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ABSTRACT The effective latent space representation of point cloud provides a foremost and fundamental
manner that can be used for challenging tasks, including point cloud based place recognition and reconstruc-
tion, especially in large-scale dynamic environments. In this paper, we present a novel deep neural network,
LPD-AE(Large-scale Place Description AutoEncoder Network), to obtain meaningful local and contextual
features for the generation of latent space from 3D point cloud directly. The encoder network constructs the
discriminative global descriptors to realize high accuracy and robust place recognition, which contributed by
extracting the local neighbor geometric features and aggregating neighborhood relationships both in feature
space and physical space. The decoder network performs hierarchical reconstruction on coarse key points
and ultimately produce dense point clouds, which shows that it is capable of reconstructing a full point
cloud frame from a single compact but high dimensional descriptor. Our proposed network demonstrates
performance that is comparable to the state-of-the-art approaches. With the benefit of the LPD-AE, many
computationally complex tasks that rely directly on point clouds can be effortlessly conducted on latent
space with lower memory costs, such as relocalization, loop closure detection, and map compression
reconstruction. Comprehensive validations on Oxford RobotCar dataset, KITTI dataset, and our freshly
collected dataset, which contains multiple trials of repeated routes in different weather and at different
times, manifest its potency for real robotic and self-driving implementation. The source code is available
at https://github.com/Suoivy/LPD-AE.

INDEX TERMS Point cloud, latent space, place recognition, point cloud reconstruction.

I. INTRODUCTION
LIDAR significantly boosts the progress of self-driving and
robotic technologies and becomes the primary sensor to
sense the environment for increasing technology maturity
and decreasing cost. It can directly depict the real physical
world in point clouds, containing real scale measurements
and geometric features, which has natural advantages in
SLAM(Simultaneous Localization And Mapping) [1]. How-
ever, mainstream strategies accomplish loop closure and relo-
calization tasks with the assistance of camera or GPS [2]–[4],
due to the sparsity of laser data, the computational complex-
ity, the absence of effective feature extraction and limited

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

generalization, leaving the promising solution conducted
directly on point cloud as an open issue.

Effective latent space representation of point cloud pro-
vides a reliable solution, which represents the point cloud
by a single global feature utilized to place recognition for
solving loop closure and relocalization tasks. To this end,
deep learning on the 3D point cloud affords a powerful tool
because of its excellent performance on feature extraction
and generalization ability. As a pioneer of neural network
feature extraction, PointNet [5] laid the foundation of deep
learning on the point cloud by applying a symmetric func-
tion to each point independently. The improved PointNet++
[6] and subsequent DGCNN [7] introduced neighborhood
rather than individual points through hierarchical sampling
and dynamic graph network, respectively, to better collect
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geometric features of the point cloud. Although the above
networks have achieved acceptable classification and seg-
mentation results on the ModelNet dataset [8], a single object
point cloud dataset generated by CAD model, they can not
act as feasible solutions conducted on sophisticated and par-
tial scenes. Designed for the place recognition task, Point-
NetVLAD [9] combined PointNet and NetVLAD [10], and
even PCAN [11] utilized the attention mechanism to reweight
features of different point clouds, they both did not consider
the uneven density of point cloud, the geometric relationships
among points, the different perceptive filed of neighbor-
hood features, and the spatial distribution of local features.
What’s more, they only paid attention to the generation of
discriminative global descriptors but neglected whether it
extracted presumptive point cloud information, for lack of
reconstruction from global descriptors to corresponding point
clouds. In [12], we have proposed LPD-Net, the state-of-the-
art place recognition model base on point clouds. Although
it exhibits the convincing feature extraction performance for
place retrieval, it obtains low similarity of features extracted
from similar places for the absence of decoder to recovery
point clouds from global features during training.

Unlike the usual reconstruction task that utilizes discrete
frames of point clouds or range images to patch up the
whole scene [13]–[15], it means the compression reconstruc-
tion performed on latent space. FoldingNet [16] proposed
the folding operation to construct point clouds surface from
codeword produced by the bottleneck layer of the auto-
encoder, but it’s not suitable for the partial and disconnected
large-scale point cloud without modification. SO-Net [17]
took advantage of auto-encoder as pre-training to improve the
performance of the proposed self-organized map on theMod-
elNet dataset. SegMap [18] leveraged a data-driven descrip-
tor to extract the feature of voxelized segments in point
clouds and performed reconstruction with 3D convolutional
layers, which cost the amount of computation and couldn’t
adapt to the whole large-scale scene due to the sparsity.
The upsampling networks can be applied to the large-scale
scene and generate more dense point clouds, but they utilize
more detailed point-wise features rather than global features,
so these are not in the scope of this paper. As an essential
chain of the transformation between the latent space and the
point space, reconstruction indicates the complete mapping
between them. It shows the possibility to replace thousands
of points with a 256-dimensional vector for point cloud oper-
ations. By virtue of the latent space completeness, it brings
forth potency that complex computational tasks, such as loop
closure, relocalization, and compression reconstruction, can
be conducted on latent space with limited memory, commu-
nication bandwidth, and computing resource.

To address the above issues, we present a novel and
complete latent space representation pipeline, LPD-AE
(Large-scale Place Description AutoEncoder Network),
which consists of the following two parts for recognition and
reconstruction:

FIGURE 1. Latent space representation for large-scale point clouds. The
top-left image shows the current laser scan and downsampled keyframe
point cloud of the same place. In latent space depicted by t-SNE in the
bottom-left image, the encoder network generates embeddings with a
closer distance for similar point clouds, to conduct loop closure or
relocalization task by retrieval in laser map shown in the top-right image.
The reconstructed scan produced by the decoder network from the
corresponding embedding feature is shown in the bottom-right image.

1) The encoding architecture, constructing the latent space
to represent the point cloud space, produce discriminative
global descriptors from point clouds directly by aggregating
low-level geometric features and high-level context features,
which same to the LPD-Net [12]. An adaptive local feature
extraction module is leveraged to organize the neighborhood
of each point adaptively. The graph-based aggregation in
feature space and physical space can reveal the context fea-
tures and their spatial distribution cue, which also makes the
receptive filed of high-dimensional features breakthrough the
scope of a single geometric structure or single instance.

2) The decoder architecture, reconstructing the corre-
sponding point cloud from compressed global descriptors,
confirms the validity and completeness of the latent space
representation. Through the hierarchical generation strategy,
coarse key points are produced by the efficient but straightfor-
ward fully connected layers, which get rid of the challenges
from the irregular structure of point clouds and the compu-
tational cost from the 3D CNN applying to voxels [19]. And
then, segmented mesh grid constraint is introduced to gener-
ate dense point clouds by the folding-like operation [16]. The
lightweight network is designed, yet lead to a reconstruction
that thoroughly mines information in the global descriptor
and avoids too deep network memory irrelevant data. All of
it is achieved by supervision according to the position and
distribution of the point cloud.

We summarize the key contributions as follows:

• We propose a novel and effective latent space rep-
resentation for large-scale place descriptions (Fig.1),
leveraging the LPD-AE network to conduct some point
cloud-related tasks on latent space, such as loop closure,
relocalization, and compression reconstruction task.

• To the best of our knowledge, this is the first work on
the reconstruction of the large-scale scene from a single
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descriptor for place retrieval, which shows an exciting
capability for the reconstruction of the real-world point
cloud with lower memory and bandwidth cost.

• In addition to retaining the discrimination of LPD-Net
encoding features, we have improved the similarity of
global descriptor in similar scenes.

• We demonstrate comprehensive validation and applica-
tion potency on different datasets, including the freshly
collected dataset with multiple trials of repeated routes
in different weather and at different times.

The paper is organized as follows. In Section II, related
works about deep learning on the point cloud, place recogni-
tion and point cloud reconstruction are introduced. Section III
presents the system structure and the statement of the prob-
lem. Components of the proposed LPD-AE network are well
defined in Section IV. Extensive experiments and detailed
analysis are clarified in Section V. Section VI demonstrates
comprehensive applications with qualitative results, which is
followed by the conclusion in Section VII.

II. RELATED WORKS
A. DEEP LEARNING ON POINT CLOUD
The development of image processing has matured, includ-
ing traditional manual feature design [20]–[22] and various
models [23], [24] based on deep learning. However, 3D point
cloud processing is still a very challenging problem because
of the irregular, unordered, and rotation invariance of point
clouds. In the early years, many handcraft features based on
geometric or statistical are still powerful description methods
beyond deep learning, including Spin Images [25], Geometry
Histograms [26], Point Feature Histograms (PFH) [27], Fast
Point Feature Histograms (FPFH) [28], and Signature of
Histogram Orientations (SHOT) [29].

Deep learning has an excellent performance in extracting
features and has taken the place of many traditional descrip-
tion methods. In the early stages of the development, Some
researchers attempt to transform irregular point cloud data
into regular data representations, such as projection view
and volume. Some works [30], [31] refer to deep learning
models applying in images by projecting 3D objects into
multi-views and utilizing standard convolution operations to
extract features. Equivalent to the concept of pixels, it is also
a very straightforward method to voxelized 3d objects into
regular data. Voxelization [8], [19], [32] provides a way to
index and organize data, but because of the sparseness of
voxelization, applying standard 3D CNNs is very wasteful.
Based on this method, the required storage capacity and com-
putational complexity are limited by the resolution of vox-
elization. Subsequently, for solving the resolution problem,
KDtree and Octree [33]–[35] are applied but still depended
on the minimum resolution of volume segmentation.

PointNet [5] is a pioneering work that directly processes
point cloud data with symmetric MLP operations that are
applied to each point to extract features. However, its per-
formance is limited for lacking point cloud neighborhood.

The improved version, PointNet++ [6] extract hierarchical
neighborhood information by ball queries and FPS operation.
DGCNN [7] uses a dynamic graph network to adjust neigh-
borhood relationships in a data-driven manner, which is more
reasonable. PointCNN [36] proposes the X -transformation
module, which uses dynamic graphs on transformed feature
space to solve the permutation invariant problem. KPConv
[37] proposes an innovative convolution, Kernel Point Convo-
lution, which can be used directly on the point cloud without
any intermediate representation, which solves the problem
that KNN is not robust on the non-uniform sampling point
cloud.

More and more deep learning networks are designed to
extract point cloud geometric features in a data-driven man-
ner, but traditional strictly mathematical description features
[38] are still very active. Especially in the complex and
large-scale point cloud, it is difficult for neural networks to
extract meaningful features.

B. PLACE RECOGNITION
Given a query pictures or point clouds, the best match is
retrieved in the database according to the descriptor generated
by place recognition methods [3], [4], [39]–[41]. Place recog-
nition can determine whether scenes or parts of scenes are
the same matches. The most common application scenarios
are relocalization and closed-loop detection tasks in SLAM.
Efficient and distinguishing feature description methods are
the key to solve this problem, which is mainly divided into
image-based and point cloud-based.

Robust image feature methods dominate place recognition
because the image contains rich scene information. The SIFT
[22] descriptor with local invariance is the most commonly
used method, which extracts features of the picture, partly or
totally. With the aggregation of these features, a compressed
and efficient index is produced through a bag of words model
[42], [43], VLAD [44], [45], or Fisher vector [46], [47]. There
are many improved designs [4], [48]–[51] in image retrieval
and place recognition in order to better solve this prob-
lem, but many are based on traditional methods rather than
learning-based methods. Among the many learning-based
methods, including local feature learning, metric improve-
ment, and CNN features, NetVLAD [10] provides an end-
to-end solution. It uses VGG/AlexNet [23], [52] to extract
features, followed by a trainable generalized NetVLAD layer,
aggregates local features into a global description vector.
Robust description features for place recognition are learned,
which are not affected by changes in perspective.

Images have natural shortcomings and are susceptible to
changes in viewpoint, lighting, weather, and season. Point
cloud data can make up for these problems, but suffer-
ing the lack of robust descriptor like SIFT [22] for point
clouds. Many practical applications use GPS to provide a
rough position, followed by the registration method like
ICP-series [53]. SegMatch [41] and SegMap [18] leverage
the learning method to extract features of the segmented
point cloud, regarding segments without intuitions in the
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scene as processing units for place recognition. Inspired
by NetVLAD, PointNetVLAD [9] combines the features
extracted by PointNet with the NetVLAD layer, which is
the first point cloud-based place recognition approach using
deep learning, and a benchmark for scene recognition based
on point clouds is created. However, PointNet cannot extract
sufficient features in large-scale point clouds, and the neigh-
borhood relationship was neglected. PCAN [11] introduced
the attention mechanism to reweight features and learn more
significant features, but still did not consider the above
problems.

Our proposed LPD-net [12], as an encoder for latent space
representation, has been optimized to meet the needs of the
large-scale point cloud, which strengthened the geometric
structure and neighborhood relationship to extracted the dis-
criminative global descriptor. SepLPD [54] has verified its
practicability and effectiveness in autonomous driving appli-
cations. But the previous work lacks an essential component
of latent space representation, which is the reconstruction.
Comparison with our previous work [12], [54], we signifi-
cantly improve the discrimination performance of LPD-Net
and study the reconstruction of the large-scale scene in this
paper for the first time.

C. POINT CLOUD RECONSTRUCTION
Point cloud compression reconstruction is a significant and
challenging problem. Most of the research [16], [17], [55],
[56] is mainly focus on generating more efficient interme-
diate codes for classification and constructing latent space
representation. There are two main classify for point cloud
reconstruction: autoencoders and adversarial generation net-
works [57]–[59]. This article only focuses on the compression
reconstruction of the point cloud. The point clouds comple-
tion [60]–[62] and the SfM(Structure from Motion) [63] are
not in the scope of discussion.

FoldingNet [16] proposes a compression-reconstructed
network using an autoencoder, generates a codeword by a
graph-based encoder, and restores the point cloud through
the proposed folding operation by squeezing the 2D mesh
grid. SO-Net [17] is a similar pipeline, which builds a
Self-Organizing Map(SOM) [64] to generate global vectors,
with systematically adjustable receptive fields. However,
these networks are mainly conducted on the CAD-generated
dataset, ModelNet [8], and may not suitably be applied to
real-world point clouds. Some network [65] use autoencoders
only to generate description vectors for local subsets of points
for the registration purpose, not including reconstruction.
SegMap [18] also extracts features from segments in the point
cloud using an autoencoder, which uses the decoder network
to recover local point clouds from features to reconstruct the
map. However, these ways of applying reconstruction in large
scenes are all delivered to a part of the point cloud, not the
entire one.

Adversarial generative networks are a fabulous way to
reconstruct point clouds and demonstrate extraordinary capa-
bilities on theModelNet. The adversarial autoencoder models

FIGURE 2. System structure shows the pipeline of latent space
representation. All it takes is only a 256-dimensional vector representing
a whole point cloud in latent space to conduct complex computational
tasks, such as loop closure, relocalization, and compression
reconstruction, with limited memory, communication bandwidth, and
computing resource.

AE [57] and 3dAAE [58] represent the latent space of the
point cloud and show impressive results in feature interpo-
lation and latent space editing. Although conducted on a
generated dataset, they provide the immense potential for the
latent space representation of large-scale point clouds, which
will be the direction of subsequent research.

III. SYSTEM STRUCTURE AND PROBLEM STATEMENT
The objective of this paper is to construct a complete latent
space representing the point cloud space, using discriminative
global descriptors extracted from large-scale point clouds,
and based on which to reconstruct the corresponding original
point cloud. The ability to bi-directionally transform of two
spaces given by the LPD-AE, make it feasible to perform
complex computational tasks in point clouds by manipulat-
ing latent space vectors, such as classification, loop closure,
relocalization and compression storage.

The system structure of this paper is shown in Fig.2. The
point cloud P = {p1, . . . , pN | pn ∈ R3

} of laser scan
obtained by the lidar is the system input, and it is the imple-
mentation object of mapping and descriptor encoding. On the
one hand, in the process of SLAM mapping, the feature
extraction of the input point cloud is performed in real-time
for inter-frame matching and odometer motion estimation.
On the other hand, the global descriptor f (P) ∈ R0 of the cur-
rent scan is extracted using the proposed encoder network E :
P E
H⇒ f (P), mapping to the latent space. The laser mapM =
∪
K
κ=0mκ is stored and maintained using keyframes set, which

include position t , pose R, and point cloud data P. The global
descriptor is also stored as an additional attribute value in the
keyframes set {m1, . . . ,mK | mκ = {tκ ,Rκ ,Pκ , f (Pκ )}}.
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FIGURE 3. Network Architecture of the LPD-AE, consisting of the Decoder network(above) and the Encoder network(below).

For mapping, in addition to using the point cloud
for odometer motion estimation, it is also performing
loop closure detection. With the latent space representa-
tion, the Euclidean distance-based matching strategy S :
d(f (P), f (P̄)) < d̄ is leveraged to determine whether the
current point cloud matches the element of the maintained
keyframes deposited m̂ = {t̄, R̄, P̄, f (P̄)} ∈ M}. If matches,
the relative pose between the current scan and point cloud
of loop closure candidate P̂ are estimated to optimize each
keyframe’s pose and position in the whole map.

In the process of localization, similar operation on global
descriptor matching is also performed in the built-map. The
maintained keyframe descriptor f (P) ∈ R0 dramatically
reduces the storage space compared to the original point
cloud data P = {p1, . . . , pN | pn ∈ R3

}, where 0 �
(N × 3), which is convenient for storage and low-bandwidth
transmission. The rebuilt laser map M̂ = ∪Kκ=0m̂κ | m̂κ =
{tκ ,Rκ , P̂κ , f (Pκ )} is reconstituted from point clouds recon-
structed P̂ = {p̂1, . . . , p̂O | p̂o ∈ R3

} with global descriptors
f (P) through the decoder networkD : f (P) D

H⇒ P̂.
We are committed to designing a more solid encoder E

that maps similar point clouds P = {p1, . . . , pN | pn ∈
R3
} to latent space with closer global descriptor distances

d(f (P), f (Ps)) < d(f (P), f (Pd )), where Ps is structurally
similar to P and Pd not, and a more suitable decoder D
to reconstruct the descriptor f (P) into the point cloud P̂ =
{p̂1, . . . , p̂O | p̂o ∈ R3

} with dense geometry O > N
and closer spatial distribution with the original point cloud
9(P, P̂)→ 0, where 9(.) is the metric of distribution.

IV. LPD-AE NETWORK
In this section, we will elaborate on the network structure of
the LPD-AE network, including the loss function to supervise
the network. All of it is targeting real large-scale point clouds.

A. NETWORK ARCHITECTURE
The overall design structure of the LPD-AE network is shown
in the Fig.3. It is a two-stage multi-tasking framework of
the autoencoder, which completes the peer-to-peer mapping
of point cloud space and feature space. The point cloud of
a real large-scale scene is different from the point cloud
in a single object data set, e.g., ModelNet and ShapeNet
[66]. The large-scale point clouds contain many different
objects at different positions, even dynamic objects. Besides,
the point clouds of objects are inevitably partial because of
the projection principle of laser acquisition. Therefore, The
neural networks designing for classical classification are not
intuitively applicable, which are suitable for directly learning
the features of instance objects. We believe that efficient local
structural features and distribution characteristics of them in
the scene provide clues for encoding large-scale point clouds,
consequently can facilitate representing and reconstructing
the original point cloud.

The upper part of the Fig.3 is the point cloud encoder
network E, LPD-net [12]. The input is a normalized and
random downsampled point cloud, in the form of N × 3
matrix, each row represents the position of a 3D point (x, y, z).
And the output is a 1 × 0 vector, which represents the
corresponding global descriptor of the point cloud. A semi-
supervised learning method based on metric learning [67] is
applied to encoder training.

The lower part of the Fig.3 is the decoder network D of
the point cloud. The input is the 1 × 0 vector generated
above, and the output is a matrix of O× 3, which represents
the reconstructed point cloud. The decoder is trained using
supervised learning.

LPD−AE :
{ Lossrecognition︷ ︸︸ ︷
P E
H⇒ f (P) D

H⇒ P̂︸ ︷︷ ︸
Lossreconstruction
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FIGURE 4. Demonstration of Feature aggregation and Perceptive filed of
the feature. The figure depicts the process of feature extraction and
aggregation. Through adaptive neighborhood, feature space, and physical
space graph aggregation, more representative contextual features can be
extracted, and the corresponding receptive field can exceed the scope of
a single structure or instance.

B. ENCODER ARCHITECTURE
Against the issues mentioned above, LPD-Net [12] is adopted
as the encoder with the following modules.

Adaptive neighborhood feature extraction is to solve
the sparseness and unevenness of point clouds. Objects in
large-scale point clouds have different scales, and the point
clouds of them tend to be denser as they get closer, and
vice versa. These can be solved by determining the opti-
mal size of the neighborhood surrounding the point. And
the enhanced geometric features are used to describe the
neighborhood.

Dynamic graph feature aggregation is used to obtain more
robust and representative low-level structure features and
high-level context features. The aggregated features contain
semantic information, implying local descriptors and their
distribution characteristics in space. Through this module,
the receptive field of high-level features can be adjusted
systematically beyond the scope of a single structure or a
single object, as depicted in Fig.4.

The trainable generalized Vector of Locally Aggregated
Descriptors (VLAD) layer, NetVLAD layer, is applied
to aggregate the local features into a global descrip-
tor. Then semi-supervised learning is conducted through
the Lrecog∗.
Each module of the encoder neural network is elaborated

as follows.

1) ADAPTIVE NEIGHBORHOOD FEATURE EXTRACTION
Given a point cloud P ⊆ R3, in the form of N × 3
matrix, we construct a neighborhood Ni ⊆ R3 with size of
k × 3 for each point pi with an adaptive neighborhood size
k-nearest neighbor (kNN) to represent the local structure of
the point cloud, by k ranging from [kmin, kmax]. The respective
3D covariance matrix 6 of neighborhoods is considered to
be a local structure tensor with three eigenvalues λ1 ≥
λ2 ≥ λ3 ≥ 0 and corresponding orthogonal eigenvectors
V = (V1,V2,V3) because it is a symmetric positive definite
matrix, considering the general structure tensor with rank 3,
according to

6 = Cov(N ,N ) = Vdiag(λ1, λ2, λ3)V T (1)

According to [38], Eigenvalue-based feature of linearity Lλ,
planarity Pλ, and scattering Sλ according to

Lλ =
λ1 − λ2

λ1
, Pλ =

λ2 − λ3

λ1
, Sλ =

λ3

λ1
(2)

represent the 1D, 2D, and 3D features of local structures,
which are used to construct a measurement Ek to describe
unpredictability given by the Shannon entropy as

Ek = −Lλ lnLλ − Pλ lnPλ − Sλ ln Sλ, (3)

Under the condition that the point distribution in the point
cloud is typically uniform, the optimal neighborhood size kopt
of each point pi can be determined adaptively through Ek .

k iopt = argmin
k
E(k). (4)

Various features in [12], [38], [54] can be extracted from
the local structure, and we chose to describe the local struc-
ture of each point pi with features based on 3D eigenvalues,
2D eigenvalues, and 1D Z-direction distribution.
• Linearity: L = λ1−λ2

λ1

• Eigenvalue-entropy: A = −
∑3

j=1(λj ln λj)

• Change of curvature: C = λ3∑3
j=1 λj

• Omni-variance: O =
3
√∏3

j=1 λj∑3
j=1 λj

• Local point density: D = kopt
4
3
∏3
j=1 λj

• 2D scattering: S2D = λ2D,1 + λ2D,2
• 2D linearity: L2D =

λ2D,2
λ2D,1

• Vertical component of normal vector: V
• Maximum height difference: 1Zmax
• Height variance: σZvar

Denote the neighborhood features of the point cloud by
Nf ⊆ R10, and each row is composed of the normalized
features(L,A,C,O,D, S2D,L2D,V ,1Zmax, σZvar ).

The learnable T-Net [5], [68] can facilitate the feature
extracted from the point cloud to obtain the invariance to
transformations, i.e., P′ = PA(T ,θ ), where A(T ,θ ) is a 3 × 3
matrix generated by T-Net with parameters θ . Thus, each row
of P′ is a transformed 3D position(x ′, y′, z′). Then, extend the
original point cloud with the transformed point cloud and the
neighborhood features, i.e., P ⊆ R3

7→ {P′‖Nf } ⊆ R13,
where ‖ is concatenation operation over feature channels.

Furthermore, with the benefits of neural network, the
neighborhood features can better learn by mapping to
higher-dimensional space by a parametric non-linear func-
tion, i.e., {P′‖Nf } ⊆ R13

7→ F = {f1, . . . , fN | fn ∈ RF
},

with F-dimension.

2) DYNAMIC GRAPH FEATURE AGGREGATION
Considering point clouds F ⊆ RF with local structural
features, we further assume that directed graph G = (V ,E)
is given to aggregate local neighborhood structure features,
where V = {1, . . . ,N } and E ⊆ V × V are the vertices for
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nodes of points and edges for neighboring pairs of points in
the form (i, ji1), . . . , (i, jik ), respectively.
To ensure that the edge relationship of the constructed

graph can fit the invariance of feature transformation,
We adopt a learnable feature transformation matrix A ∈
RF×F predicted by a mini-network according to

A = l2(g2(fi)), ∀fi ∈ F (5)

where l2 and g2 are parametric non-linear function with
learnable parameters θi ∈ 2, g2 : RF

× RF
7→ RF ′ , and

l2 : RF ′
× RF ′

7→ RF×F , which constrained to be close
to the orthogonal matrix by regularization term aiming not to
lose information:

Lreg = ‖I − AAT ‖2F (6)

Thus, the invariance of feature transformation is satisfied by
F ′ = FA for neighboring edge relationship.

Local structure feature aggregation is determined by kNN
with fixed neighborhood size kF in the feature space, where
vertices denoted as V (F ) ⊆ F , and edges relationship E(F ′)
is constructed from transformed feature space(F)′:

E(F ′) = kNN (f ′j | f
′
i , j = 0, . . .N , f ′i , f

′
j ∈ F ′)

= {(i, ji1), . . . , (i, jik ) | k = kF } (7)

where (i, jik ) represents pointf ′ik is one of the k nearest points
of pointf ′i .
Aggregate and update the edges and vertices of the graph

[69] to produce the Fl+1-dimensional output of the (l + 1)st
layer by applying to the Fl-dimensional output of the l-th
layer:

f (l+1)i = ρe→v(φe2(E(f
(l)
i , f (l)j )))

= ρe→v(φe2(f
(l)
i ‖(f

(l)
j − f

(l)
i )))

∀e : (i, j) ∈ E(F ′),∀v : f� ∈ V (F ) (8)

where E(fi, fj) is the feature between the point fi and fj, ‖
is concatenation operation, φe2 : RFl × RFl 7→ RFl+1 is a
learnable non-linear aggregation function to represent edge
features in the form of kF × Fl+1 matrix, and ρe→v

: [kF ×
Fl+1] 7→ [1× Fl+1] is to update the feature of vertex v with
edge features. Denote the output of aggregation in the feature
space by Ff ⊆ RFf .
Context features reveal the distribution of structures around

points in physical space C, which are organized using kNN
with fixed size kC . Please note that we construct the edges
E(C) by the corresponding original 3D position in point cloud
P and utilize features of Ff to represent the vertices V (Ff ) ⊆

Ff :

E(C) = kNN (pj | pi, j = 0, . . .N , pi, pj ∈ P)

= {(i, ji1), . . . , (i, jik ) | k = kC} (9)

Similar to (8) but performed with E(C) and V (Ff ), through the
graph-based aggregation in physical space, context features
can be obtained as FC ⊆ RFc , a N × Fc matrix.

3) GLOBAL DESCRIPTOR AGGREGATION
The NetVLAD initiates it feasible to generate the global
descriptor aggregating local features through a learnable net-
work. Given a set of N Fc-dimensional local features, i.e.,
FC = {fc1, . . . , fcN | fci ∈ RFc}, NetVLAD layer produces a
descriptor matrix, V with Dv × Kv dimenstion, by learning
Kv D-dimensional clustering centers {c1, . . . , cKv | ckv ∈
RDv} and weighting residuals (fci − ckv ) of local features fci
and clustering centers ckv by the adjustable soft-assignment
Akv (fci):

V (j, kv) =
N∑
i=1

Akv (fci) · (fci(j)− ckv (j))

=

N∑
i=1

S(wTkv fci + bkv )(fci(j)− ckv (j)) (10)

where S(·) is the Softmax function, weights wkv , bkv and
cluster centers ckv are learned by the network more flexibly.
Considering that the output of theNetVLAD layer is aDv×Kv
matrix, the fully connected layer RDv×Kv 7→ R0 and the
following L2-normalization are applied to extract the final
global description vector f (P) ∈ R0 and ‖f (P)‖2 = 1.

C. DECODER ARCHITECTURE
To recover and reconstruct the point cloud from the global
descriptor generated by the above encoder, we use a hierar-
chical coarse-to-fine reconstruction strategy, from the rough
sketch to the detailed structure, which shows in the lower part
of Fig.3.

Based on different distance measurements, constrain the
distribution and position of the reconstructed point cloud,
with Lrecons∗.

The specific structure of the decoder is introduced as
follows.

1) BACKBONE NETWORK OF THE ENCODER
In order to learn the scene information hidden in the global
descriptor thoroughly, a lightweight network is applied in the
decoder. Otherwise, heavy networks tend to learn irrelevant
information of the dataset and make the network memo-
rize the data instead of reasoning the peer-to-peer mapping
between the point cloud and descriptor.

Compared with reconstruction using the 3D CNN in the
form of voxels, a fully connected network can save computa-
tion and memory. However, directly generating a 3×O vector
still requires heavy memory and computation if the number
of points O and the number of layers is large.

Therefore, we choose hierarchical, coarse-to-fine genera-
tion strategy, with the straightforward and effectively fully
connected layer and multilayer perceptron, which not only
saves computation and memory but also suffices the intuition
of generating point clouds.

2) HIERARCHICAL RECONSTRUCTION
The hierarchical generation strategy is to first generate the
key points of the rough sketch through the fully connected
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network, which conforms to the spatial distribution of the
point cloud. Then cover a 2Dmesh grid around the key points
and perform folding-like operations to fit the fine structure for
generating a dense point cloud.

Given a 1 × 0 matrix that represents the global
descriptorf (P) ∈ R0 , first expand the dimension to extract
the information through a parametric non-linear function h2,
and map the expanded vector to a set Pcoarse in the form
of Nc × 3 through the function ∇ to represent the initially
generated point cloud sketch:

Pc = ∇ h2(f (P)) (11)

where h2 : R0 × R0 7→ R3Nc , ∇ is a mapping function.
Then consider the key point pci ∈ Pc of the rough sketch,

generate a 2D mesh grid M(η, ξ ) ⊆ Rη×η around the point
according to:

M(η, ξ ) = {(mxi,myi) | mxi,myi = i
2ξ
η−1

− ξ}

∀mxi, ∀myi ∈ [−ξ, ξ ], η > 1 (12)

and perform the Folding operation [16] on the mesh grid to
construct a fine local structure Si ⊆ R3 in terms of the global
vector and the point pci:

Si = Folding(M(η, ξ ), pci, f (P))

= σ2(M(η, ξ ) ‖ pci ‖ f (P)) (13)

where σ2 is also a learnable non-linear function, and ‖ is
a concatenation operation. With (13), the mesh grid can be
deformed to the real surface Ŝ around the keypoint.
Therefore, the folded mesh grids are added to the key

points and stitched the reconstructed point cloud:

P̂ = ∪N
i=0 (Si + pci) (14)

where the P̂ = {p̂1, . . . , p̂O | p̂o ∈ R3
} is the reconstruction

point cloud, with the form of O× 3 matrix.

D. LOSS FUNCTIONS
Similar to PointNetVLAD [9], The lazy quadruplet loss based
LlazyQuad on metric learning is utilized in the place recogni-
tion loss Lrecog∗, which ensures that the encoder generates
discriminative global descriptors so that similar point clouds
have a closer distance in the feature space.

In order to supervise the reconstruction network, the loss
function Lrecons∗ for the spatial distribution and position con-
straints on the point cloud is also used, including the MSE
loss LMSE , Chamfer Distance loss LCD and Earth Mover’s
Distance loss LEMD [15].

1) METRIC LEARNING LOSS
Considering a tuple T = (Pt ,Ppos, {Pneg}) of point clouds
for training, including the target point cloud Pt , a similar
point clouds Ppos, and dissimilar point clouds {Pneg}, the
optimization goal is to reduce the global descriptors’ distance
between the positive matches δpos = d(f (Pt ), f (Ppos)), and
enlarge the distances between the negative matches {δneg =

d(f (Pt ), f (Pneg))}. To avoid the confusion of two dissimilar
point clouds, i.e., Pneg and Pneg∗, enlarge the distance of them
i.e., {δneg∗ = d(f (neg∗), f (Pneg))} for stable training, Pneg∗
is randomly selected during the training process. The lazy
quadruplet loss is utilized as:

LlazyQuad = max([α + δpos − {δneg}]+)

+max([β + δpos − {δneg∗}]+) (15)

where α and β are constant margin parameters.

2) RECONSTRUCTION LOSS
Since the disorder of the point cloud, it is challenging to learn
the pairing relationship between the reconstructed point cloud
P̂ and the ground truth point cloud P. The solutions can be
summarized into two categories.

One is a loss function that satisfies the invariance to per-
mutations, e.g., Chamfer Distance loss LCD in (16) and Earth
Mover’s Distance loss LEMD in (17), determining the match-
ing relationship through nearest neighbor searching, and the
network learns the sequence pattern of output systematically.

LCD(P, P̂) =
1
|P|

∑
p∈P

min
p̂∈P̂
‖p− p̂‖2

+
1

|P̂|

∑
p̂∈P̂

min
p∈P
‖p̂− p‖2 (16)

which not requires that both P and P̂ have the same number of
points. min ‖p− p̂‖2 minimize the distance from point p ∈ P
to the closest point p̂ ∈ P̂ and vice verse.

LEMD(P, P̂) = min
ψ :P→P̂

1
|P|

∑
p∈P

‖p− ψ(p)‖2 (17)

where ψ : P→ P̂ is a bijection function to find the corre-
sponding points using iterative (1+ε) approximation scheme.
Therefore, LEMD requires same number of points in P and P̂.
Another one is that the pattern of output order is fixed, e.g.,

sorted, and the MSE loss LMSE in (18) is performed on the
corresponding index of the points.

LMSE (P, P̂) =
1
|P|

∑
pi∈P
p̂i∈P̂

‖pi − p̂i‖2 (18)

where the same index i is representing the corresponding
points inP and P̂. Also, the same number of points is required.
Thus, the reconstruction loss is applied as follows:

Lrecons∗ = LMSE (P,Pc)+ LEMD(P,Pc)
+γLCD(P, P̂) (19)

V. EXPERIMENTS
In this section, we first describe the implementation details
of the encoder and decoder of our LPD-AE network, includ-
ing parameters and function equations, which accomplish
the latent space representation of the point cloud to achieve
large-scale scene environment recognition and reconstruction
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tasks. Then, we give details of the training dataset and bench-
mark, including the public dataset, i.e., Oxford RobotCar [70]
and KITTI datasets [71], and our freshly collected datasets.
Finally, we show the performance of state of the art over
existing methods and detailed ablation studies of our model.

A. IMPLEMENTATION DETAILS
As shown in Fig. 3, we give specific instances for recognition
and reconstruction experiments with parameters and imple-
mentation functions for practical applications. The overall
network structure is as described in Section IV.
For the encoder network in Section IV-B, the adaptive

k ranging from [20, 100] to select the optimal neighbor-
hood size and calculated structural features, and the dimen-
sions are extended to F = 64dimensions through shared
MLP(64, 64). In the feature transformation, the equation g2
is MLP(64, 128, 1024), l2 is FC(512, 256, 64 ∗ 64), and
the feature transformation matrix A is obtained by the fol-
lowed Reshape. Then in the feature aggregation, kF and
kC = 20, and the aggregation function φe2 is MLP(64, 64).
A N × 64-dimensional matrix is obtained through the update
function ρe→v

: Maxpooling. Final a global description
vector f (P) of 0 = 256 dimensions is obtained through
NetVLAD with Kv = 64 and Dv = 256.
For the decoder network in Section IV-C, rough key points

are generated by the function h2 = FC(256, 256,Nc ∗3) and
mapping function ∇ : Reshape, and then the Folding opera-
tion ofMLP(512, 512, 3) squeeze a mesh gridM(2, 0.05) to
generate the dense point cloud P̂ ⊆ RO in a O × 3 matrix,
O = 4Nc. In the LlazyQuad of the recognition task, we set
margins α = 0.5, β = 0.2, Ppos = 2,Pneg = 18, and in
the Lrecons∗ of reconstruction task, to facilitate the LEMD and
LMSE on coarse key points generation, we setNc = N and the
weight γ of the LCD is gradually increased from γ = 0.01 to
1which utilized on dense points. Themodels are trained using
Adam optimizer with an initial 0.0001, 0.7 times decayed
every 50K steps learning rate. All experiments are conducted
on a Titan XP GPU using TensorFlow.

B. DATASETS
We train and evaluate the LPD-AE on various datasets
for scene recognition and reconstruction tasks, including
extensive scenes, i.e., indoor, outdoor, campus, and urban
environments.

1) PointNetVLAD BENCHMARK
We used the datasets and place recognition benchmark
provided in PointNetVLAD. One of them, the outdoor
large-scale scene dataset, Oxford RobotCar is used for train-
ing and validation of place recognition and reconstruction
tasks. And place recognition evaluations are also performed
on three other indoor datasets, a university sector (U.S.),
a residential area (R.A.) and a business district (B.D.).

The Oxford RobotCar dataset is a whole 3D point cloud
map built from 2D LIDAR and odometry and then cut into
submaps, more details can find in PointNetVLAD [9]. Each

FIGURE 5. Demonstration of our dataset. We collect data on the same
path of campus and city roads under different times and weather
conditions, including binocular images, LIDAR point cloud, GPS, and IMU
data, with a total length of nearly 50 kilometers.

submap is randomly downsampled to 4096 points with a
voxel grid filter and normalized to [- 1,1]. It contains 44 data
sets, which were collected on the same trajectory under dif-
ferent times, seasons, and weather conditions. Among them,
21711 submaps are used for training, and 3030 submaps
are used for testing. The ground truth of place recogni-
tion is provided by corresponding UTM coordinates. The
structurally similar and dissimilar point clouds for training
in the recognition task, i.e., Ppos and Pneg are determined
by the relative positions of two point clouds. The distance
within 10 meters is defined as similar pairs, and the point
clouds beyond 50 meters are most likely not similar.

2) KITTI DATASET
We performed place recognition validation and reconstruc-
tion training and validation on the KITTI dataset [71]. Unlike
the Oxford RobotCar dataset, the KTTI dataset is urban
environment data collected directly by Velodyne-64 LIDAR.
According to the preprocessing method of Oxford RobotCar,
we remove the ground, truncated it to 25 × 25 meters, and
randomly downsampled to 4096 points with a voxel grid filter
followed normalization. Only sequence 00 in odometry was
used, 70% for training, and 30% for testing. However, KITTI
is just collected on the same track at the same time.

3) OUR OWN DATASET
We design our own data acquisition platform to collect data
using for long-term relocalization, place recognition, and
reconstruction. And details can be found in Section VI-A.

Compared with the oxford RobotCar dataset, our own
dataset has notable improvements on the acquisition
method using a RoboSense-32 LIDAR and accurate ground
truth. The GPS/INS fusion positioning system provides
a decimeter-level position, and even post-processing can
achieve centimeter-level accuracy. It also includes the
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TABLE 1. Comparison results of the average recall (%) at top 1% and at top 1 (AR@1%/AR@1) under existing networks.

advantages of the Oxford RobotCar dataset, collecting scene
data of different times and weathers on the same track of
urban roads and campus as shown in Fig.5. The dataset also
collects images of binocular cameras, GPS, IMU, and LIDAR
data at the same time, which can facilitate a variety of research
tasks, such as detection, relocalization, depth estimation,
scene flow, 3D reconstruction, SLAM in dynamic scenes, etc.

We performed place recognition validation and recon-
struction training and validation on our own dataset, which
nearly 50 km route. We used 19927 point clouds, 70% for
training, and 30% for testing as well.

C. PERFORMANCE
1) PLACE RECOGNITION
The evaluation of scene recognition performance uses the
benchmark provided by PointNetVLAD. Specifically, inmul-
tiple sets of test data, we query the candidate point cloud
with the closet distance in terms of the global descriptor.
It regards as a successful place recognition if the point cloud
retrieved within 25 meters between the ground truth. There-
fore, the recall metric is used to evaluate the recognition
accuracy of the model, with consistency to PointNetVLAD,
we also use the Average Recall@N and Average Recall@1%.
We compared with the existing work PointNetVLAD and
PCAN, including the baseline and refine version. And also,
compared with the original PointNet succeeded by maxpool-
ing (PN-MAX) and the state of the art PointNet trained
for classification on the ModelNet(PN-STD) to verify the
generalization that the network trained on Modelnet can be
extended to large-scale environments, which reported in [9].

The comparison results are shown in Fig.6 and Table.1.
Our network, LPD-AE trained with multi-loss, significantly
exceeds other comparison models and is also close to the
original LPD-Net we proposed, with 93.4% recall at the
top 1% on the Oxford RobotCar dataset. On the other
three datasets, we still get better results without refinement
than their refined model training with them. The 7% leap
performance substantially confirms that our latent space rep-
resentation extracts more efficient features and is general-
izable to different point cloud datasets. The slight decrease
in performance compared to LPD-Net is because the global
descriptors generated by LPD-AE are trained not only for the
place recognition but also for reconstruction. Furthermore,
the practical application directly on KITTI and our dataset
also verifies the feasibility of the model. For the comparison,
PointNetVLAD and PCAN use the results of the pre-trained
model provided by the author.

FIGURE 6. Average Recall of candidates comparison of existing works.

FIGURE 7. Average Recall and Similarity comparison of existing works.

In addition to comparing Average Recall, the Similar-
ity of global descriptors is also considered to evaluate the
performance, which calculated by the inner product of the
descriptor vectors generated by the ground-truth recalls of
the same place. A larger value of similarity indicates that
the global descriptors corresponding to different point clouds
in the same place are more similar or more stable. Average
Recall and Similarity are a trade-off to some extent, and a
more discriminative global descriptor is more conducive to
improving the average recall. Therefore, the Average Recall
of LPD-Net is quite high, but the Similarity is reversed, which
reveals that the global descriptors of point clouds at the same
place are easily confused. According to Fig.7 and Table.2,
LPD-AE can balance both, improving the Similarity from
0.75 to 0.84 within the acceptable range of the Average Recall
loss.
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TABLE 2. Comparison results of the average recall (%) at top 1%
(AR@1%), top 1 (AR@1) and Similarity under existing networks.

FIGURE 8. Ablation study results on different network structure.

a: DIFFERENT NETWORK STRUCTURE
We perform several removal and combination experi-
ments on the Adaptive neighborhood geometric feature
extraction(GF), Feature space aggregation E(F ′), and Phys-
ical space aggregation E(C) in the network. The compari-
son results are shown in Fig.8 and Table. 3. GF shows the
effectiveness of the adaptive neighborhood geometric feature,
which is close to 9% improvement over PointNetVLAD.
E(F ′) and E(C) both contribute to the network, C represents
the concatenate of parallelE(F ′) andE(C) outputs, andM rep-
resents the maxpooling operation for parallel outputs. Still,
the contribution of the combined E(F ′)_E(C) is the most obvi-
ous, which proves our claim that characteristic features and
their spatial distribution is sufficient representing large-scale
scenes. AE represents for training using encoder networks
and multiple loss functions as constraints, and the result
shows that it also achieves fine performance in the place
recognition task. Here we mainly focus on the contribution
of AE, more detailed analysis of network structures can be
found in our previous work [12].

b: MULTI TASK AND LOSS FUNCTION
We study the effects of individual place recognition task,
reconstruction task, and multi-task joint training on latent
space representations. LPD-AE-recons-loss represents that
the final output of the network is constrained only by recon-
struction loss, and the global descriptor in the middle of the
network has no constraints, while LPD-AE-recog-loss only

TABLE 3. Ablation studies on different Network Structures.

TABLE 4. Ablation studies on multi task and loss function.

FIGURE 9. Ablation study results on Multi task and loss function.

applies the place recognition loss to constrain the global
descriptor. The result in Table.4 and Fig.9 shows that the
tendency of adopting reconstruction loss alone makes the
descriptors more similar but reduces the distinguishabil-
ity, and the recognition loss function alone is in contrast.
Multi-task and multi-loss function training can guarantee
both, indicating that the descriptors of latent space represen-
tation, used for place recognition and reconstruction, extract
more reasonable scene features, rather than blindly improving
the distinguishability.

c: DISCUSSION ON RECEPTIVE FIELD
The sufficient information for representative high-level
feature extraction depends greatly on the corresponding
receptive field, and the feature space and physical space
aggregation methods we adopt can just expand the receptive
field. As shown in Fig.4, the same local geometric features
extracted by the neighborhood using the adaptive kNN can
be clustered together in the feature space, and aggregated by
the dynamic graph to enhance and extract more characteristic
features. This is equivalent to the fact that parts with the

108412 VOLUME 8, 2020



C. Suo et al.: LPD-AE: Latent Space Representation of Large-Scale 3D Point Cloud

TABLE 5. FLOPs and model size comparison of existing networks.

same structure in physical space can be utilized to encode
corresponding types of structural features. Then, the dynamic
graph aggregation in physical space encodes the spatial dis-
tribution information of these structural features and also
discover the knowledge of multiple structural features around
the points to accumulate context features. Moreover, this also
makes the receptive field of context features beyond the scope
of a single structure or instance.

d: TIME AND SPACE COMPLEXITY ANALYSIS
We compare the required computational resources and model
size with PointNetVLAD and PCAN in Table.5. We are
comparable in size and computational resources to the PCAN
model, but with much better performance. The real-time
nature of the model can satisfy the actual lidar application.

2) RECONSTRUCTION
The reconstruction task was trained and validated on Oxford
RobotCar, KITTI, and our own dataset, using the global
vector generated by the encoder, LPD-net. However, there is
no relevant benchmark for large-scale point cloud reconstruc-
tion, especially for recovery from global descriptors. We use
Chamfer Distance and Earth Mover’s Distance as evaluation
metrics on the test dataset.

We give a qualitative analysis through the visual compar-
ison of the reconstructed point cloud and the original point
cloud. And a quantitative comparison with different encoder
networks and reconstruction settings. The decoder network
can recover the original point cloud contour shape through
a compact global descriptor, and it shows that the latent
space representation truly discovers the characteristics of the
large-scale environment.

a: QUALITATIVE VISUALIZATION
We demonstrate that the point cloud of the large-scale scene
can be recovered from the global descriptor with a length of
256, and the compression ratio can be 48 :1. It is unmanage-
able for us to give a quantitive comparison because very little
work has been done on the compression and reconstruction
of large scenes. We evaluate LPD-AE on multiple datasets
and show some representative visualizations of reconstructed
point clouds and corresponding distance metric. On the
Oxford RobotCar test dataset, LPD-AE produces the dense
point cloud with 16384 points rather than 4096 points, and
therefore evaluated it by the Chamfer Distance, with the
overall result is CD = 0.018. From the visualization in
Fig.10, our LPD-AE network can recover the main contour
shape of the point cloud of the environment, which verifies

FIGURE 10. Qualitative visualization for reconstruction results. It can be
seen that the reconstruction restores the basic outline shape of the point
cloud, but it is relatively rough.

FIGURE 11. Failure cases of Our LPD-AE reconstruction. The point clouds
with relatively large reconstruction errors are basically small samples.

that our encoder network has learned the features for latent
space representation of point clouds. These features are very
intuitive and difficult to characterize with specific equations.
Nevertheless, it can be perceived that the large-scale point
cloud compression and reconstruction task is particularly
challenging considering the reconstructed point cloud is more
blurred than the original point cloud and lacks structural
details.

We observe that the network pays more attention to signif-
icant components in the environment, such as buildings, and
is not sensitive to small objects, such as people and cars. The
results also confirm the robustness of the features LPD-AE
extracted from dynamic scenes.

We also give some failure cases in Fig.11, which may be
due to the uneven sample of the dataset, fewer samples at
the intersection, and larger reconstruction errors on the corner
structure.

b: DIFFERENT KEYPOINTS NUMBERS
We study the effect of the number of rough keypoints on
reconstruction accuracy. Comparisons in Fig.12 and Table.6
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FIGURE 12. Quantitative comparison results on different numbers of key
points. For both EMD and CD metric, lower is better. (EMD-MSE-CD)
means training with LEMD + LMSE + LCD.

TABLE 6. Quantitative comparison results on different keypoints
numbers.

show that the more rough-keypoints, the higher the accuracy
of the reconstructed dense point cloud. All experiments use
LEMD for rough points,LCD for dense points, and 150 epochs
of training for fair comparisons.

c: DIFFERENT LOSS FUNCTION
We validate the effectiveness of different loss function com-
binations in the reconstruction task. Because the number of
generated pointsO exceeds the number of ground truthN , the
LCD is the only option for the dense point cloud generation,
and for the key points generated in the intermediate stage,
LCD, LEMD, and LEMD can be the alternative. Given the fact
that the combination of LEMD and LEMD is the best result
of reconstruction accuracy from Fig.13, it can be inferred
that these two loss functions constrain the key points in
space location and spatial distribution, which can facilitate
reconstruction of dense point clouds.

d: PointNetVLAD VS LPD-Net
We replaced the encoder of the auto-encoder architecture
with PointNetVLAD to study the effect of different encoders
on the ability of reconstruction with the corresponding

FIGURE 13. Quantitative comparison results on different Loss function
and Encoder network. Also, lower is better.

FIGURE 14. Multi-sensor fusion hardware platform for data collection
and application.

intermediate codeword. Compared with PointNetVLAD, the
reconstruction evaluation metric is comparable, or Point-
NetVLAD is slightly better in Fig.13. Still, our network is
superior to PointNetVLAD in the experiment of themap com-
pression and reconstruction as depicted in Fig.17, since the
LPD-AE extracts more reasonable environmental features.

VI. APPLICATIONS
A. LATENT SPACE ANALYSIS ON OUR OWN PLATFORM
1) PLATFORM
We develop a multi-sensor fusion hardware system to collect
data and practical applications, as disclosed in Fig.14, which
equipped with RoboSense-32 LIDAR, ZED binocular cam-
era with 120mm baseline, InertialLabs INS-D dual-antenna
GPS / INS integrated positioning and navigation system, etc.
Through hardware synchronization and system calibration,
it can provide point clouds, dual-channel images, raw GPS
and IMU signals, fusion-corrected position and attitude sig-
nals, and fusion odometer signals. We will release the dataset
created by the system with ground truth position and pose as
described in Section V-B3 for a variety of tasks.

The system is also equipped with an industrial computer
with a GPU, which provides the feasibility for the research
on autonomous driving perception system. We carry out the
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FIGURE 15. t-SNE visualization of latent space. Compared with
PointNetVLAD, the latent space we generate is more distinguishable. The
point clouds in the blue box are examples of clustering, which indicate
that the point clouds with similar structures are closer in the latent space.

practical application of SLAM on this platform to confirm
the validity and practicability of our proposed latent space
representation. The followed experiments show the powerful
potential of our model in practical applications.

2) LATENT SPACE VISUALIZATION
We exhibit the visualization of latent space using t-SNE
on our own datasets. From the visual comparison of latent
space in Fig.15, it can be demonstrated that the descriptors
generated by LPD-AE are more distinguishable than Point-
NetVLAD, and the distance between similar point clouds
closer, dissimilar point clouds have clear boundaries. The
latent space representation of point clouds in large-scale
scenes provides reliable and quantifiable metrics, which can
determine whether they are structurally similar or not through
the L2 distance of the descriptor from two frames of point
clouds. Examples of clustered point cloud corresponding to
latent space depict the distribution of point clouds in our
dataset, and it can be revealed that similar point clouds are
more compact in the latent space.

3) LOOP CLOSURE DETECTION AND RELOCALIZATION VIA
PLACE RECOGNITION
With the benefit of our platform, we perform live loop clo-
sure detection and relocalization applications through place
recognition. The overall system of the experiment is shown in
Fig.2, and details described in Section III. During the SLAM
mapping process, the keyframes that have been reached are
retrieved through the global descriptor to detect the loop
closure. Accordingly, the L2 distancematrix of the keyframes
descriptors and the map modified using the loop closure
are shown in Fig.16, and the blue keyframes represent the
corresponding loop closure paths detected, like [72]. For
relocalization, we utilize point clouds of the same trajectory
at different times to retrieve in the built maps, with corre-
sponding images and point clouds presented in Fig.16. The
positioning capabilities based on global features can also
be extended to multi-robot joint mapping similar to [18],

FIGURE 16. Results of loop closure detection and relocalization. The loop
closure detection in the L2 distance matrix figure (the lower left)
corresponds to the blue path. The red box is the result of relocalization
based on the point cloud at different times, and the image is only for
display reference.

FIGURE 17. Visual comparison of reconstruction results. The upper left
figure is the SLAM map of our dataset, and the upper right figure is the
keyframe map of the pre-processed and down-sampled point clouds. The
bottom left corner is the keyframe map reconstructed by our LPD model
as the encoder, and the lower right corner is the keyframe map
reconstructed using PointNetVLAD.

locating itself in other’s maps with the assistance of the global
descriptor.

4) COMPRESSING STORAGE AND RECONSTRUCTION OF
LARGE-SCALE POINT CLOUD MAP
Fig.17 manifests the compression and reconstruction capa-
bilities of the LPD-AE. We compress and reconstruct the
point cloud of each keyframe of the map built in the exper-
iment above, and rebuild the map using the reconstructed
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keyframes and corresponding position and attitude infor-
mation. Impressively, LPD-AE demonstrates the remarkable
aptitude to reconstruct dense point clouds from such com-
pressed features.

VII. CONCLUSION
In this paper, we present a novel and practical pipeline
of latent space representation for large-scale point clouds.
With the capabilities of the proposed LPD-AE network, the
irregular point cloud can be converted to equivalent latent
spaces and also reconstructed. Simple descriptor calculations
are used to achieve tasks that are initially computationally
complex, such as place recognition, loop closure detection,
relocalization, and compressed transmission, with less mem-
ory, computing resources, and transmission bandwidth.

What’s more, comprehensive evaluations and extensive
applications have demonstrated impressive and remarkable
performance to reach the state of the art, which manifests
the great potential for applications in robotic and autonomous
driving.
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