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ABSTRACT The number of cyclists fatally struck when crossing a driver’s travel path at an unsignalised
intersection has been stable in recent years, indicating that more effort should be made to improve safety in
this specific conflict scenario. The most recent safety systems help drivers avoid collisions with cyclists, but
improving cyclist safety further requires resolving challenges unique to bicycles and cyclists. In this paper
we propose a predictive computational model of driver behaviour in the intersection scenario. Although a
handful of studies have focused on describing driver behaviour in this scenario, no computational model that
can predict driver control can be found in the literature. The proposed model is based on a biofidelic human
sensorimotor-control modelling framework. Two visual cues were used: 1) optical longitudinal looming
and 2) projected post-encroachment time between the bicycle and the car. The model was optimised using
data from a test-track study in which participants were asked to drive through an intersection where a
cyclist would cross their travel path. The performances of the model were evaluated by comparing the
simulated driver-control process with the observed control behaviour for each trial using a leave-one-
out cross-validation process. The results show that the model performed rather well, reproducing braking
controls and kinematics that were similar to the observations. The extent to which the model could be
used by safety systems’ threat-assessment algorithms is discussed. Future research to improve the model’s
performances is suggested.

INDEX TERMS Predictive computational model, accumulator model, crossing, driver behaviour, cyclist,
test-track data.

I. INTRODUCTION
As the interest in cycling continues to grow because of
health and environmental benefits, so does the number of
conflicts between motorists and cyclists. The European crash
statistics database shows that the proportion of cyclist fatali-
ties compared to all road fatalities has been increasing year
after year [1]. Developing countermeasures to change this
trend is an important matter. In fact, safety systems—such
as automated emergency braking (AEB) or forward colli-
sion warning (FCW)—designed for crossing-cyclist scenar-
ios are now being installed in cars. As a result, the European
new car assessment program (Euro NCAP) now assesses
AEB system functionality when the car is on a collision
course with a crossing cyclist [2]. The performance of the
threat-assessment algorithms implemented in safety systems
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(independent of their assessment domain) depends on accu-
rately predicting drivers’ intent [3]. Unfortunately, very few
driver behaviour models address crossing-cyclist scenarios.
Two exceptions are the model by Silvano et al., who devel-
oped a probabilistic model that predicts whether a driver
will decide to yield for a crossing cyclist [4]. In the second,
Bella et al. presented a set of descriptive statistics related to
driver behaviour in a simulator environment when a cyclist
was crossing the travel path. Although their work focused on
the effect of different infrastructure designs on the drivers’
control, the results provide valuable information about how
drivers control their car [5]. While both models predict some
elements of driver control, they do not predict continuous
driver control. Recently, we proposed a model that predicts
when drivers initiate braking, given the moment when they
see the cyclist for the first time [6]. This brake-onset pre-
diction (BOP) model is particularly relevant for warning
systems, since it can more precisely determine whether a
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warning is relevant when the driver fails to control the car
according to the situation. The BOP model is a first step
towards a complete predictive model, but it has several limita-
tions: 1) the model always predicts that the driver will initiate
braking; 2) it does not take into account the encroachment
sequence—if the cyclist and the car pass through the intersec-
tion at very different times, drivers are less likely to brake; and
3) it predicts neither the level of braking nor the entire braking
control sequence that follows brake initiation (i.e., as with the
two previously cited models, it does not model a continuous
control signal).

In the BOP study, we speculated that braking initiation is
due to the accumulation of evidence for the need to brake
due to visual looming (the optical expansion of an object on
the retina). To test this hypothesis, we implemented a com-
putational model usingMarkkula et al.’s framework based on
accumulator models, which use perceptual cues as input [7].
Accumulator models were developed by neuroscientists to
explain how evidence that accumulates from perceptual cues
could initiate a control action [8]. This framework has already
been used to model driver control in different situations. For
example, Svärd et al. used the framework to predict braking
control in rear-end scenarios [9]. The original designers of
the framework used it to implement a steering control model
[7], adapting the continuous steering model of Salvucci and
Gray [10]. In a subsequent study, they also demonstrated that
non-visual cues could be integrated into their framework,
showing that vestibular cues have an important role in driver
control in slalom tasks [11]. The present paper is the first
attempt to extend this framework to model driver control in
crossing scenarios. The choice of perceptual cues is crucial
to make the model comparable to human control. In previ-
ous implementations (i.e., rear-end scenarios [9], [12]), the
looming cue was used as input to the model. Similarly, our
implementation also uses looming as an excitatory cue which
elicits the need for braking. However, as previously used, the
cue does not apply in crossing scenarios, since it represents
the optical expansion of the lead vehicle. Instead, we used the
longitudinal looming of the intersection point (i.e., the inter-
section point between the bicycle’s and the car’s travel paths).
This cue is already used in the literature to model human
locomotion [13]. An intervention by the driver in a crossing
scenario cannot be based only on this excitatory cue, how-
ever; if the cyclist crosses the intersection well before or after
the car, the drivers may not brake at all. As a consequence,
a cue that indicates whether the car is on a collision course
or not is also required. In the human locomotion literature,
the bearing angle (the angle between the direction of travel
and a moving target or collision object) has been recognised
as a relevant cue. If the bearing angle to an object remains
constant, a collision will happen as long as the distance to
the object also decreases [14], [15]: to avoid a collision, the
bearing angle change rate must be non-zero. This concept
was implemented by Fajen in a recent mathematical model
[13], which predicts the possible heading and speed that
humans can adopt to avoid a moving obstacle. As the model

illustrates, it is not enough to know the bearing angle’s change
rate, because the chance of collision also depends on the
distance to the intersecting object. The speed and heading
calculations are based on the time necessary for the human
observer to pass before or after the obstacle (note that the time
is partly derived from the bearing angle change rate). This
time is related to the post-encroachment time (PET) metric
used to study traffic conflict [16], with the difference that the
former is derived using optical angles. Because PET accounts
for both road users’ physical envelopes while bearing angle
does not, the former was chosen as the inhibitory cue in our
implementation. The cue is inhibitory because it provides
evidence that there is no need for braking. Note that PET
is compatible with the constant bearing angle strategy [14],
[15]: when PET is equal to zero, the observer is on a collision
course with the obstacle or road user. The implemented
model’s performance was analysed to test the hypothesis that
looming and PET suffice to explain drivers’ control when a
cyclist crosses their travel path.

The objectives of the study were: 1) to devise a com-
putational driver model that could be used for practical
applications (e.g., threat-assessment algorithms of safety sys-
tems), 2) to assess the prediction performances of the model,
and 3) to test the hypothesis that longitudinal looming and
post-encroachment time cues drive the drivers’ response pro-
cess in crossing-cyclist scenarios.

II. METHODOLOGY
A. DATA COLLECTION
1) PARTICIPANTS
Forty-four employees of Autoliv AB, Sweden, were
recruited. The participants were required to have a valid
driving license and be older than 25. Because three partici-
pants did not follow the instructions their data were excluded
from analysis. Therefore, the final dataset included data
from 41 drivers, of whom 32%were female. The average age
of the participants was 41.8 years, with a standard deviation
of 10.4 years. The average time that the participants had their
driving license was 23.3 years, with a standard deviation of
10.5 years. More information about this dataset can be found
in our paper [6].

2) EXPERIMENTAL SETUP
The data collection was carried out on the Carson City test
track [17], Vårgårda, Sweden. The participants were asked
to drive through an intersection in which a (robot) cyclist,
coming from the right side, might cross their path. The partic-
ipants started to drive 180m away from the intersection point.
They were instructed to reach a target speed before arriving
at a photo-cell sensor that would trigger the cyclist, hidden
behind a wall at the beginning of each run. A balloon car
was placed in the opposite lane 30 m in front of the intersec-
tion point to simulate oncoming traffic, limiting participants’
steering avoidance. The setup is represented in Figure 1.
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FIGURE 1. Layout of the experiment. The car driven by the participants
(black car) approached an unsignalised intersection where a robot cyclist
crossed the participants’ travel path from their near side. A balloon car
(green car) was parked in the opposite lane 30 m away from the
intersection point, in order to limit drivers’ ability to steer away.

The data from the car and bicycle kinematics (positions,
speeds, accelerations, etc.) were collected at 100 Hz using
a VBOX 3 RTK (Racelogic Ltd.). Additionally, the car’s
gas and brake pedal positions were recorded using two-wire
potentiometers.

3) EXPERIMENTAL PROTOCOL
In total, 20 trials were recorded for each participant after
a test drive. In four of them the cyclist did not appear at
the intersection at all. We included these trials to make
the experiment less predictable, hopefully slowing down the
driver’s adaptation. The 16 remaining trials resulted from
combining the four factors: 1) the car’s target speed (30
or 50 km/h), 2) the cyclist’s speed (10 or 20 km/h), 3) the
encroachment sequence at the intersection (bicycle passes
before the car, potential 50%-overlap crash, and car passes
before the bicycle), and 4) the cyclist crosses the road or
brakes before it. Twelve trials resulted from the full factorial
design (2 × 2 × 3) of the first three factors, and in the four
remaining trials the bicycle came to a rest before reaching the
right edge of the main road. The configuration of the 16 trials
is summarised in Table 1. The 16 trials were randomised for
each participant.

Further details of the experimental protocol can be found
in the previously mentioned paper [6].

B. IMPLEMENTATION OF MODELS
This section describes the implementation of the driver model
using Markkula et al.’s framework [7]. For further details on
the framework and on its ecological roots, we refer the reader
to the original paper.

The framework flow can be divided into four blocks [7]
as represented in Fig. 2: 1) perceptual processing, 2) control
decision andmotor output, 3) observed control, and 4) vehicle

TABLE 1. Factorial design for each trial.

FIGURE 2. Overall diagram of the implemented framework (adapted from
Markkula et al. [7]).

model. The implementation of each block is described in
the following sub-sections. The first three blocks comprise
the driver model; a more detailed diagram can be found in
Fig. 3. Examples of signals generated by the driver model are
presented in Fig. 4.

1) PERCEPTUAL PROCESSING
The perceptual processing block computes two quantities
from the two perceptual cues. The first cue is the longitudinal
looming (τ−1), the optical angle between the driver’s line of
sight and the future intersection point of the two road users’
travel paths, from which the excitatory perceptual quantity
(Pexcitatory) is derived.

The longitudinal looming, τ−1, is defined as

τ−1 = γ̇ /γ, (1)

where γ is defined as the angle between the intersection point
and the line of sight (see Fig. 5.a). This definition was bor-
rowed from Fajen’s model (see [13]). In the simulations, the
height of the drivers’ eyes was set to 1.2 m above the ground.
Note that this assumption may be a source of discrepancy
between the actual and simulated values of τ−1 because the
actual drivers’ eyes may not have been exactly 1.2 m above
the ground.
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FIGURE 3. An illustration of the driver model based on Markkula et al.’s framework. The excitatory part of the model is at the top and the
inhibitory part is at the bottom.

The inhibitory perceptual quantity (Pinhibitory) was derived
from the second implemented cue PETproj, defined as the
projected PET between the bicycle and the car. This time is
the projected time from the moment one of the road users
exits the conflict zone (see Fig. 5.b) to the moment the
other road user enters it, assuming constant speeds. Thus,
three cases must be considered, depending on the projected
encroachment sequence:

PETproj =


tC,enters − tB,exits, if bicycle passes first
tC,exits − tB,enters, if car passes first
0, otherwise,

(2)

where tC is the time related to the car, and tB the time related
to the bicycle.

The first perceptual quantity, (Pexcitatory), is defined by

Pexcitatory(t) = Kexcitatory × τ−1(t), (3)

where Kexcitatory is a constant perceptual gain.
The second quantity, (Pinhibitory), is inhibitory. It is defined

by

Pinhibitory(t) = −Kinhibitory × |PETproj(t)|, (4)

where Kinhibitory is a constant perceptual gain.

2) CONTROL DECISION AND MOTOR OUTPUT
This block can be broken down into four parts (see Fig. 3): a)
Excitatory branch, b) Inhibitory branch, c) Link, and d) Brake
pedal control. The first two contain accumulation models
based on the excitatory and inhibitory cues (τ−1 and PETproj),
respectively. The third part, Link, connects both branches,
giving priority to the inhibitory branch. Finally, the Brake
pedal control part implements a motor-primitive-based algo-
rithmwhich generates a continuous brake-pedal profile, given
a brake-pedal deflection target.

a: EXCITATORY BRANCH
The excitatory evidence accumulator, Aexcitatory(t), is defined
by

dAexcitatory(t)
dt

= 0[kexcitatoryεexcitatory(t)], (5)

where kexcitatory is a constant gain, 0 is a gating function
defined by Markkula et al. [7] (see Eq. 6), and εexcitatory(t)
is the error between Pexcitatory,r and the predicted excitatory
perceptual quantity, Pexcitatory,p. Pexcitatory,r is the quantity
Pexcitatory with the addition of the perceptual delay (τp) set
to 0.05 s (from Markkula et al. [7]). When Aexcitatory reaches
the excitatory accumulation threshold (arbitrarily set to 1),
a brake adjustment is initiated, Aexcitatory is reset to zero,
and Pexcitatory,p is updated (see (7)). The gating function 0
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FIGURE 4. The signals generated by the driver model when replaying one trial extracted from the data. First row (starting at top): perceptual cues
(τ−1 and PETproj ); second row: received and predicted perceptual quantities; third row: excitatory and inhibitory evidence accumulators; fourth
row: simulated and observed brake pedal control; fifth row: car acceleration derived from the brake pedal deflection; and sixth row: car speed
integrated from the car acceleration. From top to bottom, the rows match the process in the driver model, from the initial perception of cues to
the final effect of the brake pedal action on the car kinematics. The vertical lines between the Evidence accumulator and the Brake pedal
deflection plots show the relation between the brake adjustments and the moment when the accumulators reach either −1 (inhibitory) or 1
(excitatory). Finally, the time of the bicycle’s appearance is shown by the long vertical dashed line and the time it cleared the car’s path is shown
by the long solid vertical line.

is defined by

0(η) = sgn(η) · max(0, |η| − gate), (6)

where gate is a constant value. The quantity Pexcitatory,p is
defined by

Pexcitatory,p(t) =
n∑
i=1

εexcitatory,iH (t − ti), (7)

where ti is the time at the ith adjustment andH (t) is a function
that fulfills the following requirements:

H (t) = 0, for t ≤ 0
H (t)→ 1, for t → 0+

H (t) = 0, for t ≥ Tp,

(8)

where Tp is the time when the control error is predicted to be
corrected. As suggested by Markkula et al. [7], the H (t)
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FIGURE 5. a. Left-side view of scenario (above in figure) shows γ , the
angle between a horizontal line and the sight line from the driver’s eyes
to the intersection point of both road users’ travel paths. b. Top view of
scenario (below in figure) shows the conflict zone used to calculate the
projected post-encroachment time, PETproj .

function is defined as:

H (t) =

{
0 for t ≤ 0
1− G(t − τp) for t > 0,

(9)

where G is the kinematic motor-primitive function present
in the Brake pedal control generation part. In the present
implementation, G is defined as in (12) to (15) with the
brake-deflection target T set to 1.

b: INHIBITORY BRANCH
The inhibitory branch shares the same structure as the excita-
tory branch, except that the inhibitory evidence accumulator,
Ainhibitory, does not include a gating function:

dAinhibitory(t)
dt

= kinhibitoryεinhibitory(t), (10)

where kinhibitory is a constant gain. Analogous to the exci-
tatory branch, εinhibitory(t) is the error between Pinhibitory,r
and the predicted inhibitory perceptual quantity, Pinhibitory,p.
WhenAinhibitory reaches the inhibitory evidence accumulation
threshold (arbitrarily set to −1), the release of the brake
pedal is initiated, Ainhibitory and Aexcitatory are reset to 0, and
Pinhibitory,p is updated:

Pinhibitory,p(t) =
n∑
i=1

εinhibitory,iH (t − ti). (11)

c: LINK
The Link part, connecting the inhibitory and excitatory
branches, initiates the brake-pedal adjustments and estimates
their magnitudes. By design, the inhibitory branch is priori-
tised over the excitatory one. Two situations are possible:
• When Ainhibitory reaches −1, the brake-control target is
set to zero and brake-pedal release is initiated. Addition-
ally, Aexcitatory is reset to zero via the OR gate.

• When Aexcitatory reaches 1, the control target is set to
Pexcitatory,r and brake-pedal adjustment is initiated.

FIGURE 6. Example of brake-pedal control output from the
motor-primitive function (G). Two successive brake-pedal adjustments
are shown in the figure. The G function generates a continuous control
signal, given the brake-pedal target, whenever a brake-pedal adjustment
is initiated.

d: BRAKE-PEDAL CONTROL
The brake pedal control block, based on the function G,
generates a continuous brake-pedal signal given a brake-pedal
deflection target (see Fig. 6). The G function was derived
from the algorithm proposed by Schaal et al. [18] and adapted
from Dégallier Rochat’s implementation1 [19]. Our imple-
mentation used the MATLAB ode45 function to solve differ-
ential equations, reducing execution time. TheG function is a
set of differential equations defined by (12) to (15) (using the
same variable naming used by Dégallier Rochat [19]). The set
of equations models one agonist muscle and one antagonist
muscle (i = 1 and i = 2, respectively).
The activation signal vi is the difference between the

brake-pedal deflection target (where T equals both the deflec-
tion target for the agonist muscle and the opposite of the
deflection target for the antagonist muscle) and the current
brake-pedal target p:{

1wi = max(0,T − p)
v̇i = av(−vi +1wi),

(12)

where the parameter av controls the rate of convergence
of vi. The velocity signal was generated by smoothing the
activation signal vi twice (i.e., with the smoothing functions
xi and yi) {

ẋi = −axxi + (vi − xi)c0
ẏi = −ayyi + (xi − yi)c0,

(13)

where the parameters ax and ay control the rate of conver-
gence of xi and yi, respectively, while the parameter c0 sets
the speed of the movement. The speed of the brake-pedal
adjustment, zi, is calculated by integrating yi and using an
auxiliary variable, ri, to ensure that zi has a motor-primitive
shape (i.e., bell shape):{

ṙi = ar (−ri + (1− ri)bvi)
żi = −azzi + (yi − zi)(1− ri)c0,

(14)

where the parameters ar and b set the shape of zi, and
the parameter az controls its rate of convergence. Finally, the
brake-pedal deflection, ḃp, is calculated by integrating the

1Retrieved from http://biorob2.epfl.ch/users/degallie/matlab_chap3.tar
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speeds of the agonist and antagonist muscles (i = 1 and i = 2,
respectively).

ḃp = ap(max(0, z1)− max(0, z2))c0, (15)

where the parameter ap controls the rate of convergence of
the ḃp.

Note that the parameters defined above were determined
during the optimisation of the model (see next section).

The generated brake-pedal signal is then output from the
block after a motor-delay time (τm = 0.1 s).

3) OBSERVED CONTROL
Because the control (brake-pedal deflection) is directly
observable, this block was not implemented in the driver
model.

4) VEHICLE MODEL
The vehicle model generates the car’s longitudinal kinemat-
ics, given the control signals from the driver model. The
vehicle model was implemented as follows:

ẍ(bp, ẋ) =



0, if ẋ = 0
q1 × bp, if ẋ > 0

and bp <
g− q2
q1 − q2

q2 × (bp− 1)− g, if ẋ > 0

and bp ≥
g− q2
q1 − q2

,

(16)

where ẍ is the vehicle longitudinal acceleration (in m/s2)
given bp the brake-pedal deflection (ranging from 0 to 1), ẋ is
the vehicle speed (in m/s), q1 and q2 are the two coefficients
defining the two distinct slopes of themodel in approximation
of an actual braking curve, and g is a constant equal to
9.81 m/s2.
After the vehicle acceleration due to the brake-pedal action

was calculated, the vehicle longitudinal position (x) and
speed (ẋ) were calculated at every j step of the simulation
using the following basic kinematics equations: ẋj+1 = ẍj ×1t + ẋj

xj+1 = ẍj ×
1t2

2
+ ẋj ×1t + xj.

(17)

Note that when the collected data were replayed, the car
kinematics were modified to discard any original driver brak-
ing or accelerating control. That is, for each run, the car speed
was set equal to the observed car speed when the bicycle
became visible.

C. OPTIMISATION OF MODELS
This section describes how the parameters of the driver model
and the vehicle model were optimised.

1) PERCEPTUAL PROCESSING
a: EXCITATORY BRANCH (Kexcitatory )
The perceptual quantity of the excitatory branch defines the
target of brake-pedal deflection when a braking action is
triggered. Therefore, the optimisation process for finding
Kexcitatory required determining the right amount of gain to
create a brake-pedal deflection value ranging from 0 (fully
released) to 1 (fully depressed), using τ−1. A simple algo-
rithm to detect the brake onset was used to determine the
adjustments required to the actual observed brake signal. The
value of τ−1 before the perceptual and motor delays (τp and
τm) was extracted for each trial in which braking occurred.
The amount of brake-pedal deflection after this first brake
adjustment (bpBO) was extracted for each trial. The percep-
tual gain Kexcitatory was then estimated by fitting a linear
mixed-effect model, defined by (3) and including a random
effect due to the drivers (the MATLAB function fitlme was
used). As a consequence, the results describe driver-specific
perceptual gains.

b: INHIBITORY BRANCH (Kinhibitory )
The inhibitory branch is not used to set a brake target; it
merely triggers the brake-pedal release. Therefore, Kinhibitory
was arbitrarily set to 1. However, the accumulation gain,
kinhibitory, was tuned to make sure that the driver model repro-
duces a realistic brake-pedal release.

2) CONTROL DECISION AND MOTOR OUTPUT
a: EXCITATORY BRANCH (kexcitatory , gate)
The two parameters of the accumulator Aexcitatory were cho-
sen so that the accumulator reaches a value of 1 when a
brake-pedal adjustment is required. Because Pexcitatory,p is
equal to zero for the brake onset, εexcitatory was simply equated
to Pexcitatory,r , which was calculated for all the trials where a
braking control occurred. The parameters kexcitatory and gate
were tuned using a non-linear mixed-effects model to include
driver as a random effect. TheMATLAB function nlmefitwas
used.

b: INHIBITORY BRANCH (kinhibitory )
The inhibitory accumulator (Ainhibitory) was arbitrarily set to
reach an accumulation threshold equal to -1. The gain in the
perceptual quantity equation (kinhibitory; see (4)) was deter-
mined by optimisation to fulfill the requirement for Ainhibitory
for the collected data.

There were two cases to consider in the collected data:
i) the trials in which the driver braked, and ii) the others.

i) When the driver braked, the received perceptual
quantity Pinhibitory,r was computed with kinhibitory set
to 1, considering PETproj from the moment the bicycle
started to be visible (tvisibility) to the moment when the
driver made the decision to release the brake pedal (i.e.,
τp+τm before the start of observed brake-pedal release).

ii) When the driver did not brake, Pinhibitory,r , with
kinhibitory set to 1, was calculated from tvisibility to
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TABLE 2. Parameters used for G.

the moment when the excitatory branch’s Aexcitatory
would have reached 1. Because the driver did not
brake, Ainhibitory would have reached−1 when Aexcitatory
reached 1, at the latest.

The kinhibitory gain was then estimated, using a linear
mixed-effect model with the drivers as random effects (to
minimise the error between -1 and the accumulator Ainhibitory,
derived from the Pinhibitory previously calculated). Because
this optimisation was done at the first full release of the brake
pedal, Pinhibitory,p was negligible, so εinhibitory was simply
equated to Pinhibitory,r .

c: MOTOR OUTPUT
First order Gaussians were fitted to the recorded brake-pedal
signals for each trial, in order to determine the average dura-
tion and shape of each brake adjustment. When the signals
were extracted from the data, the parameters of G were man-
ually set to fit the shape of the average brake-pedal adjustment
(see Table 2).

3) CONTROLLED SYSTEM
The coefficients q1 and q2 were estimated by fitting themodel
described in (16) to the recorded data using the MATLAB
function fit. Only the data in which drivers were braking and
the vehicle was moving were retained.

D. EVALUATION OF DRIVER MODEL PERFORMANCE
The driver model was evaluated with a leave-one-out
cross-validation process (LOOCV): for the entire dataset,
each trial was left out once while the model was optimised
using the remaining trials, and then the left-out trial was
replayed using the optimised driver model together with the
vehicle model. The outcome of each simulated trial was then
compared with its observed counterpart by means of the
following four metrics: 1) the time-to-arrival at the inter-
section point at brake onset (TTABO), 2) minimum accelera-
tion (amin), 3) maximum brake-pedal deflection (bpmax), and
4) the speed reduction (1V ) from the vehicle speed at tvisibility
to the minimum speed.

The results for the first metric, TTAB0, were compared
to the BOP model detailed in Boda et al. [6]. The error
distributions between the predicted and observed brake onsets
for both the BOPmodel and the present implementation of the
driver model were calculated.

The simulation results for the other metrics were compared
against the observed data and classified into four categories:
1) true positive when a braking action was present in both
the simulated and observed trials, 2) false positive when a
braking action was present in the simulated trial but not in

TABLE 3. Model parameters after optimisation.

FIGURE 7. Distribution of the gain values of each driver (n = 41):
Kexcitatory , kexcitatory , and kinhibitory .

FIGURE 8. Observed longitudinal acceleration given brake-pedal
deflection (dark-grey dots); the blue two-segment line was fitted to the
data, simulating the car’s acceleration level as a function of the
brake-pedal deflection.

the observed trial, 3) false negative when a braking action
was not present in the simulated trial but was present in the
observed trial, and 4) true negative when no braking action
was present in either trial.

III. RESULTS
A. OPTIMISATION OF MODELS
After data exclusion due to low-quality data or drivers fail-
ing to follow the instructions, 613 trials from 41 different
drivers were considered for the model optimisation. The
results of the optimisation are reported in Table 3, and
the distribution of the gains for each driver are reported
in Fig. 7.

The parameters of the vehicle model were estimated using
37,200 data points extracted from the time series (see Fig. 8).
The fit returned q1 = −1.657 and q2 = −14.46.
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TABLE 4. Performance ratios predicting whether drivers would apply
braking for both the driver model and the BOP model.

B. EVALUATION OF DRIVER MODEL PERFORMANCE:
CROSS-VALIDATION
This section reports the results of the comparisons between
the simulated and observed brake initiation times (TTABO)
and the other metrics (amin, bpmax , and 1V ).

1) BRAKE INITIATION
The observed TTABO, the TTABO predicted by the driver
model, and that predicted by the BOP model are reported in
Fig. 9. The scatter plot shows that the TTABO predicted by the
BOP model was not able to reproduce the variability present
in the observed TTABO. On the other hand, the driver model’s
predicted TTABO generated a variability close to that of the
observed data.While the twomodels’ error distributions have
an equivalent standard deviation (1.685 for the driver model
and 1.686 for the BOP model), the BOP model’s distribution
is shifted towards the negative values (mean=−0.386 s, and
median=−0.230 s). In contrast, the error distribution for the
driver model is more centred on zero (mean = −0.202 s, and
median=−0.008 s). The results suggest that the drivermodel
tends to predict a brake initiation closer to the observation
than the BOP model does, since it predicts a later brake
initiation.

The aforementioned results compared the brake initiation
timings in the true positive predictions for both models.
To evaluate how well the model predicted whether the drivers
would brake or not, the ratios sensitivity, specificity, preci-
sion, accuracy, fall-out, and miss rate were calculated (see
Table 4). Both models are comparable for sensitivity, pre-
cision, accuracy, and miss rate. For the specificity and the
fall-out metrics, the driver model performed better than the
BOPmodel. Thus it appears that the inhibitory cue introduced
in our driver model caused it to perform better than the BOP
model at predicting that no braking control would be applied.
Finally, while the specificity is higher for the driver model,
its value is still quite low (0.303), which can be explained by
the fact that several drivers used engine braking instead of the
brakes to regulate the car speed (resulting in numerous false
positives).

2) TIME SERIES-RELATED METRICS
The predicted metrics related to the vehicle kinematics amin
and 1V , as well as the driver input bpmax , were reported

FIGURE 9. Comparison between observed and predicted brake onsets for
both the driver model and the BOP model [6]: a) scatter plot showing the
relationship between TTABO and TTAvisibility ; b) histograms of the error
between predicted and observed TTABOs for both models.

in Fig. 10., in the top row, the simulated values are plotted
against the observed values. In the bottom row, the distri-
butions of the error between the simulated and observed
values are represented as histograms. For all plots, the data
were classified into the four categories indicating whether the
driver model correctly predicted whether the original driver
braked. The mean, median, and standard deviation of each
distribution are reported in Tables 5-6.

a: TRUE POSITIVES
The error distributions for the three metrics show that the
simulated trials resulted in harder deceleration and greater
speed reduction: for the majority of trials, the predicted amin
values were lower than their corresponding observed values
(median = 0.18m/s2). However, for the trials with a high
value for amin (i.e., close to 0m/s2), the predictions were quite
similar to the observations. The same can be said for1V : for
the values close to 0m/s, the predicted1V values were close
to the observed values.

b: TRUE NEGATIVES
It is straightforward that the values of the metric bpmax from
the simulated and observed data are similar for true negative
predictions, since there was no braking. However, from the
other metrics, it appears that in some trials, the drivers did
decelerate without using the brake pedal (using engine brak-
ing instead).
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TABLE 5. Distribution parameters for the error between the predicted
and observed minimum accelerations (amin), in m/s2.

TABLE 6. Distribution parameters for the error between the predicted
and the observed speed reductions (1V ), in [m/s].

c: FALSE POSITIVES
The error distribution of bpmax was significantly larger for
the predictions than the observations. However, the two other
metrics show that the predicted values are not that different
from the observed values. These similarities are the result of
a very brief brake pedal adjustment, predicted by the model,
that decelerated the vehicle only shortly (i.e., the predicted
and observed1V values were similar). Additionally, as in the
true-negative category, drivers seem to have decelerated their
car using engine braking (while partially or fully releasing
the gas pedal). Finally, there are three obvious outliers in the
observed data (see Fig. 10.a and c); these three were, in fact,
near-crash situations. The participants decided to cross the
intersection in front of the bicycle even though the PETproj
margin was small, resulting in a large difference between the
predictions and the observations because the driver model
predicted safer behaviour. The predicted control was a result
of fitting the driver model on multiple trials for each driver,
producing an average behaviour that was safer than those
outlier trials. Note that if the average behaviour of the driver
had been unsafe (i.e., small PETproj margin), it is likely that
the driver model would have predicted an unsafe control.

d: FALSE NEGATIVES
Only ten cases were classified as false negatives. The median
error and standard deviation of each metric are low, suggest-
ing that in those observed trials the participants may have
briefly braked. The situations may not have been very critical,
so the driver model predicted that braking was not neces-
sary. In other words, the model did not accumulate enough
excitatory evidence before accumulating enough inhibitory
evidence (i.e., Ainhibitory reached−1 before Aexcitatory reached
1), resulting in an inhibition of the need for braking.

IV. DISCUSSION
The three objectives of this paper were 1) to present a
computational model that can predict drivers’ braking con-
trol when a cyclist crosses their travel path, 2) to evaluate
its performance, and 3) to verify our hypothesis that the

TABLE 7. Distribution parameters for the error between the predicted
and the observed maximum brake-pedal deflections (bpmax ), ranging
from 0 to 1 (where 1 is fully depressed).

longitudinal looming and the projected post-encroachment
time could explain drivers’ braking control in this scenario.

A. MODEL PERFORMANCE
Overall, the results of the LOOCV process suggest that the
current driver model was accurate at predicting brake-pedal
control, not only at the moment when the driver initiates
braking (as the BOP model does), but also during the sub-
sequent period of braking control (until the final brake-pedal
release). Hence, compared to the models of Silvano et al. [4]
and Bella and Silvestri [5], this driver model goes further
because it can provide a continuous prediction of driver
control. This driver model also demonstrates that Markkula
et al.’s modelling framework can be used to predict driver
control in lateral interactions. Thus, our model complements
other previous implementations (e.g., rear-end collision [9] or
steering control [7]). Furthermore, the calculated sensitivity
and specificity of the model indicate that it can predict brake
initiation more accurately than the BOPmodel can. However,
the specificity was quite low, perhaps because the participants
used engine braking to regulate their speed instead of the
brakes. Since engine braking was not implemented in the
model, themodel predicted braking instead, as compensation.
In most cases, the predicted and observed speed reductions
were actually quite similar. Future developments of themodel
should implement engine braking control to make it more
realistic and improve the predictions.

The analysis of the metrics characterising brake pedal
regulation after brake initiation (i.e., amin, bpmax , and 1V )
showed that the model was able to predict braking control
similar to that observed during the experiment. When drivers
needed to brake significantly, the model had a tendency to
predict even harder braking, resulting in a lower value for
amin and a greater speed reduction. This tendency could
be caused by a combination of 2 factors: 1) the simplistic
vehicle-dynamics model (see Fig. 8), and 2) the optimisation
of kexcitatory, which was based only on the brake onset and
not on the subsequent brake adjustments. To address the
first factor, further development should consider implement-
ing a more realistic vehicle-dynamics model. The second
factor could be addressed by using all the brake adjust-
ments in the optimisation process, but this would require a
great deal of computing power, as well as a more refined
algorithm to detect all the adjustments in the collected
data.
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FIGURE 10. Driver model evaluation metrics. The top row comprises graphs of the simulated metrics against the observed metrics for all trials.
The bottom row represents the histograms of the error (difference) between the simulated and observed metrics for all trials. For all graphs, the
data were classified into four categories based on the brake onset prediction: 1) true positive, 2) true negative, 3) false positive, and 4) false
negative. The left column represents the minimum acceleration reached during the trial (amin), the middle column represents the maximum
brake-pedal deflection (bpmax ), and the right column represents the car’s speed reduction from the time when the bicycle was visible for the first
time to the minimum speed reached during the trial (1V ).

B. MODEL IMPLEMENTATION AND PRACTICAL
APPLICATIONS
The choice of the two input variables (i.e., the longitudi-
nal looming and the projected post-encroachment time) was
inspired by the human locomotion literature [13]. The perfor-
mance assessment of the model suggests that the choice was
adequate: those cues seemed to explain how drivers control
their car when interacting with a crossing cyclist. However,
it is unlikely that they are the only ones on which driver
control depends. Therefore, when applying the driver model,
researchers should consider other cues or mental states that
might influence drivers’ control. For example, because of
the configuration of the experiment in the present implemen-
tation, the participants were surely attentive; therefore, the
model may not correctly predict drivers’ response processes
when they are inattentive. The same limitation holds for other
mental states, such as fatigue or cognitive load.

The driver model’s inability to account for mental states
may be problematic for counterfactual simulations, since they
are an essential part of those simulations [20]). However,
the driver model would still be relevant for threat-assessment
algorithms for safety system activation. In a driving situation
where a fully attentive driver would have already reacted, but
the current driver has not initiated any response, it is likely
that the safety system would have to issue a warning or even
take over the car controls [21]–[23].

C. LIMITATIONS AND FUTURE RESEARCH
The main limitations of this work were the focus of the model
on brake-pedal control and the simplifications that were made
to be able to perform the modelling.

Modelling only brake-pedal control means, obviously, that
themodel could not predict other types of control (e.g., engine
braking, steering, or acceleration). In fact, there were multi-
ple trials in which drivers used engine braking, which seemed
to be an actual strategy to regulate speed with a mild deceler-
ation. However, engine braking was not modelled. Similarly,
steering wheel control was not modelled, even though it is
another important control that drivers can use to avoid a
potential crash (i.e., steering to effect a change in bearing
angle could increase the PET). Finally, gas-pedal control is
also important, since it enables drivers to regulate their speed
and, potentially, increase their PET (i.e., increasing their
safety margins by speeding up when crossing the intersection
in front of the bicycle, or by slowing down slightly when
crossing after the bicycle). Furthermore, modelling the gas
pedal may be important for indicating to safety systems that
the driver has registered the presence of the cyclist andwill act
appropriately. Modelling gas-pedal control was also beyond
the scope of this implementation.

The simplifications to the vehicle-dynamics model may
have led to a wider variance in the error distributions. Intro-
ducing a more realistic model is likely to improve its pre-
diction performance. Additionally, by manually tuning the
motor-primitive G function, we may have generated a dis-
crepancy between observed and simulated brake-pedal con-
trol. Another assumption was that the drivers’ eye height is
1.2 m (instead of using the actual height for each drive);
this may have led to overestimating or underestimating the
value of τ−1. As a result, the model may have produced less
accurate predictions. Future research may address these limi-
tations and simplifications, improving the model’s suitability
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for different applications as well as its prediction perfor-
mance (e.g., future improvements of this model may combine
machine learning approaches with the accumulation frame-
work used in this paper). Furthermore, three near-crash situ-
ations in the data demonstrated that the model was not able
to reproduce the participants’ control in all cases. Therefore,
themodel requires further improvement so that it can describe
driver behaviour that leads to a critical situation. More data
on critical situations need to be collected to facilitate future
development.

V. CONCLUSIONS
The leave-one-out cross-validation process showed that the
computational driver model performed well at predicting
driver control, whether the cyclist crossed the driver’s travel
path or not. The use of cues derived from the traffic con-
flict technique literature and the human locomotion literature
enabledMarkkula et al.’s modelling framework to be used for
the first time to predict driver control in a lateral interaction.
Furthermore, unlike previous driver models in similar traffic
situations, the present driver model was able to predict contin-
uous driver control. This computational model can be applied
in safety systems’ threat-assessment algorithms as well as
in counterfactual simulations. However, before being used
in production, the driver model would have to be validated
with, for instance, naturalistic driving data. Furthermore, the
prediction performance would have to be assessed on a wider
range of kinematics, including factors such as engine braking
or steering control, which could be modelled as a future
development step toward reproducing more realistic driver
control.
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