for the holding cost of the
units left unsold at the end of the time period t . In contrast,
the last term, cπ [xt − it −bu]+, accounts for penalty incurred
when the demand exceeds the sum of the inventory at the
beginning of period t and the quantity produced during t . For
simplicity, and without loss of generality, it is assumed that
R(St , at , bt , kt , xt ) = 0 at t = T . Due to the assumed random
demand, the quantity R(St , at , bt , kt , xt ) is random variable
and the expected value of R(St , at , bt , kt , xt ) is given by

E(R) =
∑
x

R(St , at , bt , kt , x)× f (x) (6)

1) VALUE FUNCTION
For multiple time periods over a finite planning horizon (T ),
the expected total system costs can be expressed as

V (it , jt , at , bt , kt )

=

∑
x

R(it , jt , at , bt , kt , x)× f (x)

+

∑
jt+1

∑
it+1

V ∗(it+1, jt+1)p(it+1|it )p(jt+1|jt , at , bt )

=

∑
x

R(it , jt , at , bt , kt , x)× f (x)

+

∑
jt+1

∑
x

V ∗(max {it+bt−x, 0} ,jt+1)f (x)p(jt+1|jt ,at ,bt )

(7)

where

V ∗(it , jt ) = min
at ,bt ,kt

V (it , jt , at , bt , kt ) ∀t (8)

Furthermore, the state transition probability, p(it+1|it , bt )
is given by Equation 1, and p(jt+1|jt , at , bt ) is given by

p(jt+1|jt , at , bt ) = p(j′t |jt , at , )× p(jt+1|j
′
t , bt ),
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where p(j′t |jt , at , ) and p(jt+1|j′t , bt ) are given by
Equations 2−4.
Equation 7 states that the expected cost at time t equals

the immediate expected cost at t when actions at , bt , and kt
are taken, plus the expected total costs incurred in the future
(t+1, . . . ,T ), where the decision maker is assumed to follow
an optimal policy. Finally, given any system state (it , jt ) at
time t , the optimal actions a∗t , b

∗
t , k
∗
t are expressed as

a∗t , b
∗
t , k
∗
t = argmin

at ,bt ,kt
V ∗(it , jt ) (9)

F. AN EXTENSION TO INCLUDE INSPECTION ERRORS AND
PROBABILISTIC EFFECT OF MAINTENANCE
So far, we have provided themathematical details on the basic
model. In this section, we present the details on the extended
model. The extended model is a general form of the basic one
and it primarily addresses the systems that have inspection
errors, and when maintenance of a system has a probabilistic
effect (i.e., the after-maintenance posterior state is attained
with a probability of less than one). The extended model is
derived through relaxing two of the basic model assumptions,
namely: I) error-free inspection and II) deterministic effect of
maintenance actions. The main advantage of relaxing these
assumptions is to make the model closer to reality. The
development of the extended model starts by relaxing these
parameters separately, and afterwards, combined.

There are two types of quality inspection errors [46]:
• Type-I inspection error (α): this represents the
producer’s risk due to classifying a ‘‘good item’’ as
defective.

• Type-II inspection error (β): this represents the con-
sumer’s risk due to classifying a defective item as
‘‘good’’.

Both error types can be included in the basic model by
extending Equation 5, which will provide the following form:

R(St , at = al, bt = bu, kt , xt )

= cal + cb + cubu + cqkt
+ktp(y|jt , al)(1− β)cr + ktp(y|jt , al)βcd
+kt (1− p(y|jt , al))αcrf + (bt − kt )p(y|jt , al)cd
+ch[it+bu − xt ]+ + cπ [xt−it − bu]+ ∀ at , bt , kt , t, xt

(10)

The first four terms in Equation 10 are identical to those
in Equation 5. The term, ktp(y|jt , al)(1 − β)cr , represents
the repair cost of defective items that are correctly iden-
tified in inspection. The cost of committing type-II error
and shipping defective items to the market is given by the
term ktp(y|jt , al)βcd . The term, kt (1 − p(y|jt , al))αcrf , rep-
resents the cost of misclassifying a ‘‘good’’ component as
rework [46]. The term, (bt − kt )p(y|jt , al)cd , accounts for the
cost of defective units in the non-inspected portion of the lot.
Finally, the holding and shortage cost terms are identical to
those in Equation 5. Note that wewill obtain Equation 5, if we
substitute 0s, for α and β in Equation 10.

The basic mathematical model can also be extended to
include imperfect repairs by amending Equation 2 to the
following form:

P(j′t |jt , at = al) =

{
p(j′t |jt , al) if j′t 6 jt
0 otherwise

(11)

Equation 11 states that the repair actions, will either
improve the state of the machine probabilistically, or keep
the state of the machine unchanged. Therefore, the new state
of the machine after repair, j′t , is now a random variable. The
probability of producing defective units (i.e., p(y|jt , al) =
p(y|j′t )) can be obtained by conditioning on j

′ [47], as follows

E(p(y|j′t )) =
∑
j′t

p(y|j′t )× p(j
′
t |jt , at ) (12)

Since the objective is to minimize the expected total cost,
the term, p(y|j′t ), in Equation 5, should also be replaced by
E(p(y|j′t )), when the repair actions are imperfect.
To relax both assumptions of the basic model, Equation 2

should be replaced by Equation 11, and Equation 5 should
be replaced by Equation 10, which also has to incorporate
E(p(y|j′t )) in place of p(y|j′t ).

V. STRUCTURAL PROPERTIES OF THE MODEL
For simplicity of presentation, this section provides some
structural properties of the basic model that was presented
in Section IV(A-E).

First, we mathematically state our assumption on the
machine deterioration mechanism, that is, the more dete-
riorated the machine, the more likely it will deteriorate
further.
Definition 1: A probability transition matrix p(jt+1|j′t , bt )

has an increasing failure rate if
∑

jt+1≥q p(jt+1|j
′
t , bt ) ≥∑

jt+1≥q p(jt+1|j
′
t − 1, bt ),∀j′t , q ∈ {0, 1, . . . , jmax}. Equiva-

lently, this implies that p(jt+1|j′t , bt ) first-order stochastically
dominates p(jt+1|j′t − 1, bt ) [14], [16], [45].
Next, Lemma 1, shows that the optimal inspection action,

k∗t , is always to inspect all, or none of the units that are
produced during time t , b∗t .
Lemma 1: At any system state (it , jt ), the optimal inspec-

tion action will be always to inspect all units produced, or to
inspect 0 units. Therefore, k∗t = b∗t or k

∗
t = 0, ∀(it , jt ).

Proof: The second term of Equation 7,
∑

jt+1

∑
x V
∗(it+

bt − x, jt+1)f (x)p(jt+1|jt , at , bt ), is independent of kt .
Additionally, the first term of Equation 7, given by
Equations 5 and 6, shows that, the corresponding qual-
ity cost function is linear function in kt (cqkt + (crkt +
cd (bu−kt ))p(y|jt , al)). This implies that, if cq + (cr − cd )
p(y|jt , at ) < 0, then k∗t = b∗t ; and in case cq + (cr −
cd )p(y|jt , at ) > 0, then k∗t = 0.
Next, Lemma 2 states that if the optimal mainte-

nance policy results in a non-decreasing values of the
after-maintenance intermediate machines state, j′t , in jt ; and
if b∗t is monotone non-increasing in jt , then, for given an
initial level of inventory, it , the optimal inspection action, k∗,
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is either to: I) inspect 0 units ∀jt , II) inspect all the produced
units ∀jt , or III) inspect 0 units starting from the newmachine
state (jt = 0) to some state j′′t ∈ {0, 1, 2, . . . , jmax}, then
inspect all of the produced units for jt > j′′t .
Lemma 2: If p(y|jt , a∗t ) is non-decreasing in jt and b∗t is

non-increasing in jt , then for a given level of inventory, it ,
the optimal inspection action, k∗t will be either:

• k∗t = b∗t ∀jt , or
• k∗t = 0∀jt , or
• k∗t = 0∀jt , jt < j′′ and k∗t = b∗t ∀jt , jt ≥ j′′, where
j′′ ∈ {0, 1, . . . , jmax}.

Proof: Based on Lemma 1, if cq+ (cr−cd )p(y|jt , a∗t ) >
0 then k∗t = 0. This condition can be re-written as: if
cdp(y|jt , a∗t ) < cq+ crp(y|jt , a∗t ), then k

∗
t = 0. Since the cost

elements are positive constants, and given our assumption
that p(y|jt , a∗t ) is non-decreasing in jt , then it is impossible
that this condition does not hold true for jt < j′′ then holds
true for jt ≥ j′′, where j′′ is some intermediate machine state.
Yet, the three remaining cases stated by Lemma 2 are the only
possible ones.

The following proposition states that for a given optimal
maintenance action, a∗t , and a machine state, jt , the optimal
production action, b∗t , will decrease by 1 unit as it increases
by 1 unit.
Proposition 1: Given an arbitrary system state (i1t , jt ),

such that a∗1 and b∗1 > 0 are the optimal maintenance and
production actions respectively at (i1t , jt ); then for any system
state (i2t , jt ), such that i2t > i1t , i

2
t − i1t < b∗1, and a

∗

2 = a∗1,
then b∗2 = b∗1 − (i2t − i1t ) will be optimal production action
at (i2t , jt ). Thus, if b

∗

1, right before customers’ demand, leads
to inventory state it+1 = d , then b∗2 will lead to it+1 = d as
well.

Proof: The proof is given in the appendix.
The following proposition states that if two machine

states (j1t and j2t ), have their a∗t values such that their
after-maintenance state, j′t is the same, then their b∗t values
will be the same as well.
Proposition 2: If a∗1 > 0 and b∗1 > 0 are the optimal

maintenance and production actions at state (it , j1t ), then for
any system state (it , j2t ), such that j2t = j1t + l, l > 0 and
a∗2 = a∗1+ l, is the optimal maintenance action at (it , j2t ), then
the optimal production action at (it , j2t ) is b

∗

2 = b∗1.
Proof: The proof is given in the appendix.

VI. NUMERICAL EXAMPLES
This section demonstrates the applicability of the pro-
posed models through a number of numerical examples.
Subsection VI-A provides a basic example to demonstrate the
structural properties that were presented in Section V. And
Subsection VI-B provides the generalized model use to study
the interactions between the optimal polices of the model.
It is focused on providing practical insights and further
clarifications on how the parameters of one decision area
(e.g., production, maintenance or quality) affect the entire
system.

TABLE 3. Parameters of the demonstrative example.

TABLE 4. Optimal decision rules (a∗ and b∗) at t = 1.

A. DEMONSTRATIVE EXAMPLE
The following example of a joint optimal maintenance, pro-
duction and inspection policies illustrates the structural prop-
erties of the proposed model. The solutions were obtained
by solving the mathematical model presented in Section IV
using the value iteration algorithm [45], it was implemented
using MATLAB. The parameters of this example are given
in Table 3.

Furthermore, the following probabilities are assumed:
f (x) ∼ Binomial (n = 13, p = 0.4)

p(j′t |jt , at = a0) =

 1 0 0
0 1 0
0 0 1


p(j′t |jt , at = a1) =

 1 0 0
1 0 0
0 1 0


p(j′t |jt , at = a2) =

 1 0 0
1 0 0
1 0 0


p(jt+1|j′t , bt = b0) =

 1 0 0
0 1 0
0 0 1


p(jt+1|j′t , bt 6= b0) =

 0.7 0.3 0
0 0.5 0.5
0 0 1


p(y|jt ) =

[
0.1 0.3 1

]
Tables 4−6 provide the optimal maintenance and produc-

tion decision rules (i.e., a∗ and b∗) at t = 1, 2 and 3 respec-
tively. Figures 1 and 2 demonstrate the optimal maintenance
and production policies a∗ and b∗, given in Table 4.
Figure 1 demonstrates that when the machine is in state

j = 1 and there are 0−3 units inventory, the optimal main-
tenance decision rule is to repair the machine (a∗ = 1).
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TABLE 5. Optimal decision rules (a∗ and b∗) at t = 2.

TABLE 6. Optimal decision rules (a∗ and b∗) at t = 3.

FIGURE 1. Optimal maintenance decision rules, a∗, at states (i , j ), t = 1.

In addition, Figure 2 demonstrates how the corresponding
optimal production decision rules decrease by 1 unit when
i increases for i = 0 − 3. After this, it was experimentally
observed that, in many cases, no production will take place.
The reason for this structure is primarily the fixed production
and maintenance cost elements of the objective function. For
instance, if we set ca = cb = 0, then production would
have kept decreasing by 1 unit to reach 1 then 0, giving the
well-known base stock policy [42]. Furthermore, the results
demonstrate that if a∗ brings the machine to the same

FIGURE 2. Optimal production decision rules, b∗, at states (i , j ), t = 1.

TABLE 7. Parameters of the baseline example.

intermediate state, j′t , then the equal value of b∗ will be
produced ∀ j. (e.g., row 1 of Table 5 gives a∗ = 0 1, and 2
at j = 0, 1 and 2, respectively; this gives the same value of
j′t = 0 and therefore the same value of b∗ = 6).
As for inspection, the optimal inspection actions, k∗t , were

are equal to b∗t , t ∈ {1, 2, 3}.

B. NUMERICAL SENSITIVITY ANALYSIS
Sensitivity analysis is conducted on the extended model by
varying its parameters one at a time, and combined for some
cases. Next, we define a baseline example that is similar to
the previous one, albeit with slight changes to the parameters
used (Table 7), this is to emphasize on the model characteris-
tics in terms of sensitivity and performance.

The demand is assumed to follow a Binomial distribution
given by f (x) ∼ Binomial(n = 20, p = 0.3). The fraction of
defective units at the different machine states are:

p(y|jt ) =
[
0.05 0.3 1

]
Furthermore, we assume that the state transition matrices

of the baseline example are identical to those given in the
previous example. For the case of imperfect repair, in place
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TABLE 8. Optimal decision rules (a∗t and b∗t ), t ∈
{
1,2,3

}
, cb = 4.

of p(j′t |jt , at = a1), which is given in the previous example,
we use the following state transition matrix:

p(j′t |jt , at = a1(imperfect)) =

 1 0 0
0.7 0.3 0
0 0.5 0.5


This matrix implies that if the machine is in states 2 or 3,

and the action a1(imperfect) is taken, then the machine will go
to a better state in a probabilistic way.

Starting from this baseline example, we sequentially var-
ied the model parameters and investigated the effects on
the optimal policies. Unless otherwise stated, the param-
eters in each of the following experiments are equivalent
to the ones given in Table 7. Furthermore, the effect(s) of
the given parameters on the optimal production, mainte-
nance and inspection policies are discussed. Remarks on
the resulting structural properties are also given when
necessary.

1) THE EFFECT OF cb
If we take the production apart from the maintenance and
inspection decisions, then it can be shown that the opti-
mal inventory policy is (s, S) policy [42], i.e., to produce
when the level of inventory drops below s and bring it back
to S. In this case, s represents a production threshold and
S is the maximum inventory level. In most of our exper-
iments we obtained (s, S) optimal inventory polices. Fur-
thermore, if the production setup cost (i.e., cb) is increased,
a higher production threshold will be obtained. This was
observed by varying cb from 3 to 10. Sample represen-
tative results, for cb = 4 and 10 are demonstrated
by Tables 8 − 11.

Compared with Tables 8 and 9, Tables 10 and 11 demon-
strate the decrease in some a∗ values when cb of the baseline
example is increased to 10.

At cb = 4, the optimal inspection policy is k∗t = b∗t , for
(i = 3, j = 1), t = 4 and k∗t = k0 elsewhere. In contrast,
the optimal inspection policy at cb = 10 is k∗t = k0,
∀(i, j), ∀t .
Remark: Note that Table 9 gives a∗(i = 3, j = 0, 1 and

2)= 0, 0, 2, which implies that the corresponding values of j′

are 0, 1, 0 respectively. Hence, the condition of Lemma 2 is
not satisfied and the optimal inspection decision rule at i = 3,
t = 4 can be non-monotone in j.

TABLE 9. Optimal decision rules (a∗ and b∗) at t = 4, cb = 4.

TABLE 10. Optimal decision rules (a∗t and b∗t ), t ∈
{
1,2,3

}
, cb = 10.

TABLE 11. Optimal decision rules (a∗ and b∗) at t = 4, cb = 10.

TABLE 12. Optimal decision rules (a∗ and b∗) at t = 1, cπ = 4.

2) THE EFFECT OF cπ
In this part, cπ of the baseline case is incremented between
4 − 7 in a step of 1. As a result, there was an increase in
some of the production and maintenance actions. The optimal
inspection policy, k∗, for cπ = 4 and 7, was k∗ = 0 ∀(i, j)
(according to Lemma 1, k∗, is not directly affected by π ).
Furthermore, by simultaneously varying the values of cb

and cπ over the given ranges, it was observed that a∗ increases
or remains the same when b∗ increases and vice versa.
Sample representative results for cπ = 4 and 7, t = 1 are

provided in Tables 12 and 13 respectively.
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TABLE 13. Optimal decision rules (a∗ and b∗) at t = 1, cπ = 7.

TABLE 14. Optimal decision rules (a∗ and b∗) at t = 1, cu = 3.

TABLE 15. Optimal decision rules (a∗ and b∗) at t = 1, cu = 4.5.

Note that the effect of ch is opposite to that of cπ and
therefore omitted.

3) THE EFFECT OF cu

The value of cu was increased from 2−6 in a step of 2. As a
result, some values of a∗ and b∗ changed. Tables 14 and 15
provide sample representative decision rules (at t = 1), for
cu = 3 and 4.5, respectively.

Regarding the effect on inspection, k∗ was not affected.
However, if we assume that the repair cost in our model, cr ,
is function of cu, then k∗ would have been possibly affected
as per Lemma 1.

4) THE EFFECT OF cq

Increasing the quality inspection cost cq from 0 to an arbitrary
large number (i.e., 100) in a step of 10, did not show any
effect on the production and maintenance policies. However,
smaller values of cq resulted in k∗ = b∗ and larger values
gave k∗ = 0. This is consistent with the results of Lemma 1.
Yet, according to equations 8 and 9, k∗t > 0 affects V ∗(it , jt )
and therefore, based on Equation 7, this can affect a∗t−1 and
b∗t−1. However, this was found to be very insignificant effect.

TABLE 16. Optimal decision rules (a∗ and b∗) at t = 1, cd = 14, β = 0
and 0.3.

Overall, the parameter cq had very negligible effect on the
structure of the optimal production and maintenance policies.

5) THE EFFECT OF cd
Increasing cd from 7 to 14 in a step of 1 did not show a
significant effect on the optimal production and maintenance
polices. However, in consistence with Lemma 1, k∗ values
increased. As example, if cd = 7 then k∗ = 0, and if cd = 14
then k∗ = b∗ ∀(i, j), ∀t . Note that if cd increases, then the
cost of defectives shipped to the market will increase. In this
case, the system tends to do more inspection and incur the
inspection cost, rather than not performing inspection and
allowing items with defects be sold in the market.

6) THE EFFECT OF α
In this part, we incremented α between 0 − 0.3 in a step
of 0.1 and did not observe any effect on a∗, b∗ or k∗ values.
As shown by Equation 10, α appears in the term kt (1 −
p(y|jt , al))αcrf , which means that α will have an effect if
k∗ 6= k0 (i.e., should be equal to b∗ as per Lemma 1). This
can happen in multiple ways. As example, ca values were
increased so that a∗ = a0 and k∗ = b∗ ∀(i, j) and ∀t . Then,
α was incremented again and few k∗ values became equal to
to 0. On the other hand, crf can have an effect, but in practice
the value of crf should be much less than cd (i.e., a relatively
small number around the value assumed in Table 7). In con-
clusion, the optimal maintenance, production and inspection
polices are not sensitive to changes in α.

7) THE EFFECT OF β
Similar to α, it was observed that β values (in the range
of 0−0.3) did not make a significant impact on the opti-
mal polices. However, this is not the case when cd is made
high. As example, for the baseline case, but with cd = 14,
if β is increased (from 0 to 0.3); then k∗t decreases from b∗t
to 0 ∀(i, j), ∀t . Regarding the optimal production policy, it was
not affected by β (Table 16 provides sample results). There-
fore, for large values of cd , we conclude that the inspection
polices are affected by β (i.e., if β increases, then less quality
inspections are performed in this case).

8) THE EFFECT OF ca

In this part, we first incremented ca1 between 1.8 − 3
(the value of ca2 ). As a result, production actions were not
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TABLE 17. Optimal decision rules (a∗ and b∗) at t = 1, using a1(imperfect).

affected. The only difference was that the system either took
the replace action, a2 along with k0 at j = 1, i ≤ 3; or
a0 along with k∗ = b∗ at j = 1, i > 3. In both cases,
quality is ensured by either performing maintenance or by
inspection. Finally, increasing ca1 and ca2 simultaneously led
to the trivial case that maintenance is not performed and
inspecting all the produced units (k∗ = b∗). Furthermore,
it was experimentally observed that the optimal maintenance
decision rule, a∗, is monotone in i. This is demonstrated by
all of the optimal maintenance polices presented in this paper.

9) THE EFFECT OF IMPERFECT MAINTENANCE
In this part we solve the instance where p(j′t |jt , a1) of the
baseline case is replaced by p(j′t |jt , at = a1(imperfect)). This
led to an increased level of maintenance at j = 1 (i.e. taking
a∗ = 2 at j = 1). In particular, this happened at
the lower values of i (these have larger values of b∗).
Thus, the system chose the most expensive maintenance
action a∗ = 2 as it guarantees taking the machine to
state 0 (less rate of defectives), instead of the a1(imperfect),
which has a probabilistic effect. Table 17 lists the obtained
results.

Compared to the baseline case, more inspection was done
at t = 4. This is to avoid performing expensive or imper-
fect maintenance at the last time epoch of the planning
horizon. In summary, maintenance actions with probabilistic
effect had an impact on both the maintenance and inspection
policies.
Remark: Table 17 shows that a∗(i = 5 and 6, j = 1) = 1

while the corresponding b∗ values are 0s. The reason for this
is that maintenance actions tend to decrease the value of jt+1
and therefore, can decrease V ∗t+1 (the optimal value function
at t + 1). However, such scenario can’t happen at t = T to
have a∗ > 0 and the corresponding b∗ = 0.

10) THE EFFECTS OF p(jt+1|j ′t ,bt ) AND p(y |j ′t )
It was experimentally observed that the effect of the failure
rate matrix p(jt+1|j′t , bt 6= b0) is similar to that of ca. Using
a matrix with higher failure rate (in the sense of first order
stochastic dominance) led to a decrease in maintenance and
increase in inspection. Also, when the probability of produc-
ing items with defects was increased, similar to the discussion
related to cq, almost no effect took place on the optimal
maintenance and production polices.

VII. CONCLUSIONS AND FUTURE RESEARCH WORK
Weproposed an integratedmaintenance, production and qual-
ity inspection dynamic model, formulated as an MDP. Com-
pared to previous research work, we developed an integrated
model that considers multiple maintenance actions and qual-
ity inspection. The proposed model has the advantage of
enabling integrated decisionmaking under uncertainty. It also
provides new structural properties and some practical insights
on the interaction ways between production, maintenance and
quality inspection polices.

The structural properties of the model were investigated
mathematically and with sensitivity analysis. The mathemat-
ical approach demonstrated that, under some mathematical
assumptions/conditions, the quality inspection policies are
monotone in the machine state. Furthermore, it was shown
that the optimal production decision rules decrease by 1 unit
as the state of inventory increases by 1 unit, to a point where it
becomes optimal to produce 0 units. This was evident at any
time period of a finite planning horizon. Numerical examples
indicated that the optimal production decision rule remains
at 0. This finding yields to the well-known (s, S) inventory
policy.

Sensitivity analysis was performed by changing the model
parameters separately and combined when needed. The
results showed that the quality related parameters such as
the inspection cost and type-I inspection error had negligible
effect on the optimal policies. Furthermore, if it was costly to
deliver a product with defects to themarket, type-II inspection
error would affect the optimal maintenance policies. Mainte-
nance and quality inspection actions were proportional to the
production actions. In other words, more production leads to
increase in maintenance and/or inspection. Maintenance and
inspection were the tools to achieve quality of production.
Imperfect maintenance actions were considered such that,
if an imperfect maintenance action is taken, the system will
lie somewhere between the desired machine state and its
pre-maintenance condition. Based on the given examples,
imperfect maintenance actions led to extra maintenance (i.e.
taking the replace action instead of the imperfect mainte-
nance) or resulted in increased inspection.

Future researchwill focus on the areas of partially observed
systems, multiple items with correlated demand, two or
more stages of production and the case of non-repairable
items, where imperfect items are sold in a secondary
market.

APPENDIX
A. PROOF OF PROPOSITION 1
Proposition 3: Given an arbitrary system state (i1t , jt ),

such that a∗1 and b∗1 > 0 are the optimal maintenance and
production actions respectively at (i1t , jt ); then for any system
state (i2t , jt ), such that i2t > i1t , i

2
t − i1t < b∗1, and a

∗

2 = a∗1,
then b∗2 = b∗1 − (i2t − i1t ) will be optimal production action
at (i2t , jt ). Thus, if b

∗

1, right before customers’ demand, leads
to inventory state it+1 = d , then b∗2 will lead to it+1 = d as
well.
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Proof: Consider a system at state (i1t , jt ), let b
∗

1 the
optimal production action such that i1t + b∗1 = d . To prove
this we consider two cases, namely:

Case 1: b− > 0 be any action such that i1t + b
−
= e < d ,

Case 2: b+ > 0 be any action such that i1t + b+ = f > d .
Considering case 1:
V ∗(i1t , jt ) = V (i1t , jt , a

∗, b∗1, kt ) ≤ V (i1t , jt , a
∗, b−, kt ),

using Equations 5−8, this is equivalent to:∑
x

(ca∗ + cb∗1 + cub
∗

1 + cqkt + (crkt + cd (b∗1 − kt ))

×p(y|jt , a∗)+ ch[it + b∗1 − xt ]
+
+ cπ [xt − it − b∗1]

+)

×f (x)+
∑
jt+1

∑
x

V ∗(it + b∗1 − x, jt+1)

×f (x)p(jt+1|jt , a∗, b∗1) ≤
∑
x

(ca∗ + cb− + cub
−

1 + cqkt

+(crkt + cd (b− − kt ))p(y|jt , al)+ ch[it + b− − xt ]+

+cπ [xt − it − b−]+)× f (x)

+

∑
jt+1

∑
x

V ∗(it + b− − x, jt+1)× f (x)p(jt+1|jt , a∗, b−)

(13)

Substituting b∗1 = d − i1t and b
−
= e− i1t in Inequality 13,

and noticing from Equations (2−4) that p(jt+1|jt , a∗, b∗1) =
p(jt+1|jt , a∗, b−) = p(jt+1|jt , a∗, bt 6= b0), using Lemma 1
and simplifying gives:∑

x

(cu(d − e)+ cq(d − e)+ (cr (d − e))× p(y|jt , at )

+ch([d − xt ]+ − [e− xt ]+)+ cπ ([xt − d]+

−[xt − e]+)f (x)+
∑
jt+1

∑
x

(V ∗([d − x]+, jt+1)

−V ∗([e− x]+, jt+1))f (x)p(jt+1|jt , a∗, bt 6=b0)≤0. (14)

Now, consider the system state (i2t , jt ), such that the optimal
maintenance action at this state is equal to a∗ and i2t > i1t , i

2
t −

i1t < b∗1. Let b2, be the production action such that i
2
t +b2 = d .

Next, we will prove that b2 = b∗2 is optimal production action
at (i2t , jt ).
Suppose there is a production action, b−2 , such that 0 <

b−2 < b and i2t +b
−

2 = e < d , that results in a better objective
function value than b2, then:
V (i2t , jt , a

∗, b−2 , kt = b−2 ) < V (i2t , jt , a
∗, b2, kt = b2).

Then, again, using equations 5 − 8:∑
x

(ca∗ + cb−2 + cub
−

2 + cqkt + (crkt + cd (b
−

2 − kt ))

×p(y|jt , at )+ch[i2t + b
−

2 − xt ]
+
+cπ [xt−i2t − b

−

2 ]
+)f (x)

+

∑
jt+1

∑
x

V ∗(i2t + b
−

2 − x, jt+1)f (x)p(jt+1|jt , a
∗, b−2 )

<
∑
x

(ca∗ + cb2 + cub2 + cqkt + (crkt + cd (b2 − kt ))

×p(y|jt , at )+ch[i2t +b2−xt ]
+
+cπ [xt−i2t −b2]

+)f (x)

+

∑
jt+1

∑
x

V ∗(i2t + b2 − x, jt+1)f (x)p(jt+1|jt , a
∗, b2).

Substituting b−2 = e− i2t , b2 = d − i2t , and observing that
p(jt+1|jt , a∗, b

−

2 ) = p(jt+1|jt , a∗, b2) = p(jt+1|jt , a∗, bt 6=
b0) and simplifying, gives Inequality 15 which contradicts
with Inequality 14, hence action b−2 can’t be optimal at (i2t , jt ).∑
x

(cu(d − e)+ cq(d − e)+ (cr (d − e))p(y|jt , at )

+ch([d − xt ]+ − [e− xt ]+)+ cπ ([xt − d]+ − [xt − e]+))

×f (x)+
∑
jt+1

∑
x

V ∗([d − x]+, jt+1)−V ∗([e−x]+, jt+1)f (x)

×p(jt+1|jt , a∗, bt 6= b0) > 0. (15)

The proof of case 2, follows similarly and hence omitted.

B. PROOF OF PROPOSITION 2
Proposition 4: If a∗1 > 0 and b∗1 > 0 are the optimal

maintenance and production actions at state (it , j1t ), then for
any system state (it , j2t ), such that j2t = j1t + l, l > 0 and
a∗2 = a∗1+ l, is the optimal maintenance action at (it , j2t ), then
the optimal production action at (it , j2t ) is b

∗

2 = b∗1.
Proof: If a∗1 and b∗1 > 0 are the optimal maintenance

and production actions at state (it , j1t ), then for any system
state (it , j2t ), such that j2t = j1t + l, l > 0 and a∗2 = a∗1 + l,
the optimal production action b∗2 = b∗1.
Since a∗1 and b∗1 are the optimal maintenance and produc-

tion actions at (it , j1t ), and by considering the general case of
Lemma 1, i.e. inspection of all produced units (k∗1 = b∗1),
V ∗(it , jt ) can be expressed using a∗1, b

∗

1 and Equations 5 − 8,
as follows:

V ∗(it , j1t )

=

∑
x

[ca∗1 + cb∗1 + cub
∗

1 + cqb
∗

1

+(crb∗1 + cd (b
∗

1 − b
∗

1))p(y|jt , at )+ ch[it + b
∗

1 − xt ]
+

+cπ [xt − it − b∗1]
+]f (x)

+

∑
jt+1

∑
x

V ∗(it + b∗1 − x, jt+1)f (x)p(jt+1|j
1
t , a
∗

1, b
∗

1)

Also, for any arbitrary production action b other than b∗1:

V ∗(it , j1t )

=

∑
x

[ca∗1 + cb∗1 + cub
∗

1 + cqb
∗

1

+(crb∗1 + cd (b
∗

1 − b
∗

1))p(y|jt , at )+ ch[it + b
∗

1 − xt ]
+

+cπ [xt − it − b∗1]
+]f (x)

+

∑
jt+1

∑
x

V ∗(it + b∗1 − x, jt+1)f (x)p(jt+1|j
1
t , a
∗

1, b
∗

1)

≤

∑
x

[ca∗1 + cb + cub+ cqkt

+(crb+ cd (b−b))p(y|jt , at )+ ch[it + b− xt ]+

+cπ [xt − it − b]+]f (x)

+

∑
jt+1

∑
x

V ∗(it + b− x, jt+1)f (x)p(jt+1|j1t , a
∗

1, b)

= V ′(it , j1t ) (16)
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It can also be stated that b∗1 minimizes the RHS of
Inequality 16, V ′(it , j1t ).
Let’s now consider a state (it , j2t ), such that j2t = j1t + l,

l > 0 with a∗2 = a∗1 + l (note that a∗1 and a∗2 will take
the machine, from states j1t and j2t respectively, to the same
machine state j′t ), substituting this in Equations 5 − 8 gives:

V ′′(it , j2t )

=

∑
x

[ca∗2 + cb + cub+ cqb+ (crb+ cd (b−b))

×p(y|jt , at )+ ch[it + b− xt ]+ + cπ [xt − it − b]+]f (x)

+

∑
jt+1

∑
x

V ∗(it + b− x, j2t − a
∗

2)f (x)p(j
2
t − a

∗

2|j
2
t , a
∗

2, b)

(17)

Such that b is any arbitrary production action. Since
a∗2 = a∗1+ l, Equations 2−4 shows that p(j

2
t − a

∗

2|j
2
t , a
∗

2, b) =
p(jt+1|j1t , a

∗

1, b). Additionally, since ca∗2 > ca∗1 , then
V ′′(it , j2t ) = V ′(it , j1t ) + (ca2 − ca1 ), and b∗1 minimizes
V ′′(it , j2t ) too, hence, b

∗

2 = b∗1.
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